JPH0323454B2 - - Google Patents

Info

Publication number
JPH0323454B2
JPH0323454B2 JP58139508A JP13950883A JPH0323454B2 JP H0323454 B2 JPH0323454 B2 JP H0323454B2 JP 58139508 A JP58139508 A JP 58139508A JP 13950883 A JP13950883 A JP 13950883A JP H0323454 B2 JPH0323454 B2 JP H0323454B2
Authority
JP
Japan
Prior art keywords
load cell
booster
cutting
nozzle
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58139508A
Other languages
Japanese (ja)
Other versions
JPS6031438A (en
Inventor
Keiichi Achinami
Yasuo Yanagihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP13950883A priority Critical patent/JPS6031438A/en
Publication of JPS6031438A publication Critical patent/JPS6031438A/en
Publication of JPH0323454B2 publication Critical patent/JPH0323454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials
    • B65G53/18Gas pressure systems operating with fluidisation of the materials through a porous wall
    • B65G53/22Gas pressure systems operating with fluidisation of the materials through a porous wall the systems comprising a reservoir, e.g. a bunker

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Flow Control (AREA)
  • Air Transport Of Granular Materials (AREA)

Description

【発明の詳細な説明】 この発明は、1基の加圧タンクで粉粒体を輸送
する場合、輸送量の大巾な変更又は変化に対して
も同一精度で切出し、輸送できる排出装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a discharge device that can cut and transport powder and granular materials with the same precision even when the transport amount changes widely when transporting powder or granular materials using one pressurized tank.

(従来技術) 粉粒体を1基のタンクから複数個所に均等又は
所望分配比で輸送する装置は既に本出願人によつ
て提供されていて公知である(特開昭58−74426)
が、このような装置においてタンク重量を計測す
るためのロードセルは通常1組(同一計測レンジ
のロードセル3個1組)で使用されるのが普通で
ある。
(Prior Art) A device for transporting powder and granules from one tank to multiple locations evenly or at a desired distribution ratio has already been provided by the present applicant and is well known (Japanese Patent Application Laid-Open No. 74426/1982).
However, in such a device, the load cells for measuring the weight of the tank are usually used as a set (a set of three load cells having the same measurement range).

一般に、ロードセルの計測レンジは設計時に所
定のレンジに設定(定格容量)されているから、
ロードセルの感度が高くても、このロードセルに
おいて切出量を小さく設定する場合は精度が低下
する。
Generally, the measurement range of a load cell is set to a predetermined range (rated capacity) at the time of design, so
Even if the sensitivity of the load cell is high, if the cutout amount is set small in this load cell, the accuracy will decrease.

例えば、ロードセルレンジが0〜4000Kgのロー
ドセルから得られる抵抗電圧変換出力の最小単位
が20Kgである場合、設定切出量が4000Kg/minで
あれば、精度は±0.5%であるが、400Kg/minの
ときは±5%となり、切出精度は1/10に低下する
ことになる。
For example, if the minimum unit of resistance voltage conversion output obtained from a load cell with a load cell range of 0 to 4000Kg is 20Kg, and the set cutting amount is 4000Kg/min, the accuracy is ±0.5%, but 400Kg/min In the case of , it becomes ±5%, and the cutting accuracy decreases to 1/10.

このことは、同一タンクから見掛比重が異なる
種々な粉粒体(例えば鉄系粉体の見掛け比重は2
〜2.5であり、微粉炭は0.5である)を輸送する場
合も同様である。
This means that various powders and granules with different apparent specific gravity (for example, iron-based powder has an apparent specific gravity of 2.
The same is true for transporting pulverized coal (~2.5 and 0.5 for pulverized coal).

更に、切出量はノズル径によつて制限を受ける
ので所望する切出量に対する最適な管径が選択さ
れることが必要である。
Furthermore, since the cutting amount is limited by the nozzle diameter, it is necessary to select the optimal tube diameter for the desired cutting amount.

而して実際装置においては供給端の要求によつ
て、或る場合は吹込開始時に最大吹込量を要求
し、時間の経過に従つてその量を漸時減少させた
り、またはその反対の場合もあり得る。
Therefore, in actual equipment, depending on the demand at the supply end, in some cases, the maximum blowing amount is required at the start of blowing, and the amount is gradually decreased as time passes, or vice versa. could be.

このようなことから排出装置は輸送量の変化に
拘らず一定の切出精度を保持することが要求され
る。
For this reason, the discharging device is required to maintain a constant cutting accuracy regardless of changes in the transport amount.

(解決しようとする問題点) 本発明は、1基の輸送用加圧タンクから設定輸
送量毎に又は輸送量が時間的に変化しても一定の
切出し精度で輸送できる排出装置を提供するもの
である。
(Problems to be Solved) The present invention provides a discharge device that can transport from a single pressurized transport tank with constant cutting accuracy for each set transport amount or even if the transport amount changes over time. It is.

(構成) 本発明装置は、1基の加圧輸送タンク内に開口
する切出しノズルと、該ノズルに接続し、該ノズ
ルから粉粒体を切り出すためのブスタ管と、前記
タンク重量を計量するロードセルと、該ロードセ
ルからのタンク重量減量信号を時間微分する微分
器と、該微分器出力に基いてブスタ気体流量を制
御する質量流量調節計を備えた粉粒体輸送装置に
おいて、ロードセルが計量レンジを異にする複数
のロードセルによつて構成されると共に各ロード
セルの計量最大値に対応する電圧レベルを同一に
する変換器を備え切出しノズルが前記各ロードセ
ルの最大計量値に対応する管径に設定されて複数
本設けられ、前記各ロードセル出力を切換えるス
イツチと、前記各切出しノズル及び夫々のブスタ
管の開閉弁を操作する弁開閉信号発生器と、前記
質量流量調節計からの調節出力を対応する各ブス
タ管のブスタ流量調節計に供給する選択切換器と
を備えて構成され、所望する切出量を前記質量流
量調節計に設定すると共に該設定値に対応して前
記弁開閉信号発生器を切換えることによつて前記
各ロードセル出力、各切出しノズル及び各ブスタ
管が選択され、夫々の設定値においてほぼ同一切
出精度が得られるものである。
(Configuration) The device of the present invention includes a cutting nozzle that opens into one pressurized transport tank, a booster tube connected to the nozzle for cutting out powder and granules from the nozzle, and a load cell that measures the weight of the tank. In the powder transport device, the load cell is equipped with a differentiator that time-differentiates the tank weight loss signal from the load cell, and a mass flow controller that controls the booster gas flow rate based on the output of the differentiator. It is composed of a plurality of different load cells and is equipped with a converter that makes the voltage level the same corresponding to the maximum measurement value of each load cell, and the cutting nozzle is set to a pipe diameter corresponding to the maximum measurement value of each load cell. A plurality of switches are provided, including a switch for switching the output of each of the load cells, a valve opening/closing signal generator for operating the opening/closing valve of each of the cutting nozzles and each of the booster pipes, and a plurality of switches for controlling the adjustment output from the mass flow rate controller. and a selection switch for supplying the booster flow to the booster flow controller of the booster pipe, and sets a desired cutting amount to the mass flow controller, and switches the valve opening/closing signal generator in accordance with the set value. In this way, each load cell output, each cutting nozzle, and each booster tube are selected, and substantially the same cutting precision can be obtained at each set value.

本発明において各切出ノズルとは、ノズル先端
部のみでなく輸送管に接続する部分までを含んで
総称されるものであつて共通の輸送管に接続され
ていてもよい。
In the present invention, each cutting nozzle is a general term that includes not only the tip of the nozzle but also the portion connected to the transport pipe, and may be connected to a common transport pipe.

(実施例) 図は、バツチ式輸送装置に本発明を適用した実
施例である。
(Example) The figure shows an example in which the present invention is applied to a batch type transportation device.

1は加圧輸送タンクであつて、上部に供給弁2
と底部に流動床3及び流動床室4を備えている。
1 is a pressurized transport tank with a supply valve 2 at the top.
A fluidized bed 3 and a fluidized bed chamber 4 are provided at the bottom.

流動床室4には加圧源(図示せず)からの加圧
気体が圧力調節弁4aを介して供給され、該調節
弁は流動床室の圧力検出器5a及び圧力調節計5
の出力によつて調節されタンク内を所定の圧力に
維持し且つタンク内の粉粒体を流動化している。
Pressurized gas from a pressurization source (not shown) is supplied to the fluidized bed chamber 4 via a pressure regulating valve 4a, which is connected to a pressure detector 5a and a pressure regulator 5 of the fluidized bed chamber.
The pressure in the tank is adjusted by the output of the tank to maintain a predetermined pressure and to fluidize the powder and granular material in the tank.

6a,6bは流動床上に開口端を有する複数の
異径の切出しノズルであつて、所望する切出設定
値に基いて最適径として選択され、例えば6aの
管径は50φ、6bの管径は25φとされている。
6a and 6b are a plurality of cutting nozzles with different diameters having open ends above the fluidized bed, which are selected as the optimum diameter based on the desired cutting setting value.For example, the pipe diameter of 6a is 50φ, and the pipe diameter of 6b is 50φ. It is said to be 25φ.

7a,7bは夫々の切出しノズルに設けた開閉
弁であり、各切出しノズルは例えば直径60φの共
通輸送管8に接続されている。9は連接部であ
る。
Reference numerals 7a and 7b are on-off valves provided for each cutting nozzle, and each cutting nozzle is connected to a common transport pipe 8 having a diameter of 60φ, for example. 9 is a connecting portion.

10は、タンク重量を計量するロードセルであ
つて、複数の所望する切出設定値の各最大値を計
測フルレンジ(定格容量)として調整された複数
のロードセル10a,10b,10c(図示せず)
が採用される。
Reference numeral 10 denotes a load cell for measuring the weight of a tank, and includes a plurality of load cells 10a, 10b, and 10c (not shown) adjusted to each maximum value of a plurality of desired cut-out setting values as a measurement full range (rated capacity).
will be adopted.

各ロードセル10は、例えば3点支持の場合は
3個共タンクの最大荷重を考慮して強度を設計す
る。11a,11b及び11cは各ロードセルの
出力を設定切出量に応じてフルスケールレンジで
の電圧レベルを一定にするための変換器、12は
切換スイツチである。
For example, in the case of three-point support, the strength of each load cell 10 is designed in consideration of the maximum load of all three tanks. 11a, 11b, and 11c are converters for making the voltage level of the output of each load cell constant in the full scale range according to the set cutting amount, and 12 is a changeover switch.

13は選択された任意のロードセルからの計量
信号を時間微分する微分器、14は質量流量調節
計であつて、所望する切出量を設定することによ
つてスイツチ12が連動して切換えられる。
13 is a differentiator for time-differentiating the measurement signal from any selected load cell, and 14 is a mass flow rate controller, which is switched in conjunction with the switch 12 by setting a desired cutting amount.

15a,15bは、各切出しノズル6a,6b
に接続されているブスタ管であつて、加圧タンク
と共通の加圧源に接続されている。
15a, 15b are respective cutting nozzles 6a, 6b.
A booster pipe connected to a pressurized tank and a common pressurized source.

18a,18bは各ブスタ管路の開閉弁、19
a,19bはブスタ流量調節弁、20a,20b
は流量検出器、21a,21bはブスタ流量調節
計である。
18a, 18b are on-off valves for each booster pipe, 19
a, 19b are booster flow control valves, 20a, 20b
is a flow rate detector, and 21a and 21b are booster flow rate controllers.

22は切出量の設定即ちスイツチ12の選択に
対応させて切出しノズルを選択し、夫々の開閉弁
7a,7b及びブスタ開閉弁18a,18bを開
閉するための弁開閉信号発生器、24は前記弁開
閉信号発生器22からの弁開閉信号によつてブス
タ流量調節計21a,21bに質量流量調節計の
調節出力を供給するための選択切換器である。
22 is a valve opening/closing signal generator for selecting a cutting nozzle in accordance with the cutting amount setting, that is, the selection of the switch 12, and opening/closing the respective opening/closing valves 7a, 7b and booster opening/closing valves 18a, 18b; This is a selection switch for supplying the control output of the mass flow rate controller to the booster flow rate controllers 21a and 21b in response to the valve opening/closing signal from the valve opening/closing signal generator 22.

なお、配線16は、各開閉弁切換時においてロ
ードセル計量信号を確認するための信号ラインで
ある。
Note that the wiring 16 is a signal line for checking the load cell measurement signal at the time of switching each on-off valve.

(操作法) 図の装置において供給端への吹込条件が、初期
時においてタンクの最大吹込量(輸送量)(L
Kg/min例えば4000Kg/min)が要求され、中間
期において中間量(MKg/min例えば2000Kg/
min)が要求され、終期において最小吹込量(S
Kg/min例えば400Kg/min)が要求される場合
であつて、切出しノズル6aと6bの総和輸送量
がLに対応し、切出しノズル6aの輸送量(最適
切出量)がMに対応し、ノズル6bの輸送量がS
に対応しているとする。またロードセル10にお
いては10aの計量レンジが0〜4000Kg/minで
最小計量単位が20Kg、10bは0〜2000Kg/min
で最小計量単位が10Kg、10cは0〜400Kg/
minで2Kgに選定されているとする。
(Operation method) In the device shown in the figure, the conditions for blowing into the supply end are the maximum blowing amount (transport amount) (L) of the tank at the initial stage.
Kg/min e.g. 4000Kg/min) is required, and in the intermediate period an intermediate amount (MKg/min e.g. 2000Kg/min) is required.
min) is required, and the minimum blowing amount (S
Kg/min (for example, 400 Kg/min), the total transport amount of the cutting nozzles 6a and 6b corresponds to L, the transport amount (optimal output amount) of the cutting nozzle 6a corresponds to M, The transportation amount of the nozzle 6b is S
Assume that it corresponds to In addition, in the load cell 10, the weighing range of 10a is 0 to 4000Kg/min and the minimum weighing unit is 20Kg, and the weighing range of 10b is 0 to 2000Kg/min.
The minimum weighing unit is 10Kg, 10C is 0 to 400Kg/
Assume that min is selected to be 2Kg.

この場合において各ロードセルの計量精度は±
0.5%となる。図において先ず、質量流量調節計
14の設定値を最大吹込量Lに設定する。これに
伴なつてスイツチ12は最大計測レンジを有する
ロードセル10a及び変換器11aに切換えられ
る。
In this case, the weighing accuracy of each load cell is ±
It will be 0.5%. In the figure, first, the setting value of the mass flow rate controller 14 is set to the maximum blowing amount L. Along with this, the switch 12 is switched to the load cell 10a and converter 11a having the maximum measurement range.

更に、弁開閉信号発生器22を操作して設定輸
送量Lに必要な切出しノズルの開閉弁7a,7b
及びブスタ弁18a,18bの各弁を開く。
Furthermore, the valve opening/closing signal generator 22 is operated to set the opening/closing valves 7a, 7b of the cutting nozzle necessary for the set transport amount L.
and open each of the booster valves 18a and 18b.

粉粒体切出量はタンク内圧力つまり加圧気体供
給圧力をパラメータとしてブスタ流量と反比例関
係にあるから、加圧タンク1が輸送可能状態にあ
ればブスタ流量調節計21a,21bの設定値と
して質量流量調節計14の出力を供給することに
よつて定流量制御が可能になる。
The amount of granular material cut out is inversely proportional to the booster flow rate using the tank internal pressure, that is, the pressurized gas supply pressure as a parameter, so if the pressurized tank 1 is in a transportable state, the set value of the booster flow rate controllers 21a and 21b is By supplying the output of the mass flow controller 14, constant flow control is possible.

各切出しノズルからの切出量は、重量時間微分
器13によつて時間当りのタンク重量減量として
質量流量調節計の設定値と比較されてその差出力
がブスタ流量調節計に供給される。
The amount of cutting from each cutting nozzle is compared by a weight-time differentiator 13 with a set value of a mass flow controller as a tank weight loss per hour, and the difference output is supplied to a booster flow controller.

その後、輸送量設定値がMに変更されるとスイ
ツチ12がロードセル10b及び変換器11bに
切換えられると共に弁開閉信号発生器22によつ
て切出しノズル6bの開閉弁7b及びブスタ弁1
8bが閉じられ、切出し輸送は専らノズル6aの
みによつて行われ、その切出精度は±0.5%とな
る。
Thereafter, when the transportation amount set value is changed to M, the switch 12 is switched to the load cell 10b and the converter 11b, and the valve opening/closing signal generator 22 is activated to switch the opening/closing valve 7b of the cutout nozzle 6b and the booster valve 1.
8b is closed, cutting and transportation is carried out exclusively by the nozzle 6a, and the cutting accuracy is ±0.5%.

次に輸送量設定値がSに変更されるとスイツチ
12がロードセル10c及び変換器11cに切換
えられると共に弁開閉信号発生器22からの信号
によつて弁7aが閉、弁7bが開、ブスタ弁18
aが閉、弁18bが開となつて最小輸送量がノズ
ル6bのみによつて行われ、その後の切出し量は
ロードセル10cの計量精度即ち±0.5%で制御
される。
Next, when the transportation amount set value is changed to S, the switch 12 is switched to the load cell 10c and the converter 11c, and the valve 7a is closed and the valve 7b is opened by the signal from the valve opening/closing signal generator 22, and the booster valve 18
a is closed and valve 18b is opened, and the minimum transport amount is carried out only by nozzle 6b, and the subsequent cutout amount is controlled with the measurement accuracy of load cell 10c, that is, ±0.5%.

(効果) 以上のように本発明によれば所望する複数の設
定切出量に対応した複数のロードセルと、輸送量
に見合つた切出ノズルを選択しこれらを組み合わ
せることによつて各設定切出量毎にほぼ同一の切
出精度を保持することが可能となる。
(Effects) As described above, according to the present invention, by selecting and combining a plurality of load cells corresponding to a plurality of desired cut-out amounts and a cut-out nozzle that corresponds to the transport amount, each set cut-out amount can be achieved. It becomes possible to maintain approximately the same cutting precision for each amount.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明装置の夫々の実施例系統図である。 図面符号の説明 6a,6bは切出しノズル、
11a,11b,11cは各ロードセルの最大出
力電圧レベルを一定にする変換器、12は切換ス
イツチ、13は重量時間微分器、14は質量流量
調節計、22は弁開閉信号発生器、24は選択切
換器。
The figures are system diagrams of respective embodiments of the device of the present invention. Explanation of drawing symbols 6a and 6b are cutting nozzles,
11a, 11b, 11c are converters that keep the maximum output voltage level of each load cell constant; 12 is a changeover switch; 13 is a weight-time differentiator; 14 is a mass flow controller; 22 is a valve opening/closing signal generator; 24 is a selection Switch.

Claims (1)

【特許請求の範囲】[Claims] 1 1基の加圧輸送タンク内に開口する切出しノ
ズルと、該ノズルに接続し、該ノズルから粉粒体
を切り出すためのブスタ管と、前記タンク重量を
計量するロードセルと、該ロードセルからのタン
ク重量減量信号を時間微分する微分器と、該微分
器出力に基いてブスタ気体流量を制御する質量流
量調節計を備えた粉粒体輸送装置において、ロー
ドセルが計量レンジを異にする複数のロードセル
によつて構成されると共に各ロードセルの計量最
大値に対応する電圧レベルを同一にする変換器を
備え切出しノズルが前記各ロードセルの最大計量
値に対応する管径に設定されて複数本設けられ、
前記各ロードセル出力を切換えるスイツチと、前
記各切出しノズル及び夫々のブスタ管の開閉弁を
操作する弁開閉信号発生器と、前記質量流量調節
計からの調節出力を対応する各ブスタ管のブスタ
流量調節計に供給する選択切換器とを備えて構成
され、所望する切出量を前記質量流量調節計に設
定すると共に該設定値に対応して前記弁開閉信号
発生器を切換えることによつて前記各ロードセル
出力、各切出しノズル及び各ブスタ管が選択され
ることを特徴とする粉粒体排出装置。
1. A cutting nozzle that opens into one pressurized transport tank, a booster pipe that is connected to the nozzle and that cuts out the powder or granular material from the nozzle, a load cell that measures the weight of the tank, and a tank from the load cell. In a powder transport device equipped with a differentiator that time-differentiates a weight loss signal and a mass flow controller that controls booster gas flow rate based on the output of the differentiator, a load cell is connected to a plurality of load cells with different measurement ranges. A plurality of cutout nozzles are provided with pipe diameters corresponding to the maximum measurement value of each load cell,
A switch for switching each of the load cell outputs, a valve opening/closing signal generator for operating the opening/closing valve of each of the cutting nozzles and each booster pipe, and a booster flow rate adjustment of each booster pipe corresponding to the adjustment output from the mass flow controller. and a selection switch for supplying the output to the mass flow rate controller, and by setting a desired output amount in the mass flow controller and switching the valve opening/closing signal generator in accordance with the set value, each of the above-mentioned A powder discharge device characterized in that a load cell output, each cutting nozzle, and each booster tube are selected.
JP13950883A 1983-08-01 1983-08-01 High accurate exhausting device for pulverized or granular objects Granted JPS6031438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13950883A JPS6031438A (en) 1983-08-01 1983-08-01 High accurate exhausting device for pulverized or granular objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13950883A JPS6031438A (en) 1983-08-01 1983-08-01 High accurate exhausting device for pulverized or granular objects

Publications (2)

Publication Number Publication Date
JPS6031438A JPS6031438A (en) 1985-02-18
JPH0323454B2 true JPH0323454B2 (en) 1991-03-29

Family

ID=15246924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13950883A Granted JPS6031438A (en) 1983-08-01 1983-08-01 High accurate exhausting device for pulverized or granular objects

Country Status (1)

Country Link
JP (1) JPS6031438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012324A (en) * 2009-07-03 2011-01-20 Nippon Steel Engineering Co Ltd Method for distributing and feeding pulverized fine coal
JP2011012323A (en) * 2009-07-03 2011-01-20 Nippon Steel Engineering Co Ltd Apparatus for distributing and feeding pulverized fine coal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265983A (en) * 1992-06-02 1993-11-30 The Babcock & Wilcox Company Cascading pressure continuous blow bottle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322768A (en) * 1976-08-16 1978-03-02 Kubota Ltd Scaling circuit
JPS5874426A (en) * 1981-10-26 1983-05-04 Kawasaki Steel Corp Regulating method of feed quantity in distributive transportation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322768A (en) * 1976-08-16 1978-03-02 Kubota Ltd Scaling circuit
JPS5874426A (en) * 1981-10-26 1983-05-04 Kawasaki Steel Corp Regulating method of feed quantity in distributive transportation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012324A (en) * 2009-07-03 2011-01-20 Nippon Steel Engineering Co Ltd Method for distributing and feeding pulverized fine coal
JP2011012323A (en) * 2009-07-03 2011-01-20 Nippon Steel Engineering Co Ltd Apparatus for distributing and feeding pulverized fine coal

Also Published As

Publication number Publication date
JPS6031438A (en) 1985-02-18

Similar Documents

Publication Publication Date Title
US4482275A (en) Method and apparatus for distributing powdered particles
EP0293007B1 (en) Augmented air supply for fuel cells power plant during transient load increases
EP0202796B1 (en) Apparatus and process for pneumatically conveying particulate material
JPH07113499A (en) Liquid flow control device
JP2709951B2 (en) Apparatus for mixing flowable substances into a carrier gas stream
JPH0323454B2 (en)
EP0116764B1 (en) Apparatus for blowing powdery refining agent into refining vessel
EP0060137A1 (en) Conveying systems
US5357996A (en) Pressure regulating system
EP0243269A2 (en) Post-mix method and system for supply of powderized materials
CN109607235B (en) Take self-loopa's buggy charge-in system
JPH0733530B2 (en) Powder injection method
GB1429130A (en) Control of flux injection in steelmaking vessels
JP2742001B2 (en) Pulverized coal injection control method
US4257438A (en) Bulk catalyst proportioner
JPH05147735A (en) Powder flow rate control system
JPS5823301B2 (en) Powder supply method and device
US4597405A (en) Process and apparatus for controlling a controllable magnitude and use of the process
JP3633668B2 (en) Operation method of powder packaging machine
EP0853062A1 (en) Plant and method for dispensing beverages
SU1418220A1 (en) Method of pneumatic unloading of material from receptacle
JP6812071B2 (en) Powder parallel blowing system and powder parallel blowing method
JPH0158085B2 (en)
JPH1035886A (en) Device for pneumatically transporting powdery material
SU1148556A3 (en) Device for pneumatic transportation of powder materials in fluidized bed