JPH03236199A - Electromagnetic force-supporting collar - Google Patents

Electromagnetic force-supporting collar

Info

Publication number
JPH03236199A
JPH03236199A JP3038090A JP3038090A JPH03236199A JP H03236199 A JPH03236199 A JP H03236199A JP 3038090 A JP3038090 A JP 3038090A JP 3038090 A JP3038090 A JP 3038090A JP H03236199 A JPH03236199 A JP H03236199A
Authority
JP
Japan
Prior art keywords
superconducting
coils
electromagnetic force
beam duct
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3038090A
Other languages
Japanese (ja)
Inventor
Takahito Masuda
孝人 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3038090A priority Critical patent/JPH03236199A/en
Publication of JPH03236199A publication Critical patent/JPH03236199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To prevent occurrence of local stress concentration or dispersion on superconducting coils by pressing the superconducting coils to the curved section of a beam duct with pressing means via pressing plates. CONSTITUTION:Superconducting saddle type coils 100, 200 are pressed to a duct 3 by pressing bolts 6 of corresponding reinforcing collars 7a, 7b of an electromagnetic force-suported collar formed with multiple cooling holes 11 via pressing plates 6. A uniform pressing force is applied, and local stress concentration or dispersion on the superconducting coils 100, 200 can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シンクロトロン放射光発生装置等に使用され
る超電導鞍型コイルを上記装置の構成部分に圧着する電
磁力支持カラーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electromagnetic force support collar for crimping a superconducting saddle-shaped coil used in a synchrotron radiation light generating device or the like to a component of the device.

[従来の技術] 例えばシンクロトロン放射光発生装置におけるビームダ
クト3が湾曲する部分には、第3図に示すようにビーム
ダクト3の外周面を半周面づつ上下より覆う超電導鞍型
コイルl00a及び200aが設けられる。超電導鞍型
コイルl00a及び200aは、同一の構造をなすもの
で、例えば超電導鞍型コイル100aにおいては巻芯1
01°を中心としてこの巻芯101にケーブル102を
巻回することで形成される。
[Prior Art] For example, in a curved part of the beam duct 3 in a synchrotron radiation light generating device, superconducting saddle-shaped coils l00a and 200a are installed to cover the outer circumferential surface of the beam duct 3 from above and below, half circumferentially at a time, as shown in FIG. will be provided. The superconducting saddle coils 100a and 200a have the same structure; for example, in the superconducting saddle coil 100a, the winding core 1
It is formed by winding the cable 102 around this winding core 101 around 01°.

このような超電導鞍型コイル100a及び200aは、
第4図に示すようにそれぞれ2層ずつ設けられ超電導鞍
型コイル100及び200を形成する。このような超電
導鞍型コイル!00及び200は、それぞれの超電導鞍
型コイル100及び200の外周面に密着する内周面を
有する半円筒形状の補強カラー1a及び1bにて上下よ
り挟まれ、補強カラー1−a及びIbの長平方向の切断
線に沿って設けられるツバ部2a及び2bがボルトナツ
ト4にて締結されることでビームダクト3へ圧着される
。尚、補強カラー1a及びlbは、それぞれのツバ部2
a及び2bの接合面111が超電導鞍型コイル100及
び200の接合面+10とほぼ一致して締結される。
Such superconducting saddle-shaped coils 100a and 200a are
As shown in FIG. 4, two layers each are provided to form superconducting saddle-shaped coils 100 and 200. Superconducting saddle-shaped coil like this! 00 and 200 are sandwiched from above by semi-cylindrical reinforcing collars 1a and 1b having inner circumferential surfaces that are in close contact with the outer circumferential surfaces of superconducting saddle-shaped coils 100 and 200, respectively, and long flat reinforcing collars 1-a and Ib. Flange portions 2a and 2b provided along the cutting line in the direction are crimped to the beam duct 3 by being fastened with bolts and nuts 4. In addition, the reinforcing collars 1a and lb have their respective brim portions 2.
The bonding surfaces 111 of the superconducting saddle coils 100 and 200 are substantially aligned with the bonding surfaces +10 of the superconducting saddle coils 100 and 200, and they are fastened together.

[発明が解決しようとする課題〕 上述のようにビームダクト3に圧着される超電導鞍型コ
イル+00及び200に電流を流した場合、超電導鞍型
コイル100及び200には第5図に示すような電磁力
が発生する。尚、第5図は直線鞍型コイルにて発生ずる
電磁力の1つの計算例を表した図であり、回内左半分は
発生する電磁力を等磁界曲線にて示し、右半分は上記電
磁力をベクトルにて表している。第5図より判るように
、超電導鞍型コイル+00及び200に電流を流したと
きには、超電導鞍型コイル+00及び200の接合面1
10部分において外周面方向、即ち図示するX軸方向へ
電磁力が強く作用する。これは、後述する実施例に示す
様な曲率した鞍型コイルにおいても同じことが言える。
[Problem to be Solved by the Invention] When a current is passed through the superconducting saddle coils +00 and 200 crimped to the beam duct 3 as described above, the superconducting saddle coils 100 and 200 have a voltage as shown in FIG. Electromagnetic force is generated. In addition, Fig. 5 is a diagram showing an example of calculating the electromagnetic force generated in a straight saddle type coil. Force is expressed as a vector. As can be seen from FIG. 5, when current is applied to the superconducting saddle coils +00 and 200, the junction surface
At portion 10, electromagnetic force acts strongly in the direction of the outer peripheral surface, that is, in the X-axis direction shown in the figure. The same can be said of a curved saddle-shaped coil as shown in the embodiment described later.

このように電磁力が超電導鞍型コイル100及び200
に作用することで超電導鞍型コイル+00及び200に
は変形が生じる。これを防止しなければ超電導鞍型コイ
ル100及び200において局所的に応力集中や応力分
散が発生し超電導鞍型コイル+00及び200に悪影響
を与えるとともに、超電導鞍型コイルを構成しているケ
ーブルが移動し形成されている磁界が変化するという問
題が生じろ。
In this way, the electromagnetic force is applied to the superconducting saddle coils 100 and 200.
, the superconducting saddle coils +00 and 200 are deformed. If this is not prevented, stress concentration or stress dispersion will occur locally in the superconducting saddle coils 100 and 200, which will have an adverse effect on the superconducting saddle coils +00 and 200, and the cables that make up the superconducting saddle coils will move. However, the problem arises that the magnetic field being formed changes.

上記XM力方向電磁力による超電導鞍型コイル+00及
び200の変形を防止するには、第6図に示すように超
電導鞍型コイル+00及び200の接合面110と周方
向に90変ずれた位置にて補強カラー1a及び1bを締
結すれば良い。このように補強カラー1a及びlbを設
置することは、ビー12ダクト3が直線状に延在する部
分では可能であるが、ビームダクト3か湾曲した部分に
おいてはそのような補強カラーを製作することが困難で
あり、又、製作可能としても非常に高価なものとなるこ
とより、ビームダクト3が湾曲した部分における補強カ
ラーは、従来より上述したように超電導鞍型コイル10
0及び200の接合面110と周方向で同じ位置にて二
つの補強カラーを締結するタイプが用いられている。
In order to prevent the superconducting saddle coils +00 and 200 from being deformed due to the electromagnetic force in the XM force direction, the superconducting saddle coils +00 and 200 are placed at a position offset by 90 degrees in the circumferential direction from the joining surface 110 of the superconducting saddle coils +00 and 200, as shown in FIG. The reinforcing collars 1a and 1b may be fastened together. Although it is possible to install the reinforcing collars 1a and lb in this way in the portion where the beam duct 3 extends linearly, it is not possible to manufacture such reinforcing collars in the curved portion of the beam duct 3. It is difficult to manufacture the reinforcing collar at the curved portion of the beam duct 3 because it is difficult to manufacture, and even if it is possible to manufacture it, it is very expensive.
A type is used in which two reinforcing collars are fastened at the same position in the circumferential direction as the joint surfaces 110 of 0 and 200.

したがって、上記電磁力による超電導鞍型コイル+00
及び200の変形を有効に防止することができず、上述
したように超電導鞍型コイル100及び200には局所
的に応力集中や応力分散等が発生しているという問題点
がある。
Therefore, the superconducting saddle-shaped coil due to the above electromagnetic force +00
It is not possible to effectively prevent the deformation of the superconducting saddle coils 100 and 200, and as described above, there is a problem in that stress concentration, stress dispersion, etc. occur locally in the superconducting saddle coils 100 and 200.

本発明はこのような問題点を解決するためになされたも
ので、超電導鞍型コイルに局所的に応力集中や応力分散
を生じさせない電磁力支持カラーを提供することを目的
とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide an electromagnetic force support collar that does not cause local stress concentration or stress dispersion in a superconducting saddle-shaped coil.

[課題を解決するための手段] 本発明は、ビームダクトが湾曲する部分に備えられる超
電導コイルを上記ビームダクトへ圧着する電磁力支持カ
ラーであって、 電磁力支持カラーに備わり上記超電導コイルをビームダ
クト方向へ押圧する押圧手段を備えたことを特徴とする
[Means for Solving the Problems] The present invention provides an electromagnetic force support collar for crimping a superconducting coil provided in a curved portion of a beam duct onto the beam duct, the electromagnetic force support collar being provided with a superconducting coil provided in a curved portion of the beam duct, It is characterized by comprising a pressing means for pressing in the direction of the duct.

[作用] 超電導鞍型コイルは、電磁力支持カラーによってビーム
ダクトへ圧着される。さらに、超電導コイルが均一して
ビームダクトに圧着するように電磁力支持カラーに備わ
る抑圧手段にて超電導コイルはビームダクト外面方向に
押圧される。よって、抑圧手段は、ビームダクトの外周
面全周にわたり超電導コイルを均一した力で圧着し、超
電導コイルに通電したとき超電導コイルが局所的に変形
するのを防ぐように作用する。
[Operation] The superconducting saddle coil is crimped to the beam duct by an electromagnetic support collar. Further, the superconducting coil is pressed toward the outer surface of the beam duct by a suppressing means provided in the electromagnetic force support collar so that the superconducting coil is uniformly pressed against the beam duct. Therefore, the suppressing means acts to compress the superconducting coil with a uniform force over the entire outer peripheral surface of the beam duct and to prevent the superconducting coil from being locally deformed when the superconducting coil is energized.

[実施例] 本発明の電磁力支持カラーの一実施例を示す第1図にお
いて、第4図と同じ構成部分については同じ符号を付し
その説明を省略する。
[Example] In FIG. 1 showing an example of the electromagnetic force support collar of the present invention, the same components as in FIG. 4 are denoted by the same reference numerals, and the explanation thereof will be omitted.

本発明の電磁力支持カラーはビームダクト3が例えば9
0If曲がった湾曲部分に使用されるもので、第1図は
そのような湾曲部分のA−A部におけるビームダクト3
、超電導鞍型コイル100及び200等の断面を示して
いる。
In the electromagnetic force support collar of the present invention, the beam duct 3 is, for example, 9
0If is used in a curved part, and FIG. 1 shows the beam duct 3 at the A-A section of such a curved part.
, which shows cross sections of superconducting saddle coils 100 and 200, etc.

従来と同様にビームダクト3の外周面に半周ずつ設けら
れた超電導鞍型コイル100及び200の外周面は補強
カラー7 a、 7 bで包囲され、この補強カラー7
a、7bと超電導鞍型コイルl OO,200との間に
は、円周方向に適宜な間隔にて例えば方形状の平面形状
にてなり薄い押板6が適宜な方法にて複数個挟設配置さ
れる。これらの押板6は、それぞれが独立したものであ
っても良いし、又、それぞれが周方向に接続されている
第2図に示すような、液体ヘリウム温度を伝える貫通孔
6aを有する半円形の帯状のものであっても良い。
As in the past, the outer circumferential surfaces of the superconducting saddle-shaped coils 100 and 200, which are provided on the outer circumferential surface of the beam duct 3 by half a circumference, are surrounded by reinforcing collars 7a and 7b, and the reinforcing collars 7
Between a, 7b and the superconducting saddle-shaped coil lOO, 200, a plurality of thin push plates 6 having, for example, a rectangular planar shape are inserted at appropriate intervals in the circumferential direction by an appropriate method. Placed. Each of these press plates 6 may be independent, or each may be a semicircular shape having a through hole 6a for transmitting liquid helium temperature, as shown in FIG. It may be a band-shaped one.

又、このように配置される押板6は、湾曲するビームダ
クト3の長手方向に沿って複数列設けられるが、製作の
容易性等よりそれぞれの押板6は上記ビームダクトの長
手方向には接続されていない方が望ましい。
Further, the push plates 6 arranged in this way are provided in a plurality of rows along the longitudinal direction of the curved beam duct 3, but each push plate 6 is arranged in a plurality of rows along the longitudinal direction of the beam duct 3 for ease of manufacturing. It is preferable that it is not connected.

このような押板6を押圧するために、従来の補強カラー
と同様の形状である半円筒状の補強カラー7a及び7b
には上記押板6が存在する位置に、補強カラー73及び
7bの外周面と内周面とを貫通するねじ孔8が設けられ
る。そして、このねじ孔8には、補強カラー7a及び7
bの外周面より押えボルト9がねじ込まれ、このボルト
9の先端部は押板6を押圧する。
In order to press such a press plate 6, semi-cylindrical reinforcing collars 7a and 7b, which have the same shape as conventional reinforcing collars, are used.
A screw hole 8 is provided at the position where the push plate 6 is present, passing through the outer and inner circumferential surfaces of the reinforcing collars 73 and 7b. This screw hole 8 is provided with reinforcing collars 7a and 7.
A presser bolt 9 is screwed in from the outer peripheral surface of b, and the tip of this bolt 9 presses the presser plate 6.

又、補強カラー7a及び7bには、貫通する冷却孔11
が複数段けられ、この冷却孔11を介して補強カラー7
a及び7bの内側に設けられている超電導鞍型コイル1
00及び200に液体ヘリウム温度を伝達してこれらの
超電導鞍型コイル100゜200の冷却を容易ならしめ
る。
In addition, cooling holes 11 are provided in the reinforcing collars 7a and 7b.
are arranged in multiple stages, and the reinforcing collar 7 is inserted through the cooling holes 11.
Superconducting saddle-shaped coil 1 provided inside a and 7b
00 and 200 to facilitate cooling of these superconducting saddle coils 100 and 200.

このように押えボルト9が設けられた補強カラー7a及
び7bは、従来と同様に、超電導鞍型コイル100及び
200の接合面110とほぼ同−平面にて補強カラー7
a及び7bに設けられているツバ部IOa及びIObが
接合されボルトナツト4にて締結される。補強カラー7
a及び7bの締結後さらに、上記押えボルト9がねじ込
まれる。
The reinforcing collars 7a and 7b provided with the presser bolts 9 in this manner are arranged in substantially the same plane as the joining surfaces 110 of the superconducting saddle coils 100 and 200, as in the conventional case.
Flange portions IOa and IOb provided on a and 7b are joined and fastened with bolt nuts 4. Reinforcement color 7
After fastening a and 7b, the presser bolt 9 is further screwed in.

押えボルト9をねじ込むことで、それぞれの押板6を介
して超電導鞍型コイル100及び200をビームダクト
3方向へ押圧する。よって、従来のように補強カラーの
みで超電導鞍型コイル1゜O及び200をビームダクト
3へ押圧するより均一した力で超電導鞍型コイル+00
及び200をビームダクト3へ押圧することができる。
By screwing in the holding bolt 9, the superconducting saddle-shaped coils 100 and 200 are pressed in the direction of the beam duct 3 via the respective holding plates 6. Therefore, rather than pressing the superconducting saddle-shaped coils 1°O and 200 to the beam duct 3 using only the reinforcing collar as in the past, the superconducting saddle-shaped coils +00 can be pressed with a more uniform force.
and 200 can be pressed into the beam duct 3.

したがって、超電導鞍型コイル100及び2゜Oに電流
を流したときに超電導鞍型コイル100及び200の変
形を抑えることができ、超電導鞍型コイル100及び2
00において局所的な応力集中や応力分散が生じること
がなくなるとともに、超電導鞍型コイル100及び20
0を構成するケーブルの移動を防ぎ磁界の変化を防ぐこ
とができる。
Therefore, when a current is passed through the superconducting saddle coils 100 and 2°, deformation of the superconducting saddle coils 100 and 200 can be suppressed, and the superconducting saddle coils 100 and 2
00, local stress concentration and stress dispersion do not occur, and superconducting saddle-shaped coils 100 and 20
It is possible to prevent the cables constituting 0 from moving and prevent changes in the magnetic field.

尚、押えボルト9のねじ込み量を調節することにより超
電導鞍型コイル100.200の押圧力を所望の大きさ
に調整することができる。又、押えボルト9に代えて、
あるいは押えボルト9で押圧されるスプリング等の弾性
体によって直接あるいは押板6を介して超電導鞍型コイ
ル100,200を押圧するようにしてもよい。
By adjusting the screwing amount of the presser bolt 9, the pressing force of the superconducting saddle coil 100, 200 can be adjusted to a desired magnitude. Also, instead of the presser bolt 9,
Alternatively, the superconducting saddle-shaped coils 100, 200 may be pressed directly or via the pressing plate 6 by an elastic body such as a spring pressed by the holding bolt 9.

[発明の効果] 以上詳述したように本発明によれば、押圧手段は、ビー
ムダクトの外周面全周にわたり超電導コイルを均一した
力で圧着することより、超電導コイルに通電したとき超
電導コイルが局所的に変形することが避けられ、超電導
コイルに局所的な応力集中や応力分散が生じることはな
い。
[Effects of the Invention] As detailed above, according to the present invention, the pressing means presses the superconducting coil with a uniform force over the entire outer peripheral surface of the beam duct, so that when the superconducting coil is energized, the superconducting coil is Local deformation is avoided, and no local stress concentration or stress dispersion occurs in the superconducting coil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電磁力支持カラーの一実施例を示す断
面図、第2図は押板の形状を示す斜視図、第3図は長手
方向に曲率したビームダクトに超電導鞍型コイルを設置
した状態を示す斜視図、第4図は従来の電磁力支持カラ
ーの設置状態を示す断面図、第5図は超電導鞍型コイル
に電流を流した際に発生する電磁力の向きを示す図、第
6図は長手方向に曲率したビームダクトにおける補強カ
ラーの取り付は方法の他の例を示す断面図である。 6・・・押板、7a及び7b・・・補強カラー9・・・
押えボルト、 100及び200・・・超電導鞍型コイル。
Fig. 1 is a sectional view showing an embodiment of the electromagnetic force support collar of the present invention, Fig. 2 is a perspective view showing the shape of the push plate, and Fig. 3 is a superconducting saddle-shaped coil installed in a beam duct curved in the longitudinal direction. Figure 4 is a perspective view showing the installed state, Figure 4 is a sectional view showing the installed state of the conventional electromagnetic force support collar, and Figure 5 is a diagram showing the direction of electromagnetic force generated when current is passed through the superconducting saddle coil. , and FIG. 6 is a sectional view showing another example of a method for installing a reinforcing collar in a beam duct having a longitudinal curvature. 6... Push plate, 7a and 7b... Reinforcement collar 9...
Holder bolt, 100 and 200...Superconducting saddle type coil.

Claims (2)

【特許請求の範囲】[Claims] (1)ビームダクトが湾曲する部分に備えられる超電導
コイルを上記ビームダクトへ圧着する電磁力支持カラー
であって、 電磁力支持カラーに備わり上記超電導コイルをビームダ
クト方向へ押圧する押圧手段を備えたことを特徴とする
電磁力支持カラー。
(1) An electromagnetic force support collar for crimping a superconducting coil provided at a curved portion of the beam duct onto the beam duct, the electromagnetic force support collar having a pressing means for pressing the superconducting coil in the direction of the beam duct. An electromagnetic support collar characterized by:
(2)上記押圧手段と上記超電導コイル外面との間に押
え板を設けた請求項1記載の電磁力支持カラー。
(2) The electromagnetic force support collar according to claim 1, further comprising a presser plate provided between the pressing means and the outer surface of the superconducting coil.
JP3038090A 1990-02-09 1990-02-09 Electromagnetic force-supporting collar Pending JPH03236199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038090A JPH03236199A (en) 1990-02-09 1990-02-09 Electromagnetic force-supporting collar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038090A JPH03236199A (en) 1990-02-09 1990-02-09 Electromagnetic force-supporting collar

Publications (1)

Publication Number Publication Date
JPH03236199A true JPH03236199A (en) 1991-10-22

Family

ID=12302279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038090A Pending JPH03236199A (en) 1990-02-09 1990-02-09 Electromagnetic force-supporting collar

Country Status (1)

Country Link
JP (1) JPH03236199A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150908A (en) * 2004-12-27 2009-07-09 Toshiba Corp Optical waveguide type biochemical sensor chip, its design method, and method of measuring object to be measured
JP2015153733A (en) * 2014-02-19 2015-08-24 株式会社東芝 Superconducting magnet device and charged particle accelerator
CN111584180A (en) * 2020-06-05 2020-08-25 中国科学院合肥物质科学研究院 Low-stress safe transmission device between rapid excitation superconducting magnet and current lead

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150908A (en) * 2004-12-27 2009-07-09 Toshiba Corp Optical waveguide type biochemical sensor chip, its design method, and method of measuring object to be measured
JP2015153733A (en) * 2014-02-19 2015-08-24 株式会社東芝 Superconducting magnet device and charged particle accelerator
CN111584180A (en) * 2020-06-05 2020-08-25 中国科学院合肥物质科学研究院 Low-stress safe transmission device between rapid excitation superconducting magnet and current lead
CN111584180B (en) * 2020-06-05 2021-12-28 中国科学院合肥物质科学研究院 Low-stress safe transmission device between rapid excitation superconducting magnet and current lead

Similar Documents

Publication Publication Date Title
KR930021970A (en) TAMPER-RESISTANT BRAKE ACTUATOR
JPH03236199A (en) Electromagnetic force-supporting collar
JPH05190346A (en) Gapped-core type reactor
US5464258A (en) Compression joint
US11362551B2 (en) Stator core of motor
JPH0419494A (en) Electric fusion joint
JPH04206610A (en) Amorphous iron-core transformer
JPH02191306A (en) Coil clamping device
JPH06120082A (en) Fixing device for electrolytic capacitor
JP2022012751A (en) Winding unit
JPH0632719Y2 (en) Ferrite core fixed structure
JP6977230B2 (en) Piping heating device
JPH08182160A (en) Cable fixing device
US20210247006A1 (en) Profiled Clamp
JPS612243A (en) Device for attaching electric parts to electron tube
JPS6343811Y2 (en)
JPS61224307A (en) Gapped core type reactor
JPS61273276A (en) Joining method for superconductive wire
JPH07229591A (en) Fastening band for fastening expansion pipe joint
JP2525334Y2 (en) Shape memory alloy joint heating coil device
JP2554028Y2 (en) Linear motor
JPH03224301A (en) Waveguide connection mechanism
JPH0113394Y2 (en)
JPH08196070A (en) Linear motor
JPH1122864A (en) Insulative fastening method and structure and insulating sheet