JPH03234771A - Inorganic conductive coating composition and manufacture of conductive coating - Google Patents

Inorganic conductive coating composition and manufacture of conductive coating

Info

Publication number
JPH03234771A
JPH03234771A JP2889790A JP2889790A JPH03234771A JP H03234771 A JPH03234771 A JP H03234771A JP 2889790 A JP2889790 A JP 2889790A JP 2889790 A JP2889790 A JP 2889790A JP H03234771 A JPH03234771 A JP H03234771A
Authority
JP
Japan
Prior art keywords
conductive coating
mixture
chloride
coating composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2889790A
Other languages
Japanese (ja)
Inventor
Eiji Omori
英二 大森
Toshiyuki Fujita
藤田 利之
Ikuta Terada
寺田 郁太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2889790A priority Critical patent/JPH03234771A/en
Publication of JPH03234771A publication Critical patent/JPH03234771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To improve the conductivity, transparency, solvent resistance and marring resistance by mixing a specific reaction product, a siloxane polymer and a solvent. CONSTITUTION:An at least equimolar amount of a lower alcohol is dropped into a mixture of SnCl4 and SnCl2 or a mixture of 1mol of the mixture and 0.001-1.0mol of a mixture of SbCl3 and SbCl5 to react, thereby producing a reaction product (A). 1mol of tetraalkoxysilane and 0.01-1mol of ZrCl4 are subjected to hydrolytic condensation in the presence of 0.01-8mol of water to produce a siloxane polymer (B). Then, 100 pts.wt. (solid component) component (A) is mixed with 5-2000 pts.wt. (solid component) component (B) and a solvent (e.g. ethyl alcohol) to obtain an inorganic conductive coating composition having a solid content of 0.01wt.% or more. The composition is applied to the surface of a base material, heated at 120 deg.C or above for 10min or more to cure, thereby obtaining a conductive coating having a film thickness of 40mum or more.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無機導電塗料組成物に関し、さらに詳しくはガ
ラス、セラミックなどの基材面上に透明性に優れた導電
膜を形成するのに好適な無機導電塗料組成物およびこれ
を用いた導電塗膜の製造法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an inorganic conductive coating composition, and more specifically, it is suitable for forming a highly transparent conductive film on a substrate surface such as glass or ceramic. The present invention relates to an inorganic conductive coating composition and a method for producing a conductive coating film using the same.

(従来の技術) 近年、帯電防止を目的として、テレビのブラウン管や各
種のOA機器のデイスプレーのガラス面上に導電性の塗
膜が形成されている。
(Prior Art) In recent years, conductive coating films have been formed on the glass surfaces of television cathode ray tubes and displays of various office automation equipment for the purpose of preventing static electricity.

この方法には、アルコール系ポリマー、高級アルコール
、界面活性剤などの有機物を塗布する方法があるが、こ
の方法では耐溶剤性訃よび耐擦傷性に劣るため、帯電防
止効果の寿命が短く実用的でない。筐たその他の方法と
して、無機系材料を用いた帯電防止膜の形成が試みられ
ている。例えば特開昭62−187188号公報には、
加水分解可能なスズ化合物やアンチモンドープスズ化合
物を加水分解して微粒子を得た後、水を除去し。
This method involves applying organic substances such as alcohol polymers, higher alcohols, and surfactants, but this method has poor solvent resistance and scratch resistance, so the antistatic effect has a short lifespan and is not practical. Not. As another method, attempts have been made to form antistatic films using inorganic materials. For example, in Japanese Patent Application Laid-open No. 62-187188,
After hydrolyzing a hydrolyzable tin compound or an antimony-doped tin compound to obtain fine particles, water is removed.

エタノール中に分散して焼成する方法が開示されている
。しかし、この方法では微粒子を分散させているため透
明性に限界があシ、曾たバインダー樹脂を配合していな
いため耐擦傷性に劣るという欠点がある。また特開昭6
2−252481号公報には、導電性酸化スズ粉末とバ
インダー樹脂を用いた方法が開示されているが、この方
法でも微粉末を使用しているため透明性が悪く、またバ
インダー樹脂が有機系のポリマーであるため耐溶剤性訟
よび耐擦傷性が劣るという欠点がある。
A method of dispersing in ethanol and firing is disclosed. However, this method has the drawbacks of limited transparency because fine particles are dispersed, and poor scratch resistance because it does not contain the traditional binder resin. Also, JP-A-6
2-252481 discloses a method using conductive tin oxide powder and a binder resin, but this method also uses fine powder, resulting in poor transparency, and the binder resin is organic. Since it is a polymer, it has the disadvantage of poor solvent resistance and scratch resistance.

このような従来の方法は、導電成分としての酸化スズや
アンチモンドープ酸化スズの粉末を機械的筐たは化学的
に解こうして一旦微粒子として生成させて訃り、1次粒
子とするのが困難である。
In such conventional methods, tin oxide or antimony-doped tin oxide powder, which serves as a conductive component, is mechanically or chemically dissolved to form fine particles and die, making it difficult to convert them into primary particles. be.

またたとえ1次粒子化できたとしても透明性に限界があ
う、かつ再凝集を防止するのが困難である。
Furthermore, even if it can be made into primary particles, there is a limit to its transparency and it is difficult to prevent reagglomeration.

またバインダーとして有機系の樹脂を使用しているため
耐擦傷性や耐溶剤性に劣シ、さらに無機系のバインダー
として、テトラエトキシシランなどのモノマ エチルシ
リケート40(コルコート社製商品名、シロキサンオリ
ゴマ、重量平均分子量的1000)などのオリゴマ、分
子量が1000以上のシロキサンポリマを使用した場合
でも耐擦傷性は十分とはいい難い。
In addition, since an organic resin is used as a binder, it has poor scratch resistance and solvent resistance.In addition, as an inorganic binder, monomers such as tetraethoxysilane, ethyl silicate 40 (trade name manufactured by Colcoat Co., Ltd., siloxane oligomer, Even when oligomers such as those having a weight average molecular weight of 1000 or siloxane polymers having a molecular weight of 1000 or more are used, the scratch resistance cannot be said to be sufficient.

(発明が解決しようとする課題) 本発明の目的は、前記従来技術の問題点を解決し、導電
性、透明性、耐溶剤性および耐擦傷性に優れた無機導電
塗料組成物を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the problems of the prior art described above and to provide an inorganic conductive coating composition that has excellent conductivity, transparency, solvent resistance, and scratch resistance. It is in.

(課題を解決するための手段) 本発明は、(A)塩化スズ!たは塩化スズと塩化アンチ
モンとの混合物に、塩化スズ筐たは該混合物に対して等
モル以上の低級アルコールを反応させて得られる反応物
、(B)テトラアルコキシシランと塩化ジルコンを加水
分解縮合して得られるシロキサン系ポリマー釦よび(C
)溶剤を含んでなる無機導電塗料組成物に関する。
(Means for Solving the Problems) The present invention provides (A) tin chloride! or a reaction product obtained by reacting a mixture of tin chloride and antimony chloride with a lower alcohol in an amount equal to or more than the same mole relative to the tin chloride case or the mixture, (B) hydrolytic condensation of tetraalkoxysilane and zirconium chloride. The siloxane-based polymer button obtained by
) An inorganic conductive coating composition comprising a solvent.

本発明に用いられる反応物は)は、塩化スズ曾たは塩化
スズと塩化アンチモンとの混合物に、塩化スズ筐たは該
混合物に対して等モル以上の低級アルコールを反応させ
て得られる。
The reactant used in the present invention is obtained by reacting tin chloride or a mixture of tin chloride and antimony chloride with a lower alcohol in an amount equal to or more than the same mole relative to the tin chloride case or the mixture.

低級アルコールとしては、メチルアルコールエチルアル
コール、フチルアルコール、イソプロピルアルコール等
が用いられる。これらは2種以上を併用してもよい。反
応性および塗膜の平滑性の点からエチルアルコールを用
いることが好ましい。
As the lower alcohol, methyl alcohol, ethyl alcohol, phthyl alcohol, isopropyl alcohol, etc. are used. Two or more of these may be used in combination. Ethyl alcohol is preferably used from the viewpoint of reactivity and smoothness of the coating film.

塩化スズとしては、4価の塩化スズ(5nC14)筐た
は4価の塩化スズに2価の塩化スズ(SnC/z)を混
合したものが用いられるが、導電性シよび擦傷性の点か
ら4価の塩化スズが好筐しい。また塩化アンチモノとし
ては、3価の塩化アンチモン(5bC1s )釦よび5
価のアンチモン(8bC2s )を単独でlたは混合し
て用いることができる。
As tin chloride, tetravalent tin chloride (5nC14) or a mixture of tetravalent tin chloride and divalent tin chloride (SnC/z) is used, but from the viewpoint of conductivity and scratch resistance, Tetravalent tin chloride is a good choice. In addition, as antimony chloride, trivalent antimony chloride (5bC1s) button and 5
Antimony (8bC2s) can be used alone or in combination.

本発明にかいては、塗膜の導電性の点から塩化スズと塩
化アンチモンとの混合物を用いることが好筐しい。
In the present invention, it is preferable to use a mixture of tin chloride and antimony chloride from the viewpoint of the electrical conductivity of the coating film.

塩化スズと塩化アンチモンの使用割合は、塗膜の導電性
および透明性の点から、塩化スズ1モルに対し、 塩化
アンチモン0.001モル〜1.0モルの範囲が好筐し
い。
The proportion of tin chloride and antimony chloride to be used is preferably in the range of 0.001 mol to 1.0 mol of antimony chloride per 1 mol of tin chloride from the viewpoint of the conductivity and transparency of the coating film.

反応物囚の台底は、塩化スズと塩化アンチモンの混合物
に過剰のエタノールを滴下し9発生する塩化水素を除去
して行うのが一般的である。
The bottom of the reactant container is generally prepared by dropping excess ethanol into a mixture of tin chloride and antimony chloride to remove generated hydrogen chloride.

本発明に用いられるシロキサン系ポリマーCB)はテト
ラアルコキシシランと塩化ジルコンを加水分解縮合して
得られるポリマーである。この加水分解縮合はテトラア
ルコキシシランと塩化ジルコンをエチルアルニールなど
の相溶性の良い溶剤に溶解し、これに水をテトラアルコ
キシシラン1モルに対し0.01モルから8モルの範囲
で配合し加熱攪拌して行われる。加熱温度は溶剤の沸点
を越えない温度で行われる。テトラアルコキシシランと
しては炭素数1〜5のアルコキシドを有するものが用い
られる。塩化ジルコンはテトラアルコキシシラン1モル
に対し0.01モルから1モルの範囲で配合される。0
.01モル未満では耐擦傷性が十分でなく、1モルを越
えると透明性が劣る。
The siloxane polymer CB) used in the present invention is a polymer obtained by hydrolyzing and condensing tetraalkoxysilane and zirconium chloride. In this hydrolytic condensation, tetraalkoxysilane and zirconium chloride are dissolved in a solvent with good compatibility such as ethylalnyl, water is added thereto in a range of 0.01 to 8 moles per mole of tetraalkoxysilane, and the mixture is heated. It is done by stirring. The heating temperature is set to a temperature that does not exceed the boiling point of the solvent. As the tetraalkoxysilane, one having an alkoxide having 1 to 5 carbon atoms is used. Zirconium chloride is blended in an amount of 0.01 to 1 mole per mole of tetraalkoxysilane. 0
.. If it is less than 0.01 mole, scratch resistance will be insufficient, and if it exceeds 1 mole, transparency will be poor.

前記(A)成分と(B)成分の配合割合は、耐擦傷性釦
よび導電性の点から、(A)成分の固型分100重量部
に対して[Bl成分の固型分が5〜2000重量部の範
囲となるように使用するのが軽重しい。
From the viewpoint of scratch resistance and conductivity, the blending ratio of the components (A) and (B) is such that the solid content of the Bl component is 5 to 5 parts by weight per 100 parts by weight of the solid content of the component (A). It is light and heavy to use within the range of 2000 parts by weight.

本発明に用いられる溶剤(C)としては、メチルアルコ
ール、エチルアルコール、イソプロピルアルコール、ブ
チルアルコール、ジアセトンアルコール、メチルセロソ
ルブ、エチルセロソルブ、プチルセロソルフ、カルピト
ール、エチレングリコール、ジエチレングリコールなど
のアルコール系溶剤、アセトン、メチルエチルケトン、
メチルイソブチルケトンなどのケトン系溶剤、酢酸エチ
ル。
Solvents (C) used in the present invention include alcoholic solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, diacetone alcohol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, calpitol, ethylene glycol, diethylene glycol, acetone, methyl ethyl ketone,
Ketone solvents such as methyl isobutyl ketone, ethyl acetate.

酢酸ブチルなどのエステル系溶剤、各種のハロゲン系溶
剤などが挙げられ、これらは単独でオたは混合して使用
できる。これらのうちエチルアルコールが好ましい。
Examples include ester solvents such as butyl acetate, various halogen solvents, and these can be used alone or in combination. Among these, ethyl alcohol is preferred.

本発明の無機導電塗料組成物の固型分は、導電性の点か
ら、0.01重f%以上とするのが好ましいため、前記
溶剤(C1の使用量は1組成物の固型分が0.01重量
係以上になるように配合される。
The solid content of the inorganic conductive coating composition of the present invention is preferably 0.01% by weight or more from the viewpoint of conductivity. It is blended so that the weight coefficient is 0.01 or more.

本発明の無機導電塗料組成物は、スピンコード。The inorganic conductive coating composition of the present invention is a spin code.

スプレーコート、ロールコート、デイツプコートなどの
一般的な塗装方法でガラス、セラミックなどの基材面上
に塗装し1例えば120℃以上の温度で10分以上の時
間で硬化して導電塗膜とされる。この時の膜厚は、耐ク
ラツク性の点から、40μm以下とするのが好iしい。
It is applied onto a substrate surface such as glass or ceramic using a general coating method such as spray coating, roll coating, or dip coating, and is cured for 10 minutes or more at a temperature of 120°C or higher to form a conductive coating. . The film thickness at this time is preferably 40 μm or less from the viewpoint of crack resistance.

(実施例) 以下9本発明を実施例によシ詳しく説明するが。(Example) The present invention will be explained in detail below using nine examples.

例中の部は重量部を意味する。Parts in the examples mean parts by weight.

(1)導電液Aの合成 5nC1425gおよび5b(J’s 39を500−
の3つロフラスコに仕込み攪拌した。室温で5分間攪拌
後、エチルアルコール300gを約1時間かけて滴下し
、窒素置換しながら塩化水素を除去した。
(1) Synthesis of conductive liquid A 5nC1425g and 5b (J's 39 to 500-
The mixture was placed in three flasks and stirred. After stirring at room temperature for 5 minutes, 300 g of ethyl alcohol was added dropwise over about 1 hour, and hydrogen chloride was removed while purging with nitrogen.

滴下終了後、約30分間攪拌して導電液Aを得た。After the dropwise addition was completed, conductive liquid A was obtained by stirring for about 30 minutes.

(2)シロキサン系ポリマー溶液Bの合成テトラエトキ
シシラン109釦よびエチルアルコール109を3つロ
フラスコに仕込み攪拌した。
(2) Synthesis of Siloxane Polymer Solution B Three 109-buttons of tetraethoxysilane and 109-buttons of ethyl alcohol were placed in a flask and stirred.

これにあらかじめ塩化ジルコン0,4gをエチルアルコ
ール109に溶解した液を攪拌しながら約10分で滴下
した。次に水3,5gをエチルアルコール20gに溶解
した液を約10分で滴下した。
A solution prepared by dissolving 0.4 g of zirconium chloride in ethyl alcohol 109 was added dropwise to this solution over a period of about 10 minutes with stirring. Next, a solution prepared by dissolving 3.5 g of water in 20 g of ethyl alcohol was added dropwise over about 10 minutes.

その後、70℃筐で昇温し1時間攪拌し重量平均分子量
的7000のシロキサン系ポリマー溶液Bを得た。重量
平均分子量は日立製作所製高速液体クロマトグラフィー
(ポンプ:C−6000,RI検出器:C−3300,
データ処理機:D−2520から□る)で低分子カラム
を用いて測定した(ポリスチレン換算)。
Thereafter, the temperature was raised to 70° C. and stirred for 1 hour to obtain a siloxane polymer solution B having a weight average molecular weight of 7,000. The weight average molecular weight was determined by high performance liquid chromatography (Pump: C-6000, RI detector: C-3300, manufactured by Hitachi, Ltd.).
Data processor: Measured using a low-molecular column (from D-2520) (polystyrene equivalent).

上記で得られた導電液A289.シロキサン系ポリマー
溶液Bio、sg>よびエチルアルコール60gを混合
攪拌して塗料Aを得た。
Conductive liquid A289. obtained above. Paint A was obtained by mixing and stirring a siloxane polymer solution Bio, sg> and 60 g of ethyl alcohol.

比較例1 アンチモンドープ酸化スズ粉末T−1(三菱金属社製商
品名)309およびエチルアルコール3009を、直径
1.0 mmのガラスピーズ300mgが充填されたア
トライターに仕込み、約10時間混合してT−1分散液
を得た。
Comparative Example 1 Antimony-doped tin oxide powder T-1 (trade name manufactured by Mitsubishi Metals Co., Ltd.) 309 and ethyl alcohol 3009 were charged into an attritor filled with 300 mg of glass beads having a diameter of 1.0 mm, and mixed for about 10 hours. A T-1 dispersion was obtained.

このT−1分散液15g、実施例1のシロキサンホリマ
ー溶液B11.59釦よびエチルアルコール73.59
を混合攪拌して塗料Bを得た。
15 g of this T-1 dispersion, 11.59 g of the siloxane polymer solution B of Example 1, and 73.59 g of ethyl alcohol.
Paint B was obtained by mixing and stirring.

比較例2 実施例1の導電液A289.  テトラエトキシシラン
1.5gおよびエチルアルコール70.59を混合攪拌
して塗料Cを得た。
Comparative Example 2 Conductive liquid A289 of Example 1. Paint C was obtained by mixing and stirring 1.5 g of tetraethoxysilane and 70.59 g of ethyl alcohol.

比較例3 導電液A28g、エチルシリケート40(コルコート社
製商品名、シロキサンオリゴマ、重量平均分子量的10
00)39釦よびエチルアルコール699を混合攪拌し
て塗料りを得た。
Comparative Example 3 28 g of conductive liquid A, ethyl silicate 40 (trade name manufactured by Colcoat, siloxane oligomer, weight average molecular weight 10)
00) 39 button and ethyl alcohol 699 were mixed and stirred to obtain a paint.

〈試験例〉 得られた塗料A−Dをガラス板上に30 Orpmで3
0秒間スピンコードし、その後160℃で30分で硬化
させた。得られた試験片を用い1表面抵抗、550nm
での透過率、鉛筆硬度シよび耐エチルアルコール性を評
価した。その結果を第1表に示す。
<Test example> The obtained paints A-D were applied on a glass plate at 30 Orpm.
Spin coded for 0 seconds and then cured at 160° C. for 30 minutes. 1 surface resistance, 550 nm using the obtained test piece
The transmittance, pencil hardness and ethyl alcohol resistance were evaluated. The results are shown in Table 1.

第 1 表 *x 横河ヒューレットノ;ツカード社製ノ\イレジス
タンスメータで測定した。
Table 1 *x Measured using a Yokogawa Hewlett resistance meter manufactured by Tsukard.

*2UV吸光光度計で550 nmでの吸光度を測定し
た。
*2 Absorbance was measured at 550 nm using a UV spectrophotometer.

*3  JIS  C3003に準じて行った。*3 Conducted according to JIS C3003.

*4 エチルアルコール中に室温で24時間浸漬し。*4 Soaked in ethyl alcohol for 24 hours at room temperature.

外観の変化を目視で観察した。Changes in appearance were visually observed.

第1表から9本発明になる無機導電塗料組成物は1表面
抵抗が低く高透明でかつ鉛筆硬度が硬いため耐擦傷性に
優れ、また耐溶剤性に優れていることが示される。
Table 1 shows that the inorganic conductive coating composition of the present invention has low surface resistance, high transparency, and high pencil hardness, so it has excellent scratch resistance and solvent resistance.

(発明の効果) 本発明の無機導電塗料組成物によれば導電成分が金属酸
化物粒子の分散液でないため透明性に優れ、オたバイン
ダーとしてジルコン系のシロキサンポリマーを使用して
いるため耐擦傷性及び耐溶剤性の優れた導電塗膜を得る
ことができる。
(Effects of the Invention) The inorganic conductive coating composition of the present invention has excellent transparency because the conductive component is not a dispersion of metal oxide particles, and is scratch resistant because it uses a zircon-based siloxane polymer as the binder. A conductive coating film with excellent properties and solvent resistance can be obtained.

Claims (1)

【特許請求の範囲】 1、(A)塩化スズまたは塩化スズと塩化アンチモンと
の混合物に、塩化スズまたは該混合物に対して等モル以
上の低級アルコールを反応させて得られる反応物、 (B)テトラアルコキシシランと塩化ジルコンを加水分
解縮合して得られるシロキサン系ポリマーおよび (C)溶剤を含んでなる無機導電塗料組成物。 2、塩化スズ1モルに対して、塩化アンチモンを0.0
01〜1.0モルとした請求項1記載の無機導電塗料組
成物。 3、(A)成分の固型分100重量部に対して(B)成
分の固型分を5〜2000重量部とした請求項1記載の
無機導電塗料組成物。 4、請求項1記載の無機導電塗料組成物を基材面上に塗
装し、硬化する導電塗膜の製造法。
[Claims] 1. (A) A reaction product obtained by reacting tin chloride or a mixture of tin chloride and antimony chloride with a lower alcohol in an amount equal to or more than the same molar amount as the tin chloride or the mixture; (B) An inorganic conductive coating composition comprising a siloxane-based polymer obtained by hydrolyzing and condensing tetraalkoxysilane and zirconium chloride, and (C) a solvent. 2. 0.0 antimony chloride for 1 mole of tin chloride
The inorganic conductive coating composition according to claim 1, wherein the amount is 01 to 1.0 mol. 3. The inorganic conductive coating composition according to claim 1, wherein the solid content of component (B) is 5 to 2000 parts by weight relative to 100 parts by weight of component (A). 4. A method for producing a conductive coating film, which comprises coating the inorganic conductive coating composition according to claim 1 on a substrate surface and curing the composition.
JP2889790A 1990-02-08 1990-02-08 Inorganic conductive coating composition and manufacture of conductive coating Pending JPH03234771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2889790A JPH03234771A (en) 1990-02-08 1990-02-08 Inorganic conductive coating composition and manufacture of conductive coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2889790A JPH03234771A (en) 1990-02-08 1990-02-08 Inorganic conductive coating composition and manufacture of conductive coating

Publications (1)

Publication Number Publication Date
JPH03234771A true JPH03234771A (en) 1991-10-18

Family

ID=12261191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2889790A Pending JPH03234771A (en) 1990-02-08 1990-02-08 Inorganic conductive coating composition and manufacture of conductive coating

Country Status (1)

Country Link
JP (1) JPH03234771A (en)

Similar Documents

Publication Publication Date Title
US7803458B2 (en) Hybrid organic-inorganic polymer coatings with high refractive indices
JP3351666B2 (en) Antifogging antireflection film, optical component, and method for producing antifogging antireflection film
TW544400B (en) Anti-reflective film, multilayer anti-reflective film, and method of manufacturing the same
JP3549886B2 (en) Metal oxide-polymer composite materials
CN101456947B (en) Per-fluoro polyether compound, antifouling coating composition and film containing same
KR100213529B1 (en) Ultrafine reactive silica particles, suspension containing the same and hard coating composition
WO1995028445A1 (en) Curable composition and process for producing the same
TW384303B (en) Light transmissive substrate carrying a light transmissive low ohmic coating and method for manufacturing the same
TW200300157A (en) Composition comprising a cationic polymerization compound and coating obtained from the same
WO1996005606A1 (en) Cathode ray tube comprising a display screen having an electroconductive coating
JPH05186719A (en) Inorganic conductive coating composition and production of conductive coating film therefrom
JP3610627B2 (en) Coating liquid, method for producing the same, and coating film
JPH09263716A (en) Overcoat composition for transparent electrically conductive film excellent in electical conductivity
JPH03234771A (en) Inorganic conductive coating composition and manufacture of conductive coating
JP2000191957A (en) Coating liquid for forming film for shielding heat rays and ultraviolet light and film using the same, substrate
JPH09165450A (en) Curabale composition, its production, and its cured item
JPH03131670A (en) Production of inorganic transparent electrically conductive coating composition and electrically conductive film
JPS60181177A (en) Electrically-conductive coating compound composition, electrically-conductive plastic sheet or plate using it
JPH06264009A (en) Conductive coating composition and production of conductive coating film
JPH04198280A (en) Manufacture of inorganic conductive coating composition and conductive coating film
TW201708449A (en) Coating solution for forming film, method for producing the coating solution and method for producing substrate with film
KR101285060B1 (en) At low temperature, hardening composition for high reflective film, high reflective film prepared by the same, and substrate comprising the same
JPH04332781A (en) Production of inorganic electrically conductive coating composition and electrically conductive film
JPH04198286A (en) Preparation of inorganic electrically conductive coating composition and electrically conductive coating film
JP3360408B2 (en) Coating solution for metal oxide film formation