JPH03236001A - Fiber cable for energy transmission - Google Patents

Fiber cable for energy transmission

Info

Publication number
JPH03236001A
JPH03236001A JP2031592A JP3159290A JPH03236001A JP H03236001 A JPH03236001 A JP H03236001A JP 2031592 A JP2031592 A JP 2031592A JP 3159290 A JP3159290 A JP 3159290A JP H03236001 A JPH03236001 A JP H03236001A
Authority
JP
Japan
Prior art keywords
energy transmission
energy
fiber
face
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031592A
Other languages
Japanese (ja)
Inventor
Shozo Morimoto
詔三 森本
Ryuji Iizuka
飯塚 竜二
Ikuo Inagawa
郁夫 稲川
Takashi Yamagishi
山岸 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Original Assignee
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISANKABUTSU GLASS KENKYU KAIHATSU KK filed Critical HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority to JP2031592A priority Critical patent/JPH03236001A/en
Publication of JPH03236001A publication Critical patent/JPH03236001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To allow the cooling of the incident end face and transmission path of an optical fiber with simple constitution by inserting an optical fiber into a protective tube which allows the incidence of IR energy only on the core part of the optical fiber and introducing a dry gas into this tube. CONSTITUTION:The optical fiber is inserted into the protective tube 4 which allows incidence of the IR energy only on the core part of the optical fiber consisting of the core 1 and clad 2 and the dry gas is introduced from a gas introducing port 5 into this tube. Since the parts exclusive of the core part of the incident end face 7 are shielded in such a manner, the clad 2 and a coating resin 3 on the outer periphery thereof do not generate heat and burn in spite of the incidence of the IR energy of the diameter larger than the core diameter. The damaging of the incident end face 7 is obviated at the time of optical axis alignment. Since the cable is cooled by the dry gas, the cooling of the incident end face 7 and the transmission path is possible and the attachment and detachment of the cable are easy.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、エネルギー伝送に用いるファイバケーブル構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a fiber cable structure used for energy transmission.

[従来の技術とその問題点〕 従来エネルギー伝送用ファイバケーブルに赤外エネルギ
ーを入射する場合、赤外エネルギー入射端面の熱損傷を
防ぐためや赤外エネルギー光との光軸合わせを容易にす
るために赤外エネルギー光の入射径をコア径よりやや大
きくしていた。そのためコアに入射しきれない赤外エネ
ルギーがエネルギー伝送路の外周に設けられた被覆樹脂
を発熱・焼損し、その結果エネルギー伝送路を損傷する
問題があった。
[Conventional technology and its problems] When infrared energy is input into a conventional energy transmission fiber cable, it is necessary to prevent heat damage to the infrared energy input end face and to facilitate optical axis alignment with the infrared energy light. The incident diameter of the infrared energy light was made slightly larger than the core diameter. Therefore, there is a problem in that the infrared energy that cannot enter the core generates heat and burns out the coating resin provided on the outer periphery of the energy transmission path, resulting in damage to the energy transmission path.

これを防ぐ方法として、第2図に示すように、コア11
とクラッド12を有し、その外周に樹脂被覆13を施コ
したエネルギー伝送用ケーブルを保m管14の内部に挿
入し、コア11の入射端側に赤外エネルギー遮蔽材15
を配置したものが知られているが、遮蔽vi15の使用
はケーブル構造を複雑にする問題点があった。さらに、
入射時のエネルギー密度が低くなるために、エネルギー
伝送効率が悪い問題があった。一方、赤外エネルギー光
の入射径をコア径より小さくした場合、遮蔽材を必要と
せずエネルギー伝送効率も′高くなるが、光軸、合わせ
が難しく、さらにエネルギー伝送路だけでなく発熱が最
も激しい赤外エネルギー入射端面をケーブル外から強制
的に冷却しなければならなかった。
As a method to prevent this, as shown in FIG.
An energy transmission cable having a cladding 12 and a resin coating 13 on its outer periphery is inserted into the storage tube 14, and an infrared energy shielding material 15 is placed on the incident end side of the core 11.
However, the use of shielding VI15 has the problem of complicating the cable structure. moreover,
There was a problem with poor energy transmission efficiency because the energy density at the time of incidence was low. On the other hand, if the incident diameter of the infrared energy light is made smaller than the core diameter, there is no need for a shielding material and the energy transmission efficiency becomes high, but it is difficult to align the optical axis, and in addition, the heat generation is the most intense, as well as the energy transmission path. The infrared energy input end face had to be forcibly cooled from outside the cable.

これを解決するために、第3図に示すような入射端が複
雑な構造をしたケーブルも検討されている。すなわち、
保護管14内にコアガラス11を挿通し、保護管14に
おける赤外エネルギー入射側部分を大径にしてコアがラ
ス11の入射端面を露出させ、その附近に冷媒ガスの導
入口17と排出口18とを設け、ざらに保護管の端部に
集光レンズ16を配置した構造としたものが提案されて
いる。このような構造ではケーブル内のファイバが損傷
を受けた際、光学系からの取り外しや光軸合わぜが難し
く、すぐに別のケーブルに交換できない問題があった。
In order to solve this problem, cables with a complicated structure at the input end as shown in FIG. 3 are also being considered. That is,
The core glass 11 is inserted into the protective tube 14, and the infrared energy incident side portion of the protective tube 14 is made large in diameter so that the core exposes the incident end surface of the lath 11, and a refrigerant gas inlet 17 and an outlet are provided in the vicinity thereof. 18, and a structure in which a condenser lens 16 is arranged roughly at the end of the protective tube has been proposed. With this structure, when the fiber in the cable is damaged, it is difficult to remove it from the optical system and align the optical axis, and there is a problem that it is not possible to immediately replace it with another cable.

本発明の目的は赤外エネルギー入射端面において、ファ
イバのコアだけに赤外エネルギーを入射し、かつ入射端
面を冷却し、同時にエネルギー伝送路も冷却できる簡単
な構造のエネルギー伝送用ファイバケーブルを提供する
ことにある。
An object of the present invention is to provide a fiber cable for energy transmission with a simple structure that allows infrared energy to be incident only on the core of the fiber at the infrared energy input end face, cool the input end face, and simultaneously cool the energy transmission path. There is a particular thing.

[課題を解決するための手段1 上記目的を達成するため本発明は、コア・クラッド構造
を有するファイバを、コア部分だけ赤外エネルギーを入
射させることのできる保護管に挿設したものである。前
記保護管はケーブルの赤外エネルギー入射端において、
ファイバのコア径以下でファイバと中心軸線を一致する
穴を有している。
[Means for Solving the Problems 1] In order to achieve the above object, the present invention is such that a fiber having a core-clad structure is inserted into a protection tube into which infrared energy can be incident only on the core portion. The protection tube is located at the infrared energy input end of the cable,
It has a hole that is smaller than the core diameter of the fiber and whose central axis coincides with the fiber.

本発明では、赤外エネルギーを入射する際、ファイバの
クラッド部分が赤外エネルギーに対して最初から遮蔽さ
れているためコア部分だけに赤外エネルギーが入射し、
かつ入射端面およびエネルギー伝送路をファイバの長さ
方向に流れる乾燥ガスによって冷却する構造であること
を特徴とする。
In the present invention, when infrared energy is input, since the cladding part of the fiber is shielded from the infrared energy from the beginning, the infrared energy is incident only on the core part.
It is also characterized by a structure in which the input end face and the energy transmission path are cooled by dry gas flowing in the length direction of the fiber.

[作 用] 本発明によれば、ファイバの入射端面のコア部分以外が
赤外エネルギーに対して遮蔽されているため、コア径よ
り大きい径の赤外エネルギー光が入射しても赤外エネル
ギーはクラッドおよびその外周に位置する被覆樹脂を発
熱・焼損せず、光軸合わせをする際に入射端面のMmも
引き起こさない。また、ファイバの長さ方向に流れる乾
燥ガスによって入射端面およびエネルギー伝送路を冷却
するため、簡単な入射端構造で入射端面およびエネルギ
ー伝送路の熱損傷を抑制することができ、光学系からの
ケーブルの11も容易になる。
[Function] According to the present invention, since the input end face of the fiber other than the core portion is shielded from infrared energy, even if infrared energy light with a diameter larger than the core diameter is incident, the infrared energy is not transmitted. The clad and the coating resin located on its outer periphery do not generate heat or burn out, and Mm of the incident end surface is not caused when aligning the optical axis. In addition, since the input end face and energy transmission path are cooled by the dry gas flowing in the length direction of the fiber, thermal damage to the input end face and energy transmission path can be suppressed with a simple input end structure, and the cable from the optical system can be 11 will also become easier.

[実施例J 図面を参照して本発明の一実施例を説明する。[Example J An embodiment of the present invention will be described with reference to the drawings.

第1図は、実施例のケーブル構造の入射端図である。フ
ァイバはコア径450(μm)、クラツド径550(μ
m)、被覆樹脂径800(μm)である。1はコア、2
はクラッド、3はクラッド外周に位置する被覆樹脂、4
はケーブルの一部を構成するステンレス管のごとき保護
管、5は乾燥ガス(冷却媒体)導入口である。ステンレ
ス管4の内径は、被覆樹脂3より50(μm)大きく、
先端部分には430(μm)の穴6が開いている。ファ
イバは中心軸をステンレス管の中心軸と一致させ固定さ
れている。まず乾燥ガス導入口5に乾燥ガスを流さない
状態で赤外エネルギー光を入射径250(μm、)で入
射端面7に入射した。この時、入射端面7は12.2(
にw/aりのエネルギー密度で損傷を受けた。
FIG. 1 is an entrance end view of the cable structure of the embodiment. The fiber has a core diameter of 450 (μm) and a cladding diameter of 550 (μm).
m), and the coating resin diameter was 800 (μm). 1 is core, 2
is the cladding, 3 is the coating resin located on the outer periphery of the cladding, 4
5 is a protection tube such as a stainless steel tube that constitutes a part of the cable, and 5 is a dry gas (cooling medium) inlet. The inner diameter of the stainless steel tube 4 is 50 (μm) larger than the coating resin 3.
A hole 6 of 430 (μm) is opened at the tip. The fiber is fixed with its central axis aligned with the central axis of the stainless steel tube. First, infrared energy light was applied to the incident end face 7 with an incident diameter of 250 (μm) without flowing dry gas through the dry gas inlet 5 . At this time, the incident end surface 7 is 12.2 (
Damaged at an energy density of w/a.

また、入射端面をステンレス管先端部分に密着させ、入
射端面に乾燥ガスが流れない状態で乾燥ガス導入口5か
らエネルギー伝送路に5 (f/giin)の乾燥ガス
を流したところ、入射端面7は14.9(にW/m )
のエネルギー密度でII傷を受けた。
In addition, when the input end face was brought into close contact with the tip of the stainless steel tube and dry gas of 5 (f/giin) was flowed from the dry gas inlet 5 to the energy transmission path with no dry gas flowing to the input end face, the incidence end face 7 is 14.9 (in W/m)
received a II wound at an energy density of .

次に、入射端面7がステンレス恒・4先端部分から20
(μm)後方に位置するようにファイバを固定し、入射
端面に乾燥ガスが流れる状態で乾燥ガス導入口5から入
射端面とエネルギー伝送路に5(II /In)の乾燥
ガスを流した。この場合、入射端面は42.8 (KW
/CIりのエネルギー密度でも損傷を受けず、被覆樹脂
も発熱・焼損しなかった。この時、冷却された乾燥ガス
を使用してもよい。このエネルギー伝送用ファイバケー
ブルを赤外エネルギー光の光軸から脱着し、その度に赤
外エネルギー光を入射しても入!)J端面は全く屓傷を
受けなかった。
Next, the entrance end surface 7 is made of stainless steel.
(μm) The fiber was fixed so as to be located at the rear, and a dry gas of 5 (II 2 /In) was flowed from the dry gas inlet 5 to the input end face and the energy transmission path with the dry gas flowing to the input end face. In this case, the incident end face is 42.8 (KW
Even at an energy density of /CI, there was no damage, and the coating resin did not generate heat or burn out. At this time, cooled dry gas may be used. Even if this energy transmission fiber cable is connected and detached from the optical axis of the infrared energy light, even if the infrared energy light is incident! ) The J end face was not damaged at all.

[発明の効果[ 本発明の方法は、コアだけに赤外エネルギーを入射し、
ざらにファイバの長さ方向に流れる乾燥ガスによってフ
ァイバの入射端面およびエネルギー伝送路を冷部するた
め、簡単なケーゾル構造でファイバの入射端面およびエ
ネルギー伝送路を冷却でき、光学系からの脱着も容易で
ある。
[Effect of the invention] The method of the present invention injects infrared energy only into the core,
Since the input end face and energy transmission path of the fiber are cooled by the dry gas flowing roughly along the length of the fiber, the input end face and energy transmission path of the fiber can be cooled with a simple Kasol structure, and it is also easy to attach and detach from the optical system. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明エネルギー伝送用ケーブル構造の入射
端部の断面図、第2図および第3図は、従来の入射端部
の断面図である。 1・・・コア、2・・・クラッド、3・・・被覆樹脂、
4・・・ステンレス管(保護管)、5・・・乾燥ガス尋
入口、6・・・穴、7・・・コア入射面。 非酸化物ガラス研究開発株式会社
FIG. 1 is a cross-sectional view of the input end of the energy transmission cable structure of the present invention, and FIGS. 2 and 3 are cross-sectional views of the conventional input end. 1... Core, 2... Clad, 3... Coating resin,
4... Stainless steel tube (protection tube), 5... Dry gas inlet, 6... Hole, 7... Core entrance surface. Non-Oxide Glass Research and Development Co., Ltd.

Claims (1)

【特許請求の範囲】 1、コア・クラッド構造を有するファイバを、コア部分
だけに赤外エネルギーを入射させる保護管に挿設したこ
とを特徴とするエネルギー伝送用ファイバケーブル。 2、前記保護管は、ケーブルの赤外エネルギー入射端に
おいて、ファイバのコア径以下でファイバと中心軸を一
致する穴を有することを特徴とする請求項第1項記載の
エネルギー伝送用ファイバケーブル。 3、前記保護管は側壁に冷却媒体導入口を有して赤外エ
ネルギー入射端面を冷却することを特徴とする請求項第
1項記載のエネルギー伝送用ファイバケーブル。 4、前記保護管は側壁に冷却媒体導入口を有してエネル
ギー伝送路を冷却することを特徴とする請求項第1項記
載のエネルギー伝送用ファイバケーブル。 5、冷却媒体をファイバの長さ方向に流すことを特徴と
する請求項第3項または第4項記載のエネルギー伝送用
ファイバケーブル。 6、冷却媒体として、乾燥ガスを使用することを特徴と
する請求項第3項または第4項記載のエネルギー伝送用
ファイバケーブル。
[Claims] 1. A fiber cable for energy transmission, characterized in that a fiber having a core-clad structure is inserted into a protection tube that allows infrared energy to enter only the core portion. 2. The fiber cable for energy transmission according to claim 1, wherein the protective tube has a hole at the infrared energy input end of the cable that is smaller than the core diameter of the fiber and whose central axis coincides with the fiber. 3. The fiber cable for energy transmission according to claim 1, wherein the protection tube has a cooling medium inlet in a side wall to cool an infrared energy incident end face. 4. The fiber cable for energy transmission according to claim 1, wherein the protection tube has a cooling medium inlet in a side wall to cool the energy transmission path. 5. The fiber cable for energy transmission according to claim 3 or 4, characterized in that the cooling medium flows in the length direction of the fiber. 6. The fiber cable for energy transmission according to claim 3 or 4, wherein dry gas is used as the cooling medium.
JP2031592A 1990-02-14 1990-02-14 Fiber cable for energy transmission Pending JPH03236001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031592A JPH03236001A (en) 1990-02-14 1990-02-14 Fiber cable for energy transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031592A JPH03236001A (en) 1990-02-14 1990-02-14 Fiber cable for energy transmission

Publications (1)

Publication Number Publication Date
JPH03236001A true JPH03236001A (en) 1991-10-22

Family

ID=12335462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031592A Pending JPH03236001A (en) 1990-02-14 1990-02-14 Fiber cable for energy transmission

Country Status (1)

Country Link
JP (1) JPH03236001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457502B2 (en) 2004-04-01 2008-11-25 The Boeing Company Systems and methods of cooling a fiber amplifier with an emulsion of phase change material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245108A (en) * 1985-04-23 1986-10-31 Mitsui Toatsu Chem Inc Optical transmission device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245108A (en) * 1985-04-23 1986-10-31 Mitsui Toatsu Chem Inc Optical transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457502B2 (en) 2004-04-01 2008-11-25 The Boeing Company Systems and methods of cooling a fiber amplifier with an emulsion of phase change material

Similar Documents

Publication Publication Date Title
US5594825A (en) Optical connector coupling for reducing unwanted effects associated with high power density
MX9606600A (en) Apparatus coupling power source to fiber optic.
KR20000022476A (en) Optical fibre cable
JPS575380A (en) Output light coupling system for semiconductor laser
US7400794B1 (en) Transport optical fiber for Q-switched lasers
KR950029787A (en) Fiber optical coupling device
FR2445971A1 (en) METHOD AND DEVICE FOR MAKING A CABLE OF OPTICAL FIBERS RESISTANT TO HIGH TEMPERATURES AND PERFECTLY WATERPROOF, AND CABLE OBTAINED BY THE IMPLEMENTATION OF THIS PROCESS
DE3564868D1 (en) Detachable connection between an optical fibre and a laser apparatus
US20040175086A1 (en) Optical transmission fiber with thermal management for high-power applications
JPH03236001A (en) Fiber cable for energy transmission
US5446818A (en) Fiber optic connector having a shielding apparatus for protecting the exposed end of a fiber optic
JPS57158823A (en) Method for incidence of light to tapered fiber
JPS6240405A (en) Incident end structure of light guide for power transmission
JPH0651235A (en) Laser machining optical system
JPH0419602A (en) Receptacle for transmitting energy
CN218158425U (en) Optical fiber connection structure and optical fiber laser
JPH0138569Y2 (en)
JPS60187846A (en) Boiler smoke monitoring apparatus
CN115166906A (en) Optical module
JPS60108812A (en) Optical fiber cable
FR2360895A1 (en) Fibre optical coupling system - uses fibres with high refractivity core and low refractivity sheath transmitting rays near axis and rejecting others
JP2001056421A (en) Laser beam transmission method
JP2996010B2 (en) Optical fiber coupling device
JPS5336248A (en) Coupling device of laser and optical fiber
JPH02114205A (en) Infrared ray optical cable