JPH0323615B2 - - Google Patents

Info

Publication number
JPH0323615B2
JPH0323615B2 JP58240936A JP24093683A JPH0323615B2 JP H0323615 B2 JPH0323615 B2 JP H0323615B2 JP 58240936 A JP58240936 A JP 58240936A JP 24093683 A JP24093683 A JP 24093683A JP H0323615 B2 JPH0323615 B2 JP H0323615B2
Authority
JP
Japan
Prior art keywords
alloy
melting point
liquid
mixed
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58240936A
Other languages
Japanese (ja)
Other versions
JPS60135550A (en
Inventor
Kengo Inage
Hiromi Hasegawa
Michihiko Nishijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP58240936A priority Critical patent/JPS60135550A/en
Publication of JPS60135550A publication Critical patent/JPS60135550A/en
Publication of JPH0323615B2 publication Critical patent/JPH0323615B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、常温で液体の合金に固化用の金属粉
末を混入練和して用いる歯科用金属材料に関す
る。 〔従来の技術〕 歯牙の窩洞修復用に充填する歯科用金属材料と
して、従来よりアマルガムが用いられている。こ
れは常温で液体のHgに固化用の金属粉末を混
入・練和するもので、このような金属粉末として
は通常Ag+Sn、Ag+Sn+Zn等が用いられてい
る。 〔発明が解決しようとする問題点〕 このアマルガムは上記した如くHgを用いるた
めにその毒性が問題となり、常温においても蒸気
となつて毒性雰囲気を作るために歯科医等に悪い
影響を与え、さらに常時歯牙に充填されている患
者にも何らかの悪い影響があることが考えられて
いる。 しかし、このアマルガムは用法が容易であるた
めに毒性の心配があるにもかかわらず使用が続づ
けられているのが現状である。しかし、Hgに代
わる金属の研究も進んでいる。 Hgの融点は−38.86℃であり、常温では液体で
ある。これに次いで低い融点を有する金属がGa
(m.p.29.78℃)であり、当該目的にGaを利用す
る研究が1983年代より行われ始めた。Gaの単体
で常温で液状を保つことは難しく、合金化して融
点を低下させる試みが行われたが、期待通りの低
融点のものが得られなかつたこともあり、Ga系
歯科材料の研究においては、必ずしも従来の水銀
と同様に液状で使用しようと志向されていたわけ
ではない。 一方、金属学的には、Ga系の低融点合金とし
ては、Ga−Sn(共晶温度20℃)、Ga−In(同15.7
℃)、Ga−Zn(同25℃)の二元系の状態図が知ら
れているが、三元系以上についてはほとんど知ら
れていない。 Ga系歯科材料に関する研究としては、Ga単体
またはGaを主体とする前記のGa−Sn、Ga−In、
Ga−Znの共晶合金を中心とし、それらに固化用
のPd、Ag、Au、Cu、Sn、Zn等の単体金属の粉
末あるいはAg−Sn−Zn系の合金粉末とを混入、
練和する研究が行われたが、上記Ga−Inの共晶
温度より低い融点を有する三元以上の多元液体合
金に合金粉末を混入、練和するような研究は極め
て少ない。 近時、特許第1059723号(特公昭55−48091号)
において、金属粉と練和する際に、GaにSnを1
〜13.5%添加し、更にこれにIn0〜24.5%または
Zn5%以下添加し、一時的にGaの融点を下げなが
ら金属粉を加えて練和する方法が示されている
が、前述のようにGa−In共晶温度(15.7℃)よ
り低い融点を示す三元以上のGa系液体合金に関
する技術は言及されていない。 今日まで、Ga系の歯科用材料が実用化されな
かつた原因は、Ga合金の融点が実用レベルに低
下できず、作業性が不十分であつたほか、練和物
を機械的強度が不充分であつたためである。 〔課題を解決するための手段〕 本発明は、常温で液体状態であり、固化用の金
属粉末を混入、練和して用いる歯科用金属材料に
おいて、In5〜40wt%、Sn5〜30wt%、残部Gaよ
り成り、15℃以下の融点を有する低融点合金に、
Pt、Pd、Rh、Ir、Os、Ta、Ti、Zr、Re、W、
Mo、Fe、Ni、Co、Cr、Hf、V、Yの金属を一
種ないし二種以上あるいはこれらの二元以上の合
金から成る混和金属粉末を、100:0.05〜60の重
量比で混合させたことを特徴とする。 つまり、本発明は、Gaを主体とした三元系以
上の低融点液体合金に固化用の金属粉末を混入、
練和して歯科用金属材料を得る際、液体合金中に
この液体合金に対して直接拡散反応を起こしにく
い、即ち合金化しにくいような、高融点元素であ
るPt、Pd、Rh、Ir、Os、Ta、Ti、Zr、Re、W、
Mo、Fe、Ni、Co、Cr、Hf、V、Yより成る粉
末を混和金属として分散させておいて、固化用の
金属粉末を混入、練和後、機械的強度の優れる歯
科用金属材料を与えんとするものである。 ここでまず、Gaを主体とする常温で液体とな
る低融点合金はGa−In−Snの三元合金であり、
詳しくは、In5〜40wt%、Sn5〜30wt%残部Gaよ
り成り、15℃以下の融点を有する。 次に、上記低融点液体合金中に分散させる混和
金属としては、Pt、Pd、Rh、Ir、Os、Ta、Ti、
Zr、Re、W、Mo、Fe、Ni、Co、Cr、Hf、V、
Yの単体金属の粉末またはこれらの合金の粉末で
あり、上記液体合金に対して100:0.05〜60重量
比で混和できる。 この混和金属は、常温ないし練和の際に発生す
る熱による温度上昇程度では液体合金とは合金化
しにくい高融点の元素で、液体合金と固化用の金
属粉末との、練和によつて硬化する歯科用金属材
料の中に点在することになるもので、練和硬化物
の強度を著しく向上させることができ、丁度コン
クリートの中の骨材と同様の働きを与えるもので
ある。 なお、以上の低融点合金の成分組織について
は、この範囲より外にある場合には融点を15℃を
越えるものとなつて常温で液体状態とすることが
困難となるものである。また混和金属の混合比に
ついては、この範囲より低い場合には混和したこ
とによる練和硬化物の圧縮強度の上昇が認められ
ず、高い場合には、練和の作業性に支障を来すも
のである。 〔実施例〕 以下に本発明の一実施例を示す。 Ga140g、In14g、Sn46gをるつぼに入れ約
100℃以上に加熱・溶融して撹拌し、Ga70wt%
−In7wt%−Sn23wt%の溶融点15℃の低融点合
金とする。次に150メツシユのTi−Fe−Cr−Mo
の混和金属を作る。さらに固化用合金としては従
来と同様の250メツシユのAg66wt%、Sn25wt%、
Zn9wt%とし、それらを1:0.4:1の割合で混
入・練和した。この圧縮強度は42Kgf/mm2であつ
た。さらにこの実施例およびこれと同様にした実
施例を以下の表に示す。
[Industrial Application Field] The present invention relates to a dental metal material that is used by mixing and kneading a solidifying metal powder into an alloy that is liquid at room temperature. [Prior Art] Amalgam has conventionally been used as a dental metal material to be filled for tooth cavity restoration. This involves mixing and kneading metal powder for solidification into Hg, which is liquid at room temperature, and such metal powders are usually Ag+Sn, Ag+Sn+Zn, etc. [Problems to be solved by the invention] As mentioned above, this amalgam uses Hg, which poses a problem of toxicity.Even at room temperature, it turns into vapor and creates a toxic atmosphere, which has a negative impact on dentists, etc. It is thought that it may also have some negative effects on patients whose teeth are constantly filled. However, because this amalgam is easy to use, it continues to be used despite concerns about toxicity. However, research on metals that can replace Hg is also progressing. The melting point of Hg is -38.86°C, and it is a liquid at room temperature. The next metal with the lowest melting point is Ga.
(mp29.78℃), and research on using Ga for this purpose began in 1983. It is difficult to keep Ga alone in a liquid state at room temperature, and attempts were made to lower the melting point by alloying it, but it was not possible to obtain a material with the low melting point as expected, so research on Ga-based dental materials was not necessarily intended to be used in liquid form like conventional mercury. On the other hand, metallurgically, Ga-based low melting point alloys include Ga-Sn (eutectic temperature 20℃) and Ga-In (eutectic temperature 15.7℃).
Although phase diagrams for the binary system of Ga-Zn (at 25°C) and Ga-Zn (at 25°C) are known, little is known about ternary systems or higher. Research on Ga-based dental materials includes the above-mentioned Ga-Sn, Ga-In, Ga-based materials,
Mainly Ga-Zn eutectic alloy, mixed with single metal powder such as Pd, Ag, Au, Cu, Sn, Zn or Ag-Sn-Zn alloy powder for solidification.
Although research has been conducted on kneading, there has been very little research on mixing and kneading alloy powder into a ternary or higher multi-component liquid alloy having a melting point lower than the eutectic temperature of Ga-In. Recently, Patent No. 1059723 (Special Publication No. 55-48091)
When kneading with metal powder, one portion of Sn is added to Ga.
Add ~13.5% and further add In0~24.5% or
A method has been shown in which 5% or less of Zn is added and kneaded by adding metal powder while temporarily lowering the melting point of Ga, but as mentioned above, the melting point is lower than the Ga-In eutectic temperature (15.7℃). There is no mention of technology related to ternary or higher Ga-based liquid alloys. The reasons why Ga-based dental materials have not been put into practical use to date are that the melting point of the Ga alloy could not be lowered to a practical level, the workability was insufficient, and the mechanical strength of the kneaded material was insufficient. This is because it was warm. [Means for Solving the Problems] The present invention provides a dental metal material that is in a liquid state at room temperature and is used by mixing and kneading metal powder for solidification, with In 5 to 40 wt%, Sn 5 to 30 wt%, and the balance A low melting point alloy consisting of Ga and having a melting point of 15℃ or less,
Pt, Pd, Rh, Ir, Os, Ta, Ti, Zr, Re, W,
Mixed metal powder consisting of one or more of Mo, Fe, Ni, Co, Cr, Hf, V, and Y metals or an alloy of two or more of these metals is mixed at a weight ratio of 100:0.05 to 60. It is characterized by In other words, the present invention involves mixing metal powder for solidification into a ternary or higher low melting point liquid alloy mainly composed of Ga,
When kneading to obtain dental metal materials, high melting point elements such as Pt, Pd, Rh, Ir, and Os are added to the liquid alloy, which are difficult to cause a direct diffusion reaction with the liquid alloy, that is, difficult to alloy. , Ta, Ti, Zr, Re, W,
Powders consisting of Mo, Fe, Ni, Co, Cr, Hf, V, and Y are dispersed as mixed metals, and after mixing and kneading metal powder for solidification, a dental metal material with excellent mechanical strength is produced. It is something that we try to give. First, the low melting point alloy that is liquid at room temperature and is mainly composed of Ga is a ternary alloy of Ga-In-Sn.
Specifically, it consists of 5 to 40 wt% In, 5 to 30 wt% Sn, and the balance Ga, and has a melting point of 15°C or less. Next, the mixed metals to be dispersed in the low melting point liquid alloy include Pt, Pd, Rh, Ir, Os, Ta, Ti,
Zr, Re, W, Mo, Fe, Ni, Co, Cr, Hf, V,
It is a single metal powder of Y or a powder of an alloy thereof, and can be mixed with the liquid alloy at a weight ratio of 100:0.05 to 60. This mixed metal is an element with a high melting point that is difficult to alloy with the liquid alloy at room temperature or the temperature rise due to the heat generated during kneading, and it hardens by kneading the liquid alloy and the metal powder for solidification. It is dotted in dental metal materials, and can significantly improve the strength of the kneaded and hardened material, providing the same function as aggregate in concrete. Note that if the composition of the above-mentioned low melting point alloy is outside this range, the melting point will exceed 15° C. and it will be difficult to make it into a liquid state at room temperature. Regarding the mixing ratio of the mixed metal, if it is lower than this range, no increase in the compressive strength of the kneaded and cured product will be observed due to mixing, and if it is higher, the workability of kneading will be hindered. It is. [Example] An example of the present invention is shown below. Put 140g of Ga, 14g of In, and 46g of Sn into a crucible and approx.
Heating and melting above 100℃ and stirring, Ga70wt%
-In7wt%-Sn23wt% low melting point alloy with melting point of 15℃. Next, 150 meshes of Ti−Fe−Cr−Mo
Make mixed metals. Furthermore, the solidifying alloys are 250 mesh Ag66wt%, Sn25wt%,
Zn was 9wt% and mixed and kneaded in a ratio of 1:0.4:1. The compressive strength was 42Kgf/mm 2 . Further, this example and similar examples are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によると、Gaを主体とし
た三元以上の多元系の低融点液体合金と固化用の
金属粉末と、練和して硬化物を得る際にPt、Pd、
Rh、Ir、Os、Ta、Ti、Zr、Re、W、Mo、Fe、
Ni、Co、Cr、Hf、V、Yの単体金属粉末または
これらの合金粉末を混和金属として液体合金中に
分散させることによつて、この混和金属は液体金
属を拡散・合金化反応を起こしにくく、練和後の
硬化物中に点在して圧縮強度の大きい歯科用金属
材料とすることができる。 また、低融点合金Gaを主体とする多元合金と
したことにより、歯質および他の金属に対してす
ぐれたぬれ性を有し、歯牙の窩洞充填に用いたと
きに、歯質との間に隙間が生ずることもなく、し
かも融点が低いために使用に際しても作業が極め
て良好となる。 また、生体反応における毒性は全く無く、歯科
用金属材料として適するもので、単に窩洞修復の
みならず義歯の修復および歯科用の鋳造金属床の
修復に用いて有用である。
According to the present invention described above, when a ternary or higher multi-component low melting point liquid alloy mainly composed of Ga and a metal powder for solidification are kneaded to obtain a hardened product, Pt, Pd,
Rh, Ir, Os, Ta, Ti, Zr, Re, W, Mo, Fe,
By dispersing single metal powders of Ni, Co, Cr, Hf, V, and Y or their alloy powders as mixed metals into a liquid alloy, the mixed metals make the liquid metals difficult to cause diffusion and alloying reactions. , it can be scattered in the cured product after kneading to produce a dental metal material with high compressive strength. In addition, by using a multi-component alloy mainly consisting of the low-melting point alloy Ga, it has excellent wettability to tooth structure and other metals, and when used for filling tooth cavities, it is possible to It does not create any gaps and has a low melting point, making it extremely easy to work with. In addition, it has no toxicity in biological reactions and is suitable as a dental metal material, and is useful not only for cavity repair but also for denture repair and dental cast metal floor repair.

Claims (1)

【特許請求の範囲】[Claims] 1 常温で液体状態であり、固化用の金属粉末を
混入、練和して用いる歯科用金属材料において、
In5〜40wt%、Sn5〜30wt%、残部Gaより成り、
15℃以下の融点を有する低融点合金に、Pt、Pd、
Rh、Ir、Os、Ta、Ti、Zr、Re、W、Mo、Fe、
Ni、Co、Cr、Hf、V、Yの金属を一種ないし二
種以上あるいはこれらの二元以上の合金から成る
混和金属粉末を、100:0.05〜60の重量比で混合
させたことを特徴とする歯科用金属材料。
1. Dental metal materials that are in a liquid state at room temperature and are used by mixing and kneading metal powder for solidification,
Consisting of In5~40wt%, Sn5~30wt%, balance Ga,
Low melting point alloys with melting points below 15℃ include Pt, Pd,
Rh, Ir, Os, Ta, Ti, Zr, Re, W, Mo, Fe,
It is characterized by a mixed metal powder consisting of one or more of Ni, Co, Cr, Hf, V, and Y metals, or an alloy of two or more of these metals, mixed at a weight ratio of 100:0.05 to 60. dental metal materials.
JP58240936A 1983-12-22 1983-12-22 Dental metallic material Granted JPS60135550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58240936A JPS60135550A (en) 1983-12-22 1983-12-22 Dental metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240936A JPS60135550A (en) 1983-12-22 1983-12-22 Dental metallic material

Publications (2)

Publication Number Publication Date
JPS60135550A JPS60135550A (en) 1985-07-18
JPH0323615B2 true JPH0323615B2 (en) 1991-03-29

Family

ID=17066844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240936A Granted JPS60135550A (en) 1983-12-22 1983-12-22 Dental metallic material

Country Status (1)

Country Link
JP (1) JPS60135550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098593A1 (en) * 2001-05-31 2002-12-12 Fujitsu Limited Method for solidifying liquid metal, method for jointing metal members utilizing the same and jointed structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644685B2 (en) * 1994-09-26 1997-08-25 科学技術庁無機材質研究所長 Implant materials
KR101276917B1 (en) * 2004-05-04 2013-06-19 에스-본드 테크놀로지스 엘엘씨 Electronic package formed using low-temperature active solder including indium, bismuth, and/or cadmium
US7794652B2 (en) 2004-12-27 2010-09-14 The Argen Corporation Noble dental alloy
DE102015003996B4 (en) * 2015-03-30 2019-10-31 C. Hafner Gmbh + Co. Kg Precious metal alloy for use in the jewelry and watch industry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098593A1 (en) * 2001-05-31 2002-12-12 Fujitsu Limited Method for solidifying liquid metal, method for jointing metal members utilizing the same and jointed structure

Also Published As

Publication number Publication date
JPS60135550A (en) 1985-07-18

Similar Documents

Publication Publication Date Title
EP0173806B1 (en) Gallium alloy for dental restorations
ATE32182T1 (en) POWDER DENTAL MATERIAL, PROCESS FOR ITS PRODUCTION AND ITS USE.
JPH0323615B2 (en)
JPH03294449A (en) Dental metallic material
US4008073A (en) Alloy powder for the production of dental amalgam
JPH0253504B2 (en)
JPH0353371B2 (en)
US4528034A (en) Selenium-containing amalgam alloys for dental restoration and method for the preparation thereof
KR910003552B1 (en) Dental metallic paste
JPS6324059B2 (en)
JPS633015B2 (en)
US4702765A (en) Method of making selenium-containing amalgam alloys for dental restoration
JPS633016B2 (en)
JPH0469216B2 (en)
JPS6324058B2 (en)
JPH0227428B2 (en)
US6190606B1 (en) Solid amalgamating compositions for the preparation of dental amalgams, amalgam forming compositions containing them, methods for producing dental amalgams with them and dental amalgams produced thereby
JPH0253503B2 (en)
JPS60135547A (en) Dental metallic material
JPS6325064B2 (en)
CA1292894C (en) Gallium alloy for dental restorations
JPS6324057B2 (en)
JPS6325063B2 (en)
JPS6324061B2 (en)
JPS6324060B2 (en)