JPH03235356A - Ic mounting structure - Google Patents

Ic mounting structure

Info

Publication number
JPH03235356A
JPH03235356A JP3183990A JP3183990A JPH03235356A JP H03235356 A JPH03235356 A JP H03235356A JP 3183990 A JP3183990 A JP 3183990A JP 3183990 A JP3183990 A JP 3183990A JP H03235356 A JPH03235356 A JP H03235356A
Authority
JP
Japan
Prior art keywords
pedestal
wiring board
heat
sections
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183990A
Other languages
Japanese (ja)
Inventor
Takashi Kanamori
孝史 金森
Toshimitsu Yamashita
山下 俊光
Kazuo Tokura
戸倉 和男
Yukio Kasuya
糟谷 行男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3183990A priority Critical patent/JPH03235356A/en
Publication of JPH03235356A publication Critical patent/JPH03235356A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To improve the performance of a multi-chip module and, at the same time, to suppress a cost increase by providing pedestal-equipped heat radiating pins respectively composed of pedestal sections for die-bonding IC chips and pin-like heat transferring sections. CONSTITUTION:IC chips 1 are die-bonded to pedestal sections 2a of pedestal- equipped heat radiating pins 2 in which heat transferring sections 2b are inserted into both wiring boards 3 and 4 and the chips 1 are electrically connected to the copper polyimide wiring board 4 with bonding wires 6. Then an I/O pin 7 is fitted to the ceramic wiring board 3 and, at the same time, the area on the board 4 is sealed with a package 8. In addition, a radiation fin 5 with previously formed inserting holes 5a into which the heat transferring sections 2b of the pins 2 are inserted is stuck to the lower surface of the board 3 so as to thermally couple the fin 5 with the sections 2b. Thus a multi-chip module is completed. The heat produced from the chips 1 is directly transferred to the fin 5 through the sections 2b and radiated to the outside. Therefore, a high- performance multi-chip module is obtained and, at the same time, a cost increase can be prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、複数のチップを高密度に搭載するマルチチッ
プモジュール等に用いられるIC実装構造に関し、特に
その放熱構造に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to an IC mounting structure used in a multi-chip module or the like in which a plurality of chips are mounted at high density, and particularly to a heat dissipation structure thereof.

〈従来の技術) 近年、高速信号処理及び高集積を目的として、誘電率の
低いポリイミド樹脂を居間絶縁膜とじた銅ポリイミド配
線基板か用いられるようになってきた。ところがこのポ
リイミド樹脂は熱伝導率が非常に低い為、許容発熱密度
が小さく、高速・高発熱ICチップの搭載に制限を受け
る。従って、特にこの様な熱伝導率の低い配線基板上に
複数のICチップを高密度に搭載するマルチチップモジ
ュール等のIC実装構造では、ICチップの放熱か重要
な問題となる。
(Prior Art) In recent years, for the purpose of high-speed signal processing and high integration, copper polyimide wiring boards made of polyimide resin with a low dielectric constant and an insulating film have been used. However, since this polyimide resin has extremely low thermal conductivity, its allowable heat generation density is low, which limits the mounting of high-speed, high-heat generation IC chips. Therefore, particularly in IC mounting structures such as multi-chip modules in which a plurality of IC chips are mounted at high density on a wiring board with low thermal conductivity, heat dissipation from the IC chips becomes an important issue.

ICチップの放熱を高めた従来のIC実装構造としては
、例えば、「銅ポリイミド配線板を用いたマルチ・チッ
プモジュールの冷却特性、(1989年電子情報通信学
会春季全国大会講演論文集C−160)に示されたもの
がある。そのIC実装構造を、第3図の断面図を用いて
説明する。
Conventional IC mounting structures that improve the heat dissipation of IC chips include, for example, ``Cooling Characteristics of Multi-Chip Modules Using Copper-Polyimide Wiring Boards'' (1989 Institute of Electronics, Information and Communication Engineers Spring National Conference Proceedings C-160). The IC mounting structure will be explained using the cross-sectional view of FIG.

図の様にこのマルチチップモジュールでは、セラミック
配線基板21上に銅ポリイミド配線基板22か形成され
、その銅ポリイミド配線基板22上に複数のICチップ
23か搭載されるとともに、セラミック配線基板21の
下面には放熱フィン24か接着されている。上記ICチ
ップ23は、ボンディングワイヤ25で上記銅ポリイミ
ド配線基板z2と電気的に接続され、更にI10ピン2
6の付いたパッケージ27て封止されている。
As shown in the figure, in this multi-chip module, a copper polyimide wiring board 22 is formed on a ceramic wiring board 21, and a plurality of IC chips 23 are mounted on the copper polyimide wiring board 22. Radiating fins 24 are bonded to the fins. The IC chip 23 is electrically connected to the copper polyimide wiring board z2 by a bonding wire 25, and further connected to the I10 pin 2.
The package 27 marked with 6 is sealed.

そしてこのIC実装構造ては、ICチップZ3の放熱の
為に、熱伝導率の極めて低い銅ポリイミド配線基板22
に、各ICチップ23とセラミック配線基板21とを連
結した状態で、多数の放熱用ヴイア28か形成されてい
る。この放熱用ヴイア28は、ICチップ23をダイボ
ンドする前に、銅ポリイミド配線基板22に、エツチン
グにより直径100〜200 gmの穴を開け、その穴
の内壁を、熱伝導率の高い銅でメツキすることにより形
成される。
This IC mounting structure uses a copper polyimide wiring board 22 with extremely low thermal conductivity to dissipate heat from the IC chip Z3.
A large number of heat radiation vias 28 are formed in a state where each IC chip 23 and the ceramic wiring board 21 are connected. This heat dissipation via 28 is made by etching a hole with a diameter of 100 to 200 gm in the copper polyimide wiring board 22 before die-bonding the IC chip 23, and plating the inner wall of the hole with copper having high thermal conductivity. It is formed by

上記構造により、ICチップ23て発生した熱は、放熱
用ウィア28てセラミック配線基板21へ伝えられ、更
にセラミック配線基板21から放熱フィン24へ伝えら
れて外部へ放出されることになる。
With the above structure, the heat generated by the IC chip 23 is transmitted to the ceramic wiring board 21 through the heat dissipation vias 28, and further transmitted from the ceramic wiring board 21 to the heat dissipation fins 24 and radiated to the outside.

〈発明か解決しようとする課題〉 しかし上述の様な放熱用ヴイア28を形成した従来のI
C実装構造では、熱伝導率の低い銅ポリイミド配線基板
22を用いた場合に、充分な放熱効果か得られないとい
う問題かある。
<Problem to be solved by the invention> However, the conventional I that formed the heat dissipation via 28 as described above
In the C mounting structure, there is a problem in that a sufficient heat dissipation effect cannot be obtained when a copper polyimide wiring board 22 having low thermal conductivity is used.

例えば、直径100〜200 psの穴の内壁に厚さ5
0鉢富の銅メツキをして成る放熱用ウィア28を、5X
5tsサイズのICチップ23に対応させて0.5m園
のピッチて形成するとした場合、約100本の放熱用ヴ
イア28を形成することかてきるが、その約100本の
放熱用ヴイア28の全断面積は0.78■鳳2程度であ
り、これはICチップ23の面積(25■m 2 )の
3%程度にしかならない。よって熱伝達の効率か悪く、
高発熱のICチップを使用することかできない。
For example, the inner wall of a hole with a diameter of 100 to 200 ps has a thickness of 5
Heat dissipation wire 28 made of copper plating with 0 pottiness
If it is formed at a pitch of 0.5 m to accommodate a 5ts size IC chip 23, approximately 100 heat dissipation vias 28 will be formed, but all of the approximately 100 heat dissipation vias 28 will be The cross-sectional area is about 0.78 square meters, which is only about 3% of the area of the IC chip 23 (25 square meters). Therefore, the efficiency of heat transfer is poor,
It is only possible to use IC chips that generate high heat.

しかもICチップ23の下面全域に対応させて多数の放
熱用ヴイアZ8を形成すると、チップ23の真下の配線
が不可能となり、配線密度か低下するという問題もある
Moreover, if a large number of heat dissipating vias Z8 are formed to correspond to the entire lower surface of the IC chip 23, there is a problem that wiring directly under the chip 23 becomes impossible and the wiring density decreases.

更に上述の様な放熱用ウィア28を形成するには手間と
時間がかかり、その結果大幅なコスト増となってしまう
Furthermore, it takes time and effort to form the heat dissipation weir 28 as described above, resulting in a significant increase in cost.

〈課題を解決するための手段〉 本発明は、上記種々の問題を解決すべく提案されたIC
実装構造て、本発明に係るIC実装構造では、ICチッ
プをダイボンドする台座部と、その台座部の下面に突設
され配線基板を貫通して放熱フィンに達するピン状の熱
伝達部とより成る台座付放熱ピンを設けた。
<Means for Solving the Problems> The present invention is an IC proposed to solve the various problems mentioned above.
The IC mounting structure according to the present invention includes a pedestal portion for die-bonding the IC chip, and a pin-shaped heat transfer portion that protrudes from the lower surface of the pedestal portion and penetrates the wiring board to reach the heat dissipation fins. A heat dissipation pin with a pedestal is provided.

〈作用〉 上記構造によれば、ICチップから発生した熱は、台座
付放熱ピンの台座部から熱伝達部を通して放熱フィンへ
直接伝達され、外部へ放出されることになる。
<Operation> According to the above structure, heat generated from the IC chip is directly transmitted from the pedestal part of the pedestal-attached heat radiating pin to the heat radiating fin through the heat transfer part, and is emitted to the outside.

〈実施例〉 以下、図面に基づいて本発明の一実施例を説明する。<Example> Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は、本発明に係るIC実装構造を説明する、銅ポ
リイミド配線基板を用いたマルチチップモジュールの断
面図である。
FIG. 1 is a sectional view of a multi-chip module using a copper polyimide wiring board, illustrating an IC mounting structure according to the present invention.

図に示す様に、本発明のIC実装構造の特徴は、ICチ
ップlの放熱手段として、台座部2aとその台座部2a
の下面に突設されたピン状の熱伝達部2bとより成る台
座付放熱ピン2を設けた点にある。この台座付放熱ピン
2は、熱伝導率の高い材質、例えば窒化アルミニウムに
より形成される。
As shown in the figure, the feature of the IC mounting structure of the present invention is that the pedestal part 2a and the pedestal part 2a serve as heat dissipation means for the IC chip l.
A heat dissipating pin 2 with a pedestal is provided, which consists of a pin-shaped heat transfer portion 2b protruding from the lower surface of the holder. The base-attached heat radiation pin 2 is made of a material with high thermal conductivity, such as aluminum nitride.

このマルチチップモジュールの構造を、製造工程に沿っ
て説明する。
The structure of this multi-chip module will be explained along with the manufacturing process.

先ずセラミック配線基板3に、ICチップlの搭載位置
に対応させて、上記台座付放熱ピン2の熱伝達部2bを
挿入させる直径2〜31の貫通孔3aを開ける。このセ
ラミック配線基板3には、電源線、クランド線、I10
接続用配線等を厚膜印刷などにより形成しておく。
First, a through hole 3a having a diameter of 2 to 31 mm is formed in the ceramic wiring board 3, corresponding to the mounting position of the IC chip 1, into which the heat transfer portion 2b of the heat dissipating pin 2 with a base is inserted. This ceramic wiring board 3 includes a power line, a ground line, an I10
Connection wiring and the like are formed by thick film printing or the like.

次いて上記セラミック配線基板3上に、ポリイミド樹脂
を層間絶縁膜とする多層高密度配線基板である銅ポリイ
ミド配線基板4を形成する。その形成には、樹脂コート
、ウイアホールエツチンク、銅メツキ、フォトリソエツ
チングによるパターニングの各工程を繰返すことになる
。この銅ポリイミド配線基板4には、上記セラミック配
線基板3の貫通孔3aに対応して穴4aが自然に形成さ
れる。
Next, a copper polyimide wiring board 4, which is a multilayer high-density wiring board using polyimide resin as an interlayer insulating film, is formed on the ceramic wiring board 3. For its formation, the steps of resin coating, via hole etching, copper plating, and patterning using photolithography are repeated. Holes 4a are naturally formed in this copper polyimide wiring board 4 in correspondence with the through holes 3a of the ceramic wiring board 3.

次いて上記台座付放熱ピン2の熱伝達部2bを、銅ポリ
イミド配線基板4の穴4からセラミック配線基板3の貫
通孔3aへ挿入し、両配線基板3.4を貫通させる。そ
の際、貫通孔3aの径が、銅ポリイミド配線基板4形成
時のポリイミド樹脂の流れ込みにより小さくなっている
場合には、トリル等により所定の径まて広げる。
Next, the heat transfer portion 2b of the heat dissipation pin 2 with a pedestal is inserted from the hole 4 of the copper polyimide wiring board 4 into the through hole 3a of the ceramic wiring board 3, and penetrates both wiring boards 3.4. At this time, if the diameter of the through hole 3a has become smaller due to the inflow of polyimide resin during the formation of the copper polyimide wiring board 4, it is enlarged to a predetermined diameter using a trill or the like.

上記台座付放熱ピン2の寸法については、本実施例の場
合1台座部2aの大きさをICチップlと同し5%5m
m、その台座部2aの厚さをl+smに設定した。又熱
伝達部2bの直径を2■璽とし、その長さを、後述の放
熱フィン5の中央部まて達する様に設定する。この台座
付放熱ピン2は、非常に安価に提供されるものである。
Regarding the dimensions of the heat dissipation pin 2 with a pedestal, in this embodiment, the size of the pedestal part 2a is the same as that of the IC chip l, and is 5%5 m.
m, and the thickness of the pedestal portion 2a was set to l+sm. Further, the diameter of the heat transfer portion 2b is set to 2 cm, and its length is set so as to reach the center of the heat dissipation fin 5, which will be described later. This heat dissipation pin 2 with a base is provided at a very low cost.

上述の如く熱伝達部2bを両配線基板3.4に挿着させ
た台座付放熱ピン2の台座部2aに、ICチップlをタ
イボンドする。次いてこの様にして搭載したICチップ
lと銅ポリイミド配線基板4とを、ボンデインタワイヤ
6で電気的に接続する。
The IC chip 1 is tie-bonded to the pedestal part 2a of the heat dissipation pin 2 with a pedestal with the heat transfer part 2b inserted into both wiring boards 3.4 as described above. Next, the IC chip l mounted in this manner and the copper polyimide wiring board 4 are electrically connected by bonder interconnect wires 6.

その後、I10ピン7をセラミック配線基板3に取付け
るとともに、ICチップlを搭載した銅ポリイミド配線
基板4上をパッケージ8て封止する。更にセラミック配
線基板3の下面に、放熱フィン5を接着する。この放熱
フィン5には予め、台座付放熱ピン2の熱伝達部2bを
挿着させる挿着孔5aを形成しておく。モして挿着時に
は、その挿着孔5a内に熱伝導率の高いシリコン樹脂等
を充填しておき、放熱フィン5と台座付放熱ピン2の熱
伝達部2bとを熱的に結合させる。これでマルチチップ
モジュールか完成する。
Thereafter, the I10 pin 7 is attached to the ceramic wiring board 3, and the copper polyimide wiring board 4 on which the IC chip 1 is mounted is sealed with a package 8. Further, heat dissipation fins 5 are bonded to the lower surface of the ceramic wiring board 3. The heat radiation fin 5 is previously formed with an insertion hole 5a into which the heat transfer portion 2b of the heat radiation pin 2 with a base is inserted. At the time of insertion, the insertion hole 5a is filled with silicone resin or the like having high thermal conductivity to thermally couple the radiation fin 5 and the heat transfer portion 2b of the heat radiation pin 2 with a base. This completes the multi-chip module.

上記構造によれば、ICチップ1から発生した熱は、台
座付放熱ピン2の台座部2aから熱伝達部2bを通して
放熱フィン5へ直接伝達され、外部へ放出されることに
なる。
According to the above structure, the heat generated from the IC chip 1 is directly transmitted from the pedestal part 2a of the pedestal-attached heat radiation pin 2 to the heat radiation fin 5 through the heat transfer part 2b, and is emitted to the outside.

上記台座付放熱ピン2ては、熱を伝達する部分、つまり
熱伝達部2bの断面積が大きくなる。例えば熱伝達部2
bの直径を2mmとした場合、その断面積は3.14■
朧2で、これは5×5履■サイズのICチップlの面積
の12.5%に達する。しかも熱を放熱フィン5へ直接
伝達する為、熱伝達の効率は、従来の放熱用ヴイアな用
いた構造より格段に向上する。更に、ICチップ1下方
の両配線基板3゜4の配線不可領域が、ピン状の熱伝達
部2bの一箇所たけとなる為、配線密度の低下は小さく
抑えられる。
In the heat dissipating pin 2 with a base, the cross-sectional area of the portion that transfers heat, that is, the heat transfer portion 2b is large. For example, heat transfer part 2
If the diameter of b is 2mm, its cross-sectional area is 3.14■
In Oboro 2, this reaches 12.5% of the area of a 5×5 inch size IC chip. Furthermore, since the heat is directly transferred to the radiation fins 5, the efficiency of heat transfer is significantly improved compared to the conventional structure using heat radiation vias. Furthermore, since the area where wiring is not possible on both wiring boards 3.degree. 4 below the IC chip 1 becomes only one place for the pin-shaped heat transfer portion 2b, a decrease in wiring density can be suppressed to a small extent.

第2図は、上記実施例に示したマルチチップモジュール
の放熱特性(図中実線)と、第3図に示した従来のIC
実装構造を有するマルチチップモジュールの放熱特性(
図中破線)とを示す図である。
Figure 2 shows the heat dissipation characteristics of the multi-chip module shown in the above example (solid line in the figure) and the conventional IC shown in Figure 3.
Heat dissipation characteristics of multi-chip module with mounting structure (
FIG.

何れのモジュールも、70X 70■朧のセラミック配
線基板上に銅ポリイミド配線基板を形成し、5%5騰膳
の発熱用のチップを六個搭載したものである。又従来の
実装構造によるモジュールでは、直径100 gmの穴
の内壁に厚さ30ルーの銅メツキをして成る放熱用ヴイ
アを、各ICチップに対応させて100本ずつ形成して
いる。そしてこれらのモジュールの放熱フィンに、5 
m/seeの風を当てた状態て、モジュールへの供給電
力(W/モジュール)を変え、その際の各モジュールの
温度変化を測定した。
Each module has a copper polyimide wiring board formed on a 70 x 70 mm ceramic wiring board, and six 5% 5-temperature heat generating chips are mounted thereon. In addition, in a module with a conventional mounting structure, 100 heat dissipation vias are formed by plating copper with a thickness of 30 Roux on the inner wall of a hole with a diameter of 100 gm, corresponding to each IC chip. And on the heat dissipation fins of these modules, 5
The power supplied to the module (W/module) was varied while applying wind of m/see, and the temperature change of each module at that time was measured.

この特性図に示される様に、本発明の実装構造によるモ
ジュールの温度変化は、従来の実装構造のものに比べて
明らかに小さく、よって放熱特性か向上したことか確認
される。
As shown in this characteristic diagram, the temperature change of the module with the mounting structure of the present invention is clearly smaller than that of the conventional mounting structure, which confirms that the heat dissipation characteristics are improved.

尚1本発明のIC実装構造は、熱伝導率の低い銅ポリイ
ミド配線基板を用いたマルチチップモジュールにおいて
特に効果を発揮するか、もちろん配線基板の種類を限定
するものではない。
Note that the IC mounting structure of the present invention is particularly effective in a multi-chip module using a copper polyimide wiring board with low thermal conductivity, and of course is not limited to the type of wiring board.

又台座付放熱ピン2の材質は、熱伝導率の高いものてあ
ればよく、窒化アルミニウム以外に銅やアルミニウムで
もよい。
Further, the material of the pedestal-attached heat dissipation pin 2 may be any material having high thermal conductivity, and may be copper or aluminum in addition to aluminum nitride.

〈発明の効果〉 以上述べた様に、台座付放熱ピンを設けた本発明のIC
実装構造によれば、熱伝導率の低い銅ポリイミド配線基
板を用いた場合にも、充分な放熱効果が得られ、高発熱
のICチップを使用することがてきる。しかも配線密度
の低下を小さく抑えることかできる。よって高性能のマ
ルチチップモジュールを実現し得る。
<Effects of the Invention> As described above, the IC of the present invention provided with a heat dissipation pin with a pedestal
According to the mounting structure, a sufficient heat dissipation effect can be obtained even when a copper polyimide wiring board with low thermal conductivity is used, and an IC chip that generates a high amount of heat can be used. Moreover, the decrease in wiring density can be suppressed to a small level. Therefore, a high-performance multi-chip module can be realized.

更に1台座付放熱ピンは非常に安価に得られるものであ
り、モジュールへの組込みも容易である為、コストの増
加も抑えられる。
Furthermore, the heat dissipation pin with one pedestal can be obtained at a very low cost and can be easily incorporated into a module, so that an increase in cost can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示すマルチチップモジュー
ルの断面図、 第2図は、放熱特性を示す図、 第3図は、従来例を示すマルチチップモジュールの断面
図である。 1・・・ICチップ、 2・・・台座付放熱ピン。 2a・・・台座部、    2b・・・熱伝達部。 3・・・セラミック配線基板。 4・・・銅ポリイミド配線基板。 5・・・放熱フィン。
FIG. 1 is a cross-sectional view of a multi-chip module showing an embodiment of the present invention, FIG. 2 is a view showing heat dissipation characteristics, and FIG. 3 is a cross-sectional view of a multi-chip module showing a conventional example. 1... IC chip, 2... Heat dissipation pin with pedestal. 2a... Pedestal part, 2b... Heat transfer part. 3...Ceramic wiring board. 4...Copper polyimide wiring board. 5... Heat dissipation fin.

Claims (1)

【特許請求の範囲】 配線基板上にICチップを搭載するとともに、その配線
基板の下面に放熱フィンを取着したIC実装構造におい
て、 ICチップをダイボンドする台座部と、その台座部の下
面に突設され上記配線基板を貫通して放熱フィンに達す
るピン状の熱伝達部とより成る台座付放熱ピンを設けた
ことを特徴とするIC実装構造。
[Claims] In an IC mounting structure in which an IC chip is mounted on a wiring board and a heat dissipation fin is attached to the lower surface of the wiring board, there is provided a pedestal portion to which the IC chip is die-bonded, and a protrusion on the lower surface of the pedestal portion. An IC mounting structure characterized in that a heat dissipation pin with a pedestal is provided, the heat dissipation pin having a pedestal consisting of a pin-shaped heat transfer portion extending through the wiring board and reaching the heat dissipation fin.
JP3183990A 1990-02-13 1990-02-13 Ic mounting structure Pending JPH03235356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183990A JPH03235356A (en) 1990-02-13 1990-02-13 Ic mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183990A JPH03235356A (en) 1990-02-13 1990-02-13 Ic mounting structure

Publications (1)

Publication Number Publication Date
JPH03235356A true JPH03235356A (en) 1991-10-21

Family

ID=12342226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183990A Pending JPH03235356A (en) 1990-02-13 1990-02-13 Ic mounting structure

Country Status (1)

Country Link
JP (1) JPH03235356A (en)

Similar Documents

Publication Publication Date Title
US6528882B2 (en) Thermal enhanced ball grid array package
JP2914342B2 (en) Cooling structure of integrated circuit device
JP2592308B2 (en) Semiconductor package and computer using the same
US20070108595A1 (en) Semiconductor device with integrated heat spreader
JP2002270743A (en) Mounting structure of semiconductor element
JPH0548000A (en) Semiconductor device
JPH0917919A (en) Semiconductor device
JP2803603B2 (en) Multi-chip package structure
JPH06104350A (en) Multilayered wiring board
JP2812014B2 (en) Semiconductor device
JPS6250981B2 (en)
JP3193142B2 (en) Board
JPH06204355A (en) Semiconductor device package and semiconductor device
JPH03235356A (en) Ic mounting structure
JP2002141436A (en) Semiconductor device and manufacturing method thereof
JP2564645Y2 (en) Hybrid integrated circuit device having heat-generating components
JP2004087700A (en) Semiconductor device and its manufacturing method
JP3207248B2 (en) Semiconductor device
JP2005259860A (en) Electronic circuit device
JPS6151427B2 (en)
JPH10256414A (en) Semiconductor package
JP3460930B2 (en) Electronic circuit package
JP2001028410A (en) Semiconductor package and semiconductor device
JPH0358455A (en) Semiconductor package
JPH0377355A (en) Heat-dissipating type semiconductor device