JPH03236153A - Light emitting electron tube - Google Patents

Light emitting electron tube

Info

Publication number
JPH03236153A
JPH03236153A JP3303090A JP3303090A JPH03236153A JP H03236153 A JPH03236153 A JP H03236153A JP 3303090 A JP3303090 A JP 3303090A JP 3303090 A JP3303090 A JP 3303090A JP H03236153 A JPH03236153 A JP H03236153A
Authority
JP
Japan
Prior art keywords
magnetic field
light emitting
electrodes
light
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3303090A
Other languages
Japanese (ja)
Inventor
Tadao Uetsuki
唯夫 植月
Noriyuki Taguchi
典幸 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3303090A priority Critical patent/JPH03236153A/en
Publication of JPH03236153A publication Critical patent/JPH03236153A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of a light source system by arranging a pair of electrodes at the interval several cm or below in a shielding tube body sealed with several kinds of light emitting gasses, and applying the magnetic field not in parallel with the line connecting both electrodes. CONSTITUTION:A bulb 1 with the outer diameter phi50mm is used for a light emitting tube, neon with 3Torr as a light emitting gas and mercury vapor are sealed in the bulb 1, a light emitting electron tube coated with phosphors 4 on the inner face of the bulb 1 and having the rated current 600mA is used, and a permanent magnet 4 made of a ferrite magnet is arranged around a base 5 so that the magnetic field intensity near the center of both electrodes 2 becomes tens gausses. The lamp voltage can be increased by about 20%. This value 20% can be further improved by adjusting the type and pressure of the sealed gas and the intensity of the magnetic field not to affect the lamp life.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は管内に封入した光放射気体を加速電子によって
励起することにより発光させる光放射電子管に間するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light-emitting electron tube that emits light by exciting a light-emitting gas sealed inside the tube with accelerated electrons.

[従来の技術] 従来のこの種の光放射電子管としては第6図に示すよう
に、光放射気体が封入されたバルブ1内に一対の電極2
を配設した配設したものが知られている(特開昭58−
145055号)、各電極2は表面にエミッタが塗布さ
れており、画電極2゜2間の距離は数cm〜数mmで、
比較的接近して配設されている。またバルブ1の内面に
は蛍光体3が塗布されている。
[Prior Art] As shown in FIG. 6, a conventional light-emitting electron tube of this type has a pair of electrodes 2 inside a bulb 1 filled with light-emitting gas.
It is known that the device is equipped with
145055), each electrode 2 has an emitter coated on its surface, and the distance between the picture electrodes 2°2 is several cm to several mm.
They are placed relatively close together. Further, the inner surface of the bulb 1 is coated with a phosphor 3.

従って第7図に示すように画電極2,2問に所定の電圧
を印加するとカソードとなる電極から放出された電子が
アノードとなる電極に向かって加速され、それを通過し
た電子流が光放射気体を電離及び励起させる。
Therefore, as shown in Figure 7, when a predetermined voltage is applied to the picture electrodes 2 and 2, the electrons emitted from the cathode electrode are accelerated toward the anode electrode, and the electron flow that passes through them emits light. Ionizes and excites the gas.

封入される光放射気体としては、水銀蒸気と希ガスとを
混合した低圧の気体が用いられる。
The light emitting gas to be sealed is a low-pressure gas that is a mixture of mercury vapor and rare gas.

[発明が解決しようとする課題] 第7図に従来の光放射電子管の原理説明図を示す、従来
の光放射電子管ではカソードKからアノ−ドAへ向けて
飛び出した高速電子e1が光放射気体の原子aに衝突し
て軌道を変えるとともに、e2に示すように電離及び励
起を引き起こしていた。ランプ電流は外部的に決定され
るため、その電圧は以下の関係を満足するように決まる
[Problems to be Solved by the Invention] Fig. 7 shows a diagram explaining the principle of a conventional light-emitting electron tube. It collided with atom a of , changing its orbit and causing ionization and excitation as shown in e2. Since the lamp current is determined externally, its voltage is determined to satisfy the following relationship:

[ランプ電圧]×[ランプ電流] −([光出力]±[IN突ロス]+[電離ロス1+[拡
散ロス])・・・・・・・・・・・・・・・・・・・・
・・・・・・■式ここで、[光出力]+[衝突ロス]+
[電離ロス]±〔拡散ロス]は衝突によって引き起こさ
れる。■式の()内の項目は、光放射気体の種類と圧力
に依存する。従って、ランプ電圧を変化させようとする
と、光放射気体の種類あるいは圧力を変化させる必要が
ある。このことは、ランプ寿命とランプ効率に大きな影
響を与える。それらは−般にトレードオフの関係にある
[Lamp voltage] × [Lamp current] - ([Light output] ± [IN sudden loss] + [Ionization loss 1 + [Diffusion loss])・
・・・・・・■ Formula Here, [light output] + [collision loss] +
[Ionization loss] ± [diffusion loss] is caused by collision. ■The items in parentheses in the equation depend on the type and pressure of the light emitting gas. Therefore, in order to change the lamp voltage, it is necessary to change the type or pressure of the light emitting gas. This has a significant impact on lamp life and lamp efficiency. They are generally in a trade-off relationship.

このように光放射電子管ではその原理上ランプ電圧が低
い(希ガスの種類や圧力にもよるが、例えばネオン数T
orrで15〜20V)、従って、ランプ入力を増やす
には電流を増加させねばならなかった1例えばランプ電
圧が15Vの時ランプ電流がIAで入力15Wとなり、
出力は約500ルーメンとなる。故に出力1000ルー
メンのランプを考えると、電流2A以上が必要となる。
In this way, the light-emitting electron tube has a low lamp voltage in principle (depending on the type and pressure of the rare gas, for example, the neon number T
(15 to 20 V at IA), therefore, in order to increase the lamp input, the current had to be increased.1 For example, when the lamp voltage is 15 V, the lamp current is IA and the input is 15 W.
The output will be approximately 500 lumens. Therefore, considering a lamp with an output of 1000 lumens, a current of 2 A or more is required.

これはランプ寿命という観点から、ランプの電極設計に
とって由々しき問題であるとともに、点灯回路設計にと
っても、力率、コスト及び回路効率という点から由々し
き問題であった。
This is a serious problem for lamp electrode design from the viewpoint of lamp life, and is also a serious problem for lighting circuit design from the viewpoint of power factor, cost, and circuit efficiency.

これを解決する手段の一つとして、同一空間内部に2つ
の発光部分を有するランプが考えられているが、工法上
、難しくコストアップに繋がる。
One way to solve this problem is to use a lamp that has two light emitting parts within the same space, but this is difficult due to the construction method and leads to increased costs.

本発明は、上記問題点に鑑みて為されたもので、その目
的とするところは、簡単な構成でランプ電圧を上昇させ
てランプ入力を増加でき、ランプ寿命を短くすることや
、コストアップすることなく、光源システムとしての効
率が良くなる光放射電子管を提供するにある。
The present invention has been made in view of the above problems, and its purpose is to increase lamp input by increasing lamp voltage with a simple configuration, shorten lamp life, and increase cost. An object of the present invention is to provide a light-emitting electron tube that improves efficiency as a light source system without causing any problems.

[課題を解決するための手段〕 本発明は上記目的を達成するために数種類の光放射気体
を封入した透光性を有する管体と、該管体内部に数cm
以下のrrJ19Iを有して配設された一対の電極とよ
りなる光電子放射管に於いて、画電極を結ぶ線に対して
平行とならないように、磁界を印加する手段を設けてい
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a translucent tube filled with several types of light-emitting gases, and a tube several centimeters deep inside the tube.
In a photoelectron emission tube consisting of a pair of electrodes arranged with the following rrJ19I, means is provided for applying a magnetic field so as not to be parallel to the line connecting the picture electrodes.

請求項2記載の発明は上記磁界の方向が画電極を結ぶ線
に対してほぼ直角とし、また請求項3記載の発明では上
記磁界の強さを、画電極からほぼ当距離にある面上で最
大としている。
In the invention as claimed in claim 2, the direction of the magnetic field is substantially perpendicular to the line connecting the picture electrodes, and in the invention as claimed in claim 3, the strength of the magnetic field is set on a plane that is approximately equidistant from the picture electrode. It is set as the maximum.

[作用コ 而して本発明によれば、従来の第7図原理図に対応する
本発明の原理図(第1図)に示すように磁界Mを紙面の
表面から裏面方向に印加すると、カソードKから出てき
た電子e、は[eXvXB]の力で図に示す方向に曲が
ろうとする。そのため、電子e、の動く距離は磁界の存
在しないときに比して長くなる。その結果、封入せる光
放射気体の圧力が変化してないから、封入せる光放射気
体aとの衝突回数も増加する。衝突回数が増加すると、
■式に示された衝突に依存する項目([光出力]+[!
l突ロス] + [1離ロス])の割合が増加する。
[According to the present invention, when the magnetic field M is applied from the front side of the paper toward the back side as shown in the principle diagram of the present invention (Fig. 1) corresponding to the conventional principle diagram of Fig. 7, the cathode The electron e, coming out of K, tries to bend in the direction shown in the figure with the force of [eXvXB]. Therefore, the distance that the electron e moves becomes longer than when there is no magnetic field. As a result, since the pressure of the light emitting gas to be enclosed does not change, the number of collisions with the light emitting gas a to be enclosed also increases. As the number of collisions increases,
■Items that depend on the collision shown in the formula ([light output] + [!
The ratio of [1-hitting loss] + [1-separating loss]) increases.

ここでランプ電流が一定であるから、ランプ電圧が上昇
する。このとき問題となるのが効率である。上記の項目
が同じ割合で増加すれば、効率は低下する。しかし5こ
れに間しては、希ガス圧力を若干(寿命に影響を与えな
い程度に)変化させることにより、[衝突ロス]の割合
を低下できるため補償可能である。その他の2つの項は
希ガスの影響より、水銀蒸気圧の影響が大きい。
Since the lamp current is constant here, the lamp voltage increases. The issue here is efficiency. If the above items increase at the same rate, efficiency will decrease. However, this can be compensated for by slightly changing the rare gas pressure (to the extent that it does not affect the lifespan) because the collision loss rate can be reduced. The other two terms are more influenced by mercury vapor pressure than by the noble gas.

以上のように磁界を印加し、希ガス圧力で効率を補償す
ることで、寿命、効率をさほど変えないで、ランプ電圧
を上昇させることができる。
By applying a magnetic field and compensating the efficiency with rare gas pressure as described above, the lamp voltage can be increased without significantly changing the life and efficiency.

その磁界の方向は、画電極を結ぶ線に対して平行しない
方向であれば良いが、最も効率の良い方向が請求項2記
載の発明のように画電極とを結ぶ線に対してほぼ直角で
ある方向であり、また磁界の強さが、画電極からほぼ等
距離にある面上で最大となれば、効率が向上する。
The direction of the magnetic field may be any direction as long as it is not parallel to the line connecting the picture electrodes, but the most efficient direction is almost perpendicular to the line connecting the picture electrodes as in the invention described in claim 2. Efficiency is improved if the field strength is greatest on a plane that is approximately equidistant from the picture electrode.

尚磁界を印加した光放射電子管としては特開昭62−1
63252号、特開昭62−276747号、特開昭6
2−276744号等に記載されたものがあるが、これ
らの光放射電子管は磁界を印加した光放射電子管という
点で軌を−にするが、その使用条件や目的が全く異なる
。つまりこれらの光放射電子管は磁界により電子の加速
エネルギーを封入気体に衝突させる前に制限し、効率を
上昇させようとするものであった。従って、そのために
は電子の平均自由行程がカソードとアノード間距離より
長くなる必要がある。また内部に封入される気体の圧力
はのぼ0.0ITorr程度かそれ以下でなければなら
なかった。
Furthermore, as a light-emitting electron tube to which a magnetic field is applied, Japanese Patent Application Laid-Open No. 62-1
No. 63252, JP-A-62-276747, JP-A-6
Although these light-emitting electron tubes are different from each other in that they are light-emitting electron tubes to which a magnetic field is applied, their usage conditions and purposes are completely different. In other words, these light-emitting electron tubes use a magnetic field to limit the acceleration energy of electrons before they collide with the enclosed gas, thereby increasing efficiency. Therefore, for this purpose, the mean free path of electrons needs to be longer than the distance between the cathode and the anode. Further, the pressure of the gas sealed inside had to be approximately 0.0 ITorr or less.

これに対して本発明は、封入圧力の条件が数T。In contrast, in the present invention, the sealing pressure condition is several T.

「rであり、封入せる光放射気体に衝突させる回数を磁
界を印加して増加させることにより、そのランプ電圧を
上昇させようとする点に特徴を有するものである。即ち
本発明は特開昭62−163252号、特開昭62−2
76747号、特開昭62−276744号等に記載さ
れたものと一見同じように見えるが、全く異なった条件
の下で、全く異なる目的を持ち、その動作原理も異なる
``r'', and is characterized in that the lamp voltage is increased by applying a magnetic field to increase the number of collisions with the light emitting gas to be enclosed. No. 62-163252, JP-A-62-2
76747, JP-A No. 62-276744, etc., but it has a completely different purpose under completely different conditions, and its operating principle is also different.

また一般の低圧蛍光ランプに磁界を印加するものとして
は特開昭58−102488号、特開昭58−1024
89号に記載されたものがあるが、これらは磁界を印加
する点以外では放電形態も、目的も本発明とは異なるも
のである。
In addition, for applying a magnetic field to a general low-pressure fluorescent lamp, Japanese Patent Laid-Open No. 58-102488 and Japanese Patent Laid-Open No. 58-1024
There is a method described in No. 89, but these are different from the present invention in discharge form and purpose other than applying a magnetic field.

[実施例コ 以下本発明を実施例により説明する。第2図(a)は一
実施例を示しており、この実施例では発光部の外形がφ
50mmのバルブ1を使用し、該バルブ1内に光放射気
体として3 Torrのネオンと、水銀蒸気とを封入す
るとともにパルプ1の内面に蛍光体4を塗布した定格電
流600mAの光放射電子管を用いて、画電極2の中心
付近の磁界強度が数十ガウスになるようなフェライト磁
石からなる永久磁石4を口金5の周部に配置している。
[Example] The present invention will be explained below with reference to an example. FIG. 2(a) shows an example, in which the outer shape of the light emitting part is φ
A 50 mm bulb 1 is used, and a light emitting electron tube with a rated current of 600 mA is used, in which 3 Torr neon and mercury vapor are sealed as light emitting gases, and a phosphor 4 is coated on the inner surface of the pulp 1. A permanent magnet 4 made of a ferrite magnet is arranged around the base 5 so that the magnetic field strength near the center of the picture electrode 2 is several tens of Gauss.

この結果ランプ電圧を約20%上昇させることができた
。この20%という値は封入気体の種類、圧力と磁界の
強さをランプ寿命に影響が無いように調節することで、
更に向上できるのは勿論である。
As a result, the lamp voltage could be increased by about 20%. This value of 20% is achieved by adjusting the type of gas, pressure, and strength of the magnetic field so as not to affect the lamp life.
Of course, it can be further improved.

尚永久磁石4としてネオジウムなどの強力なものを使用
すると、第2図(b)に示すように口金5の内部に取り
付けることができる。
If a strong magnet such as neodymium is used as the permanent magnet 4, it can be attached inside the cap 5 as shown in FIG. 2(b).

上記また実施例は永久磁石5を使用して磁界を印加する
ようになっているが、電磁石を用いて磁界を印加するよ
うにしても良く、第3図にこの電磁石を使用した実施例
を示す、この実施例は画電極2間に電磁コイル6を発生
磁界の方向が、画電極2を結ぶ線に直交するように配置
しである。この場合電磁コイル6から得られる磁界強度
は励磁電流IAとし、コイル内径を5mmとし、必要な
磁束密度を数十ガウスと仮定すると、近似的に以下の式
から求めることができる。
Although the above embodiment uses the permanent magnet 5 to apply the magnetic field, it is also possible to apply the magnetic field using an electromagnet, and FIG. 3 shows an embodiment using this electromagnet. In this embodiment, the electromagnetic coil 6 is arranged between the picture electrodes 2 so that the direction of the generated magnetic field is perpendicular to the line connecting the picture electrodes 2. In this case, assuming that the magnetic field strength obtained from the electromagnetic coil 6 is an exciting current IA, the coil inner diameter is 5 mm, and the required magnetic flux density is several tens of Gauss, it can be approximately determined from the following equation.

H=NXI/D H:磁界強度、N:巻き数、■=電流、D=コイルの内
径 この式より電磁コイル6の巻き数Nは十数ターンから数
十ターンとなる。
H=NXI/D H: magnetic field strength, N: number of turns, ■=current, D=inner diameter of the coil From this equation, the number of turns N of the electromagnetic coil 6 is from a dozen turns to several tens of turns.

ところで光放射電子管では原理上水銀蒸気圧の影響を受
け、例えば第4図(a)のようにベースダウンで点灯さ
せるときは、発光部から離れた所に最冷点ができるので
、問題はないが、第4図(b)に示すようにベースアッ
プで点灯すると、最冷点部分の温度が上昇するため、発
光効率が低下する問題がある。そこで発光部に第5図に
示すように最冷点制御用のチップ7を設ければ問題を解
消することができる。
By the way, light-emitting electron tubes are in principle affected by mercury vapor pressure, so when lighting them with the base down, as shown in Figure 4(a), there is no problem because the coldest spot is formed at a distance from the light emitting part. However, when the lamp is turned on with the base up as shown in FIG. 4(b), the temperature of the coldest point portion increases, resulting in a problem that the luminous efficiency decreases. Therefore, if a chip 7 for controlling the coldest point is provided in the light emitting section as shown in FIG. 5, the problem can be solved.

この場合ベースアップ点灯時には最下部にチップ7が位
!することになり、しかもプラズマから離れるため、温
度が低いままとなる。従って最初にそこに水銀を入れて
おくことにより、水銀蒸気圧が制御できるのである。
In this case, when the base up is lit, chip 7 is at the bottom! Moreover, since it is away from the plasma, the temperature remains low. Therefore, by putting mercury there first, the mercury vapor pressure can be controlled.

し発明の効果] 本発明は数種類の光放射気体を封入した透光性を有する
管体と、該管体内部に数cm以下の間隔を有して配設さ
れた一対の電極とよりなる光電子放射管に於いて、画電
極を結ぶ線に対して平行とならないように、磁界を印加
する手段を設けているので、磁界によりカソード電極か
らでたきた電子の動く距離を長くすることができ、その
ため封入した光放射気体と電子との衝突回数を増加させ
ることができ、結果ランプ電圧を上昇させてランプ入力
を増加させることができるもので、ランプ電流を増加さ
せたり、光放射気体の圧力を増加させたりした場合のよ
うにランプ寿命を短くすることがなく、また構成も簡単
となってコストアップすることなく、光源システムとし
て効率を向上することができるという効果がある。
[Effects of the Invention] The present invention provides a photoelectronic system comprising a translucent tube filled with several types of light-emitting gases, and a pair of electrodes disposed inside the tube with an interval of several centimeters or less. Since the radiation tube is equipped with means for applying a magnetic field so that it is not parallel to the line connecting the picture electrodes, the distance that the electrons emitted from the cathode electrode move due to the magnetic field can be increased. Therefore, the number of collisions between the enclosed light emitting gas and electrons can be increased, and as a result, the lamp voltage can be increased and the lamp input can be increased.This can increase the lamp current and the pressure of the light emitting gas. There is an effect that the efficiency of the light source system can be improved without shortening the lamp life as would be the case if the number of lamps is increased, and the structure is simplified and the cost does not increase.

請求項2記載の発明は上記磁界の方向が両電極を結ぶ線
に対してほぼ直角としであるからより磁界の働きを効果
的とし、また請求項3記載の発明では上記磁界の強さを
、両電極からほぼ当距離にある面上で最大としているの
で、更に効果的とすることができる。
In the invention set forth in claim 2, the direction of the magnetic field is substantially perpendicular to the line connecting the two electrodes, so that the magnetic field works more effectively, and in the invention set forth in claim 3, the strength of the magnetic field is Since it is maximized on a plane that is approximately equidistant from both electrodes, it can be made even more effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図(a)は本発明の
一実施例の一部破断せる斜視図、第2図(b)は本発明
の別の実施例の一部破断せる斜視図、第3図は本発明の
他の実施例の一部破断せる斜視図、第4図(a)(b)
は同上の使用状態図、第5図は本発明のその他の実施例
の斜視図、第6図は従来例の一部破断せる斜視図、第7
図は同上の原理説明図である。 1はバルブ、2は電極、3は蛍光体、4は磁石、5は口
金である。
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2(a) is a partially cutaway perspective view of one embodiment of the present invention, and Fig. 2(b) is a partially cutaway view of another embodiment of the present invention. FIG. 3 is a partially cutaway perspective view of another embodiment of the present invention, FIGS. 4(a) and (b)
5 is a perspective view of another embodiment of the present invention, FIG. 6 is a partially cutaway perspective view of the conventional example, and FIG.
The figure is an explanatory diagram of the same principle as above. 1 is a bulb, 2 is an electrode, 3 is a phosphor, 4 is a magnet, and 5 is a cap.

Claims (3)

【特許請求の範囲】[Claims] (1)数種類の光放射気体を封入した透光性を有する管
体と、該管体内部に数cm以下の間隔を有して配設され
た一対の電極とよりなる光電子放射管に於いて、両電極
を結ぶ線に対して平行とならないように、磁界を印加す
る手段を設けたことを特徴とする光放射電子管。
(1) In a photoelectron emission tube consisting of a translucent tube filled with several types of light-emitting gases and a pair of electrodes arranged with a distance of several centimeters or less inside the tube. A light-emitting electron tube characterized in that it is provided with means for applying a magnetic field so as not to be parallel to a line connecting both electrodes.
(2)上記磁界の方向が画電極を結ぶ線に対してほぼ直
角であることを特徴とする請求項1記載の光放射電子管
(2) The light-emitting electron tube according to claim 1, wherein the direction of the magnetic field is substantially perpendicular to a line connecting the picture electrodes.
(3)上記磁界の強さが、両電極からほぼ当距離にある
面上で最大となることを特徴とする請求項1記載の光放
射電子管。
(3) The light-emitting electron tube according to claim 1, wherein the strength of the magnetic field is maximum on a plane that is approximately equidistant from both electrodes.
JP3303090A 1990-02-13 1990-02-13 Light emitting electron tube Pending JPH03236153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3303090A JPH03236153A (en) 1990-02-13 1990-02-13 Light emitting electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3303090A JPH03236153A (en) 1990-02-13 1990-02-13 Light emitting electron tube

Publications (1)

Publication Number Publication Date
JPH03236153A true JPH03236153A (en) 1991-10-22

Family

ID=12375396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3303090A Pending JPH03236153A (en) 1990-02-13 1990-02-13 Light emitting electron tube

Country Status (1)

Country Link
JP (1) JPH03236153A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163252A (en) * 1986-01-14 1987-07-20 Matsushita Electric Works Ltd Fluorescent lamp
JPS62276749A (en) * 1986-05-26 1987-12-01 Matsushita Electric Works Ltd Luminous radiation electron tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163252A (en) * 1986-01-14 1987-07-20 Matsushita Electric Works Ltd Fluorescent lamp
JPS62276749A (en) * 1986-05-26 1987-12-01 Matsushita Electric Works Ltd Luminous radiation electron tube

Similar Documents

Publication Publication Date Title
JPH06187949A (en) Electrodeless fluorescent lamp
JPS61185857A (en) Electrodeless discharge lamp
JP3528794B2 (en) Fluorescent lamp
JPH03236153A (en) Light emitting electron tube
JP2001006624A (en) Electrodeless fluorescent lamp device
US4099089A (en) Fluorescent lamp utilizing terbium-activated rare earth oxyhalide phosphor material
JP3030268B2 (en) Indicator type fluorescent lamp
US5760547A (en) Multiple-discharge electrodeless fluorescent lamp
JPH01231260A (en) Fluorescent lamp
EP0577275A1 (en) Fluorescent lamp
JPH0636354B2 (en) Light emitting electron tube
JPS6191852A (en) Nonelectrode discharge lamp
JPH0220800Y2 (en)
JP3107269B2 (en) Electrodeless lamp
JPH05225960A (en) Electrodeless low pressure rare gas type fluorescent lamp
JPH0582705B2 (en)
FI97174B (en) Electrode-free fluorescent discharge lamp
JPH0754694B2 (en) Electrodeless fluorescent lamp system
JPH0636355B2 (en) Light emitting electron tube
JPS61269848A (en) Plane type low pressure discharge lamp
JP2002056805A (en) Fluorescent lamp
JPH0685315B2 (en) Light emitting electron tube
JPS61284051A (en) Light emitting electron tube
JPS62157656A (en) Display element
JPH1027576A (en) Electrodeless discharge lamp