JPH03234793A - Fuel oil for diesel engine - Google Patents

Fuel oil for diesel engine

Info

Publication number
JPH03234793A
JPH03234793A JP2851290A JP2851290A JPH03234793A JP H03234793 A JPH03234793 A JP H03234793A JP 2851290 A JP2851290 A JP 2851290A JP 2851290 A JP2851290 A JP 2851290A JP H03234793 A JPH03234793 A JP H03234793A
Authority
JP
Japan
Prior art keywords
fuel oil
oil
fuel
diesel engine
mineral oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2851290A
Other languages
Japanese (ja)
Other versions
JP2792988B2 (en
Inventor
Masayuki Kagami
加賀見 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK
Original Assignee
KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK filed Critical KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK
Priority to JP2028512A priority Critical patent/JP2792988B2/en
Publication of JPH03234793A publication Critical patent/JPH03234793A/en
Application granted granted Critical
Publication of JP2792988B2 publication Critical patent/JP2792988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To obtain fuel oil for a diesel engine which is improved in ignitability and generates an exhaust gas containing an extremely small amount of toxic substances by incorporating dimethyl acetal as an active ingredient. CONSTITUTION:Fuel oil for a diesel engine is obtained by incorporating dimethyl acetal as an active ingredient. As compared with conventional mineral oil fuel, this fuel oil produces an extremely small amount of graphite, generates an exhaust gas that contains a very little NOx and has high ignitability and thermal efficiency. Due to these merits, this fuel oil can be used advantageously as diesel engine oil. Further, due to its good compatibility with mineral oil, this fuel oil can be mixed with mineral oil to obtain a fuel oil composition. In this case, the amount of dimethyl acetal may account for 50 to 100vol% of the total amount of the fuel oil and the mineral oil. This fuel oil exhibits good performance when employed for a collision diffusion layer air-charging combustion type diesel engine.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規なディーゼルエンジン用の燃料油および
燃料油組成物に関するものである。より詳しくは、ジメ
チルアセタールを有効成分とする燃料油であり、着火性
が良好であると共に、排出ガス中の有害成分が極めて少
い燃料油である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel fuel oil and fuel oil composition for diesel engines. More specifically, it is a fuel oil containing dimethyl acetal as an active ingredient, has good ignitability, and contains extremely few harmful components in exhaust gas.

[従来の技術] ディーゼルエンジンには、軽油、A重油などの鉱油系の
燃料(以下単に鉱油燃料と称す)が使用されいている。
[Prior Art] Mineral oil fuels (hereinafter simply referred to as mineral oil fuels) such as light oil and A heavy oil are used in diesel engines.

ディーゼルエンジン用燃料には、着火性が良好であるこ
とと、排気ガスとくに黒煙やNO3成分が少いことが要
求される。
Diesel engine fuel is required to have good ignitability and to be low in exhaust gas, especially black smoke and NO3 components.

一般に鉱油燃料はディーゼルエンジン用燃料としては、
着火性は満足されているが、黒煙が多いなど、排気ガス
抑制の対策にはまだ解決課題が残されている。
Mineral oil fuel is generally used as fuel for diesel engines.
Although the ignitability has been satisfied, there are still issues to be solved in terms of exhaust gas control measures, such as a large amount of black smoke.

黒煙の発生を抑制するためには、メタノールを燃料とす
ることが提案されているが、メタノール燃料を使用した
場合、排気ガスの問題は解消されるが、セタン価が約3
できわめて低く、着火性が悪く、発熱量も低く、吸湿性
や腐食性があり、また鉱油との相溶性が悪いため、混合
燃料としても使用しにくい等、燃料としては性能が不足
している。
In order to suppress the generation of black smoke, it has been proposed to use methanol as fuel, but using methanol fuel solves the problem of exhaust gas, but the cetane number is about 3.
It has poor performance as a fuel, such as poor ignitability, low calorific value, hygroscopicity and corrosivity, and poor compatibility with mineral oil, making it difficult to use as a mixed fuel. .

[発明が解決しようとする課題] 上記のような問題点を解決するために、ディーゼルエン
ジンの燃焼方式や構造を改良する方法も多数試みられて
いるが、一方において、着火性、排気ガス清浄性を備え
たディーゼルエンジン用燃料油の開発が重要な課題であ
り、これについて本発明者は、研究を重ね、本発明を完
成した。
[Problem to be solved by the invention] In order to solve the above-mentioned problems, many attempts have been made to improve the combustion system and structure of diesel engines. It is an important issue to develop a fuel oil for diesel engines that has the following characteristics, and the present inventor has completed the present invention after repeated research on this subject.

[課題を解決するための手段] 本発明は、有効成分としてジメチルアセタールを含有す
ることを特徴とするディーゼルエンジン用燃料油および
、鉱油との合計量を基準として、ジメチルアセタールを
50〜100容量%含有する、鉱油にジメチルアセクー
ルを混合してなるディーゼルエンジン用燃料油組成物で
ある。
[Means for Solving the Problems] The present invention provides a diesel engine fuel oil characterized by containing dimethyl acetal as an active ingredient and containing 50 to 100% by volume of dimethyl acetal based on the total amount of mineral oil. This is a fuel oil composition for a diesel engine, which is a mixture of mineral oil and dimethyl acecool.

本発明のディーゼルエンジン用燃料油の有効成分である
ジメチルアセタール(以下DMAと呼ぶことがある)は
、次の式(I)で表わされる化合物である。
Dimethyl acetal (hereinafter sometimes referred to as DMA), which is an active component of the diesel engine fuel oil of the present invention, is a compound represented by the following formula (I).

υ−L、I’1m ジメチルアセタールは、メタノールから容易に合成出来
、原料の入手も容易である。DMAはセタン価が41〜
42であり、鉱油に劣らない優れた着火性を有しており
、適当な粘度、沸点を有しているので、ディーゼルエン
ジン用の燃料として支障なく使用できる。そして驚くべ
きことに、鉱油に比べ、黒煙発生量を90%以上も低下
させることができ、排ガス中の窒素酸化物(No、)も
きわめて少ない。と(に、エンジンの負荷が変化しても
、黒煙発生をきわめて低レベルに維持出来る。この点は
鉱油との最大の相違点であり、ディーゼルエンジン用燃
料として価値が高い。
υ-L, I'1m Dimethyl acetal can be easily synthesized from methanol, and raw materials are easily available. DMA has a cetane number of 41~
42 and has excellent ignitability comparable to mineral oil, and has an appropriate viscosity and boiling point, so it can be used as a fuel for diesel engines without any problems. Surprisingly, compared to mineral oil, it can reduce the amount of black smoke generated by more than 90%, and the amount of nitrogen oxides (No.) in the exhaust gas is also extremely low. In addition, even when the engine load changes, black smoke generation can be maintained at an extremely low level.This point is the biggest difference from mineral oil, and it is highly valuable as a fuel for diesel engines.

しかも低温流動性も良好であり、吸水性も少な(、メタ
ノールよりも優れた性質を有している。
In addition, it has good low-temperature fluidity and less water absorption (and has better properties than methanol).

また硫黄分もきわめて少ない。It also has extremely low sulfur content.

更にDMAは鉱油との相溶性が良好で、任意の割合で均
一な燃料組成物を形成するので、鉱油と混合して用いる
ことができる。鉱油と混合して用いる場合には、混合物
を基準としてDMAを50〜100容量%含有する組成
物とすることが望ましい。DMAの含有量が50%以下
では黒煙およびNO8の発生量の抑制効果が充分に発揮
できない0組成物中のDMA含有量の上限は特になく、
もちろんDMAのみで使用することもでき、黒煙および
No、発生の点ではDMAが多い方が好ましいが、DM
Aおよび鉱油の価額、発生熱量、蒸留性状、粘度等を考
慮して、使用目的に適した混合比の組成物として用いる
ことができる。
Furthermore, DMA has good compatibility with mineral oil and forms a uniform fuel composition in any proportion, so it can be used in combination with mineral oil. When used in combination with mineral oil, the composition preferably contains 50 to 100% by volume of DMA based on the mixture. If the DMA content is 50% or less, the effect of suppressing the amount of black smoke and NO8 generated cannot be sufficiently exhibited.There is no particular upper limit for the DMA content in the composition.
Of course, it is possible to use only DMA, and it is preferable to use more DMA in terms of black smoke and No.
Taking into account the price, amount of heat generated, distillation properties, viscosity, etc. of A and mineral oil, it can be used as a composition with a mixing ratio suitable for the purpose of use.

DMAと混合する鉱油としては、軽油、へ重油、灯油な
どを使用することができるが、特に軽油が好適である。
As the mineral oil to be mixed with DMA, light oil, heavy oil, kerosene, etc. can be used, but light oil is particularly suitable.

本発明の燃料油には必要に応じ、ナイトレート系などの
セタン価向上剤、市販の防錆剤、その他各種の添加剤を
配合して使用することができる。
The fuel oil of the present invention can be used by blending a cetane number improver such as a nitrate type, a commercially available rust preventive agent, and various other additives as required.

本発明の燃料油は、直接噴射型、間接噴射型等のすべて
のディーゼルエンジンに使用でき、直接噴射型の中でも
従来型の燃焼方式のみならず、衝突拡散層状給気燃焼方
式のエンジンにも使用できる。とりわけ衝突拡散層状給
気燃焼方式エンジンの燃料として使用した場合に、黒煙
の抑制はもとより、N08の排気量を、鉱油の1/3〜
1/4に低減させつる。とくにエンジンの負荷が大きい
運転条件におけるNO,抑制効果が特別顕著である。
The fuel oil of the present invention can be used in all types of diesel engines such as direct injection type and indirect injection type, and among direct injection type, it can be used not only in conventional combustion type engines but also in collision-diffusion stratified charge combustion type engines. can. In particular, when used as a fuel for a collision-diffusion stratified charge combustion engine, it not only suppresses black smoke but also reduces N08 emissions to 1/3 to 1/3 that of mineral oil.
Reduce it to 1/4. In particular, the effect of suppressing NO is particularly noticeable under operating conditions where the engine load is high.

[実施例] 以下、実施例にもとづき、本発明をより具体的に説明す
る。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples.

まず実施例に用いた燃料油、装置、実験結果の測定法等
は以下のとおりである。
First, the fuel oil, equipment, measurement method for experimental results, etc. used in the examples are as follows.

表1 使用した燃料油: 以下余白 表2 実験に用いたディーゼルエンジン 表3 排気ガス分析法: 以下余白 表4 計測機器 (従来型直接噴射型エンジンによる実験結果)燃料とし
て表1に記載のDMA、および比較のため鉱油(市販A
重油)を用い、表2に記載の従来型の直接噴射式エンジ
ンを、エンジンスピード120Orpmで、燃料噴射時
期を、最大指示熱効率(ITE)を示すところに設定し
運転し、シリンダー内の圧力から算出した図示平均有効
圧力(IMEP)に対するスモーク、No、および最大
指示熱効率(ITE)を測定し、その結果を図1.2.
及び3に示した。
Table 1 Fuel oil used: Table 2 below: Diesel engine used in the experiment Table 3 Exhaust gas analysis method: Table 4 below: Measuring equipment (experimental results using conventional direct injection engine) DMA listed in Table 1 as fuel, and mineral oil (commercial A
The conventional direct injection engine listed in Table 2 was operated using fuel oil (heavy oil) at an engine speed of 120 rpm, with the fuel injection timing set to the maximum indicated thermal efficiency (ITE), and calculated from the pressure in the cylinder. The smoke, No., and maximum indicated thermal efficiency (ITE) against the indicated mean effective pressure (IMEP) were measured, and the results are shown in Figure 1.2.
and 3.

各図から明らかなように、ジメチルアセタールでは、ス
モーク発生量が、A重油に比べ1/3〜1/4であり、
苛酷な条件になるほど、スモーク抑制効果が大となる。
As is clear from each figure, the amount of smoke generated with dimethyl acetal is 1/3 to 1/4 compared to heavy oil A,
The more severe the conditions, the greater the smoke suppression effect.

No、発生量についても、へ重油に較べ約100pp園
程度低下する。
No, the amount generated is also about 100pp lower than heavy oil.

さらに、最大指示熱効率(ITE)もDMAの方が良い
値を示している。
Furthermore, DMA also shows a better maximum indicated thermal efficiency (ITE).

2、   2 (衝突拡散層状給気エンジンによる実験結果)(1)燃
料として実施例1、比較例1と同じDMA、および鉱油
を用い、表2に記載の衝突拡散層状給気エンジン(OS
KA−D)を、エンジンスピードを1200rpa+ 
、燃料噴射時期を12及び14°BTDCに設定し、燃
料噴射量を変えて、軸平均有効圧力を0.4および0゜
5 MPaになるよう調整運転し、その条件でのスモー
クとNO,を測定した。結果を表5に示す。
2, 2 (Experimental results using a collision-diffusion stratified air supply engine) (1) Using the same DMA and mineral oil as in Example 1 and Comparative Example 1 as fuel, the collision-diffusion stratified air supply engine (OS
KA-D), engine speed 1200rpa+
, the fuel injection timing was set to 12 and 14° BTDC, and the fuel injection amount was changed to adjust the shaft average effective pressure to 0.4 and 0°5 MPa, and the smoke and NO under these conditions were measured. It was measured. The results are shown in Table 5.

表5の結果より明らかなとおり、同一出力を発生させる
1条件でエンジンを運転した際、排気ガス中のNOoは
、本発明の燃料油であるジメチルアセタールでは、A重
油に比べ約1/2になり、又スモークについては、A重
油では、負荷が大きくなるにつれ、急激に発生量が増大
するのに対し、・ジメチルアセクールでは、検出出来な
い程の値であった。即ち、衝突拡散層状給気エンジンに
ジメチルアセタールを燃料として使用すると、熱効率を
損うことなく、N08とスモークを大巾に低減できる。
As is clear from the results in Table 5, when the engine is operated under one condition that generates the same output, the NOo in the exhaust gas is approximately 1/2 that of dimethyl acetal, which is the fuel oil of the present invention, compared to heavy oil A. Regarding smoke, with heavy oil A, the amount generated increases rapidly as the load increases, whereas with dimethyl acecool, the amount was undetectable. That is, using dimethyl acetal as a fuel in a collision-diffusion stratified air charge engine can significantly reduce N08 and smoke without sacrificing thermal efficiency.

(2)また同じ0SKA−Dエンジンを用いてエンジン
スピード1200rpmで、最大のトルク発生になる燃
料噴射時期で、運転した際の、燃焼室のBMEP (軸
平均有効圧力)とスモーク、NO,及び熱効率(BTE
)の関係をそれぞれ図4、図5及び図6に示す。
(2) Also, using the same 0SKA-D engine, when operating at an engine speed of 1200 rpm and the fuel injection timing that produces the maximum torque, the BMEP (shaft mean effective pressure) of the combustion chamber, smoke, NO, and thermal efficiency (BTE
) are shown in FIGS. 4, 5, and 6, respectively.

本発明のDMAを衝突拡散層状給気エンジンに使用した
場合、スモーク、NO,の発生防止効果は直接噴射型エ
ンジンでの使用(図1および図2)におけるよりも−層
顕著であり、スモークは殆どゼロなり、NOxも苛酷な
条件での効果が大きい。
When the DMA of the present invention is used in a collision-diffusion stratified air charge engine, the effect of preventing the generation of smoke and NO is more pronounced than when it is used in a direct injection engine (Figs. 1 and 2). Almost zero, NOx is also very effective under severe conditions.

実1目肌旦 実施例1で用いたDMA、鉱油、および両者の混合燃料
(混合油中のDMA含有量25および50容量%)を使
用し、実施例2で用いた05KA−Dエンジンを、12
00rpm 、最大出力燃料噴射時期に設定して運転し
、DMA含有量とスモークおよびN080発生量との関
係を測定し図7および図8に示した。
The 05KA-D engine used in Example 2 using the DMA, mineral oil, and a mixed fuel of both (DMA content in the mixed oil 25 and 50% by volume) used in Example 1, 12
The engine was operated with the fuel injection timing set at 00 rpm and the maximum output fuel injection timing, and the relationship between the DMA content and the amount of smoke and N080 generated was measured and shown in FIGS. 7 and 8.

図7および図8から明らかなように、A重油にジメチル
アセクールを混合すると、スモーク及びN低排出量が大
巾に低下することがわかる。
As is clear from FIGS. 7 and 8, it can be seen that when dimethyl acecool is mixed with A heavy oil, smoke and N emissions are significantly reduced.

[発明の効果] 本発明のジメチルアセクールを有効成分とするディーゼ
ルエンジン用燃料油は、従来の鉱油燃料に較べて黒煙発
生量および排ガス中のN08がきわめて少なく、着火性
、熱効率もよく、ディーゼルエンジン用として優れた燃
料である。また鉱油との相溶性が良いので鉱油と混合し
た燃料組成物として用いることができる。特に衝突拡散
層状給気燃焼型ディーゼルエンジンに使用した場合、高
性能を発揮することができる。
[Effects of the Invention] The diesel engine fuel oil containing dimethyl acecool as an active ingredient of the present invention has extremely low black smoke generation and N08 in exhaust gas compared to conventional mineral oil fuel, and has good ignitability and thermal efficiency. It is an excellent fuel for diesel engines. Furthermore, since it has good compatibility with mineral oil, it can be used as a fuel composition mixed with mineral oil. In particular, when used in a collision-diffusion stratified charge combustion type diesel engine, high performance can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はDMAおよび鉱油を燃料として用い、直接噴射
式エンジンを運転した場合の図示平均有効圧力(IME
P)に対するスモーク発生量の関係を示す図である。 第2図は上記の運転におけるIMEPに対する排気ガス
中のNO8濃度の関係を示す図である。 第3図は上記の運転におけるIMEPに対する最大指示
熱効率(ITE)の関係を示す図である。 第4図はDMAおよび鉱油を燃料として用い、衝突拡散
層状給気型エンジンを運転した場合の軸平均有効圧力(
BMEP)に対するスモーク発生量の関係を示す図であ
る。 第5図は上記の運転におけるBMEPに対する排気ガス
中のNO8濃度の関係を示す図である。 第6図は上記の運転におけるBMEPに対する熱効率(
BTE)の関係を示す図である。 第7図および第8図はDMA−鉱油混合燃料を用い、衝
突拡散層状給気型エンジンを運転した場合のDMA含有
量とスモーク発生量および排気ガス中のN08濃度の関
係を示す図である。
Figure 1 shows the indicated mean effective pressure (IME) when operating a direct injection engine using DMA and mineral oil as fuel.
It is a figure which shows the relationship of the amount of smoke generation with respect to P). FIG. 2 is a diagram showing the relationship between the NO8 concentration in the exhaust gas and the IMEP in the above operation. FIG. 3 is a diagram showing the relationship between maximum indicated thermal efficiency (ITE) and IMEP in the above operation. Figure 4 shows the axial average effective pressure (
BMEP) is a diagram showing the relationship between the amount of smoke generated and the amount of smoke produced. FIG. 5 is a diagram showing the relationship between the NO8 concentration in the exhaust gas and the BMEP in the above operation. Figure 6 shows the thermal efficiency (
FIG. FIGS. 7 and 8 are diagrams showing the relationship between the DMA content, the amount of smoke generated, and the N08 concentration in the exhaust gas when a collision-diffusion stratified air supply engine is operated using a DMA-mineral oil mixed fuel.

Claims (3)

【特許請求の範囲】[Claims] (1)有効成分としてジメチルアセタールを含有するこ
とを特徴とするディーゼルエンジン用燃料油。
(1) A diesel engine fuel oil characterized by containing dimethyl acetal as an active ingredient.
(2)鉱油との合計量を基準として、ジメチルアセター
ルを50〜100容量%含有する、鉱油にジメチルアセ
タールを混合してなる請求項1のディーゼルエンジン用
燃料油。
(2) The diesel engine fuel oil according to claim 1, which contains dimethyl acetal in an amount of 50 to 100% by volume based on the total amount of mineral oil and mineral oil.
(3)請求項1又は2の燃料油が、衝突拡散層状給気燃
焼エンジン用であるディーゼルエンジン用燃料油。
(3) A fuel oil for a diesel engine, wherein the fuel oil according to claim 1 or 2 is for use in a collision-diffusion stratified charge combustion engine.
JP2028512A 1990-02-09 1990-02-09 Fuel oil for diesel engines Expired - Lifetime JP2792988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2028512A JP2792988B2 (en) 1990-02-09 1990-02-09 Fuel oil for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2028512A JP2792988B2 (en) 1990-02-09 1990-02-09 Fuel oil for diesel engines

Publications (2)

Publication Number Publication Date
JPH03234793A true JPH03234793A (en) 1991-10-18
JP2792988B2 JP2792988B2 (en) 1998-09-03

Family

ID=12250735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2028512A Expired - Lifetime JP2792988B2 (en) 1990-02-09 1990-02-09 Fuel oil for diesel engines

Country Status (1)

Country Link
JP (1) JP2792988B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768887A (en) * 1995-04-27 1998-06-23 Toyota Jidosha Kabushiki Kaisha Direct injection type compression ignition engine and method of use
EP0861882A1 (en) * 1997-02-26 1998-09-02 Tonen Corporation Fuel oil composition for diesel engines
US5826427A (en) * 1995-09-20 1998-10-27 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
JP2002526595A (en) * 1998-09-22 2002-08-20 キーフ ホルスト Glyoxal as a fuel additive
JP2007509189A (en) * 2003-06-24 2007-04-12 ミッキル アルジャーン コーセメーカー, Method for producing oxygen-containing substances used as additives in fuels, especially in diesel fuel, gasoline fuel and rapeseed oil methyl ester
RU2475472C2 (en) * 2010-08-17 2013-02-20 Евгений Валентинович Пантелеев Fuel composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159290A (en) * 1979-12-11 1981-12-08 Aeci Ltd Fuel and internal combustion engine operation
JPS60217292A (en) * 1984-04-12 1985-10-30 Toyota Motor Corp Fuel additive for diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159290A (en) * 1979-12-11 1981-12-08 Aeci Ltd Fuel and internal combustion engine operation
JPS60217292A (en) * 1984-04-12 1985-10-30 Toyota Motor Corp Fuel additive for diesel engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768887A (en) * 1995-04-27 1998-06-23 Toyota Jidosha Kabushiki Kaisha Direct injection type compression ignition engine and method of use
US5826427A (en) * 1995-09-20 1998-10-27 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0861882A1 (en) * 1997-02-26 1998-09-02 Tonen Corporation Fuel oil composition for diesel engines
JP2002526595A (en) * 1998-09-22 2002-08-20 キーフ ホルスト Glyoxal as a fuel additive
JP2007509189A (en) * 2003-06-24 2007-04-12 ミッキル アルジャーン コーセメーカー, Method for producing oxygen-containing substances used as additives in fuels, especially in diesel fuel, gasoline fuel and rapeseed oil methyl ester
RU2475472C2 (en) * 2010-08-17 2013-02-20 Евгений Валентинович Пантелеев Fuel composition

Also Published As

Publication number Publication date
JP2792988B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
Zheng et al. Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol
Han et al. Premixed low-temperature combustion of blends of diesel and gasoline in a high speed compression ignition engine
Srinivasan et al. Study of combustion characteristics of an SI engine fuelled with ethanol and oxygenated fuel additives
Subramanian et al. Use of diethyl ether along with water-diesel emulsion in a DI diesel engine
EP1153110B1 (en) Fuel formulations to extend the lean limit
JP2011163350A (en) Method for controlling exhaust emissions from direct injection homogeneous charge compression ignition engines
Hu et al. Optimization on ignition timing and EGR ratio of a spark-ignition engine fuelled with natural gas-hydrogen blends
Mallikarjun et al. NOx emission control techniques when CI engine is fuelled with blends of mahua methyle esters and diesel
Chen et al. Study on homogenous premixed charge CI engine fueled with LPG
Kale et al. Investigations on load range extension of a homogeneous charge compression ignited light-duty diesel engine operated with diisopropyl ether and gasoline blends
JPH03234793A (en) Fuel oil for diesel engine
CN101445754B (en) Additive for improving low-temperature startup of methanol diesel oil
CN102827654A (en) Cleaning fuel for vehicle
Subramanian et al. Operation of a compression ignition engine on diesel-diethyl ether blends
GB2433265A (en) Low toxicity fuel
JP2006312667A (en) Diesel light oil composition
US6007589A (en) E-gasoline II a special gasoline for modified spark ignited internal combustion engines
Kajitani et al. MTBE for improved diesel combustion and emissions?
JP2007269865A (en) Fuel oil for diesel engine having multi-stage injection mechanism, combustion method and diesel engine
JPS5981386A (en) Mixed fuel based on heavy fuel oil and preparation of same
Srinivasan et al. Emission reduction in SI engine using ethanol–gasoline blends on thermal barrier coated pistons
Chauhan et al. A Technical Review HCCI Combustion in Diesel Engine
JPH07197049A (en) Fuel additive for diesel engine and method for reducing diesel engine soot
Samson et al. Effects of the Combustion Enhancer Containing Alkyl Nitrate (CEN) to Methanol in a Direct-Injection Compression Ignition (DICI) Engine
Wang et al. Effect of Olefin Component Mixed to Gasoline on Thermal Efficiency in EGR Diluted Conditions Using Single-Cylinder Engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12