JPH0323349A - Air-fuel ratio measuring method - Google Patents

Air-fuel ratio measuring method

Info

Publication number
JPH0323349A
JPH0323349A JP15804289A JP15804289A JPH0323349A JP H0323349 A JPH0323349 A JP H0323349A JP 15804289 A JP15804289 A JP 15804289A JP 15804289 A JP15804289 A JP 15804289A JP H0323349 A JPH0323349 A JP H0323349A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15804289A
Other languages
Japanese (ja)
Other versions
JP2765062B2 (en
Inventor
Shinichiro Saito
真一郎 斉藤
Shogo Omori
祥吾 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP15804289A priority Critical patent/JP2765062B2/en
Publication of JPH0323349A publication Critical patent/JPH0323349A/en
Application granted granted Critical
Publication of JP2765062B2 publication Critical patent/JP2765062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To make it possible to measure transient conditions and the air-fuel ratio of a specified cylinder by measuring the air-fuel ratio inside the cylinder from compressed pressure inside the cylinder at respective points of time through the use of a polytropic exponent as intermediate medium information, in a compressed stroke of an internal combustion engine subjected to a polytropic process. CONSTITUTION:Pressure inside a plural number of cylinders of an internal combustion engine is detected by a plural number of pressure sensors 91 to 93. Two required points of time during the compressed stroke of the internal combustion engine are detected by a crank angle sensor 10. The air-fuel ratio of a cylinder is measure by a computer 11 based on the respective detection signals, and displayed by a means 12 if necessary. The compressed stroke of the engine is made to follow a polytropic process. The polytropic process means the expansion or compression of gas at the time when PV<n> value is constant, where P,V mean the pressure and volume of gas, and (n) is the polytropic exponent. By using the polytropic exponent (n) as the intermediate medium information, the air-fuel ratio inside the cylinder is measured from the compressed pressure inside the cylinder at the respective points of time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関(以下、必要に応じ「エンジン」と
いう)の空燃比を計測するための方法に関する. [従来の技術] 従来より、内燃機関の空燃比を計測する方法としては,
例えば、排気ガスをサンプルしその戒分より求める排気
ガス分析法や02センサを用いて排気ガス中の02濃度
から求める方法や吸入空気量と噴射燃料量を別々に計測
して求める方法等がある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the air-fuel ratio of an internal combustion engine (hereinafter referred to as an "engine" if necessary). [Conventional technology] Conventionally, methods for measuring the air-fuel ratio of internal combustion engines include:
For example, there are exhaust gas analysis methods that sample exhaust gas and calculate it from its precepts, methods that use 02 sensors to calculate 02 concentration in exhaust gas, and methods that measure intake air amount and injected fuel amount separately. .

[発明が解決しようとする課題] しかしながら,このような従来の手段では,いずれも定
常的な空燃比は求められるが,過渡的に変化する空燃比
の計測は困難で、しかも多気筒エンジンでは、他の気簡
の排気ガスの干渉や燃料の輸送遅れや分配等の問題があ
るため、特定の気筒における空燃比の計測は容易ではな
い.本発明は、このような問題点を解決しようとするも
ので、内燃機関の圧縮行程がポリトロープ過程に従うこ
とと、ポリトロープ指数が空燃比に依存することに着目
して、この圧縮行程中の気筒内圧力から空燃比を計測で
きるようにした、内燃機関の空燃比計測方法を提供する
ことを目的とする。
[Problems to be Solved by the Invention] However, although these conventional means require a steady air-fuel ratio, it is difficult to measure the air-fuel ratio that changes transiently. Measuring the air-fuel ratio in a specific cylinder is not easy due to problems such as interference from other exhaust gases and fuel transportation delays and distribution. The present invention aims to solve these problems, and focuses on the fact that the compression stroke of an internal combustion engine follows a polytropic process and that the polytropic index depends on the air-fuel ratio. It is an object of the present invention to provide an air-fuel ratio measurement method for an internal combustion engine, which allows the air-fuel ratio to be measured from pressure.

[RMを解決するための手段] このため、本発明の内燃機関の空燃比計測方法は、次の
ステップからなることを特徴としている。
[Means for Solving RM] Therefore, the air-fuel ratio measuring method for an internal combustion engine of the present invention is characterized by comprising the following steps.

(1)ポリトロープ過程に従う内燃機関の圧縮行程にお
いて,該内燃機関の気筒内圧縮圧力を所要の2時点で計
測するステップ。
(1) A step of measuring the in-cylinder compression pressure of the internal combustion engine at two required points in the compression stroke of the internal combustion engine according to the polytropic process.

(2)ボリトロープ指数を中間媒体情報として、各時点
での気筒内圧縮圧力から該気筒内の空燃比を計測するス
テップ。
(2) A step of measuring the air-fuel ratio in the cylinder from the cylinder compression pressure at each time point using the volitropic index as intermediate medium information.

[作 用] 上述の本発明の内燃機関の空燃比計測方法では,まず,
内燃機関の気筒内圧縮圧力を所要の2時点で計測し,つ
いでポリトロープ指数を中間媒体情報として,各時点で
の気筒内圧縮圧力から該気筒内の空燃比を計測すること
が行なわれる。
[Function] In the above-described air-fuel ratio measurement method for an internal combustion engine of the present invention, first,
The in-cylinder compression pressure of an internal combustion engine is measured at two required points in time, and then, using the polytropic index as intermediate medium information, the air-fuel ratio in the cylinder is measured from the in-cylinder compression pressure at each point in time.

[実施例] 以下,図面により本発明の一実施例としての内燃機関の
空燃比計測方法について説明すると、第1図は本方法に
よって空撚比を計測されるべきエンジンシステムの概略
構成図,第2図は空燃比計測のためのブロック図,第3
図は本方法の実施要領を説明するためのブロック図,第
4図は圧縮圧力一クランク角特性図,第5図は空燃比一
ポリトロープ指数特性図である. さて,本方法によって空燃比を計測されるべきエンジン
システムを示すと、例えば第1図に示すようになる。こ
の第1図において、エンジンEは点火式内燃機関で、3
つの気筒l〜3を有する3気筒式エンジンとして構或さ
れている。
[Example] Hereinafter, a method for measuring the air-fuel ratio of an internal combustion engine as an example of the present invention will be explained with reference to the drawings. Figure 2 is a block diagram for air-fuel ratio measurement, Figure 3 is a block diagram for air-fuel ratio measurement.
The figure is a block diagram for explaining the implementation procedure of this method, Figure 4 is a compression pressure vs. crank angle characteristic diagram, and Figure 5 is an air-fuel ratio vs. polytropic index characteristic diagram. Now, an example of an engine system whose air-fuel ratio is to be measured by this method is shown in FIG. 1. In this Figure 1, engine E is an ignition type internal combustion engine,
The engine is constructed as a three-cylinder engine having four cylinders 1 to 3.

また、各気筒1〜3には、図示しない吸気弁を介して吸
気通路4が接続されるとともに、図示しない排気弁を介
して排気通路5が接続されている。
Furthermore, an intake passage 4 is connected to each cylinder 1 to 3 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown).

さらに,吸気通路4の端末には、エアクリーナ6が設け
られており、更にこのエアクリーナ6の下流側には、ス
ロットル弁7が介装されている。
Further, an air cleaner 6 is provided at the end of the intake passage 4, and a throttle valve 7 is interposed downstream of the air cleaner 6.

なお,各気筒1〜3へ燃料を供給しうるように、吸気マ
ニホルド部分には、3つの電磁式燃料噴射弁(インジエ
クタ,電磁弁)8が設けられている。
Note that three electromagnetic fuel injection valves (injectors, electromagnetic valves) 8 are provided in the intake manifold portion so that fuel can be supplied to each cylinder 1 to 3.

そして、このような構戒のエンジンシステムについて,
各気筒1〜3内の空燃比を計測するために、各気筒内圧
力を検出するための圧カセンサ9l〜93が設けられて
いる. また、圧縮行程における所要の2時点を計測するために
クランク角センサ10(第2図参照)が設けられている
Regarding the engine system with such a structure,
In order to measure the air-fuel ratio in each cylinder 1-3, pressure sensors 9l-93 are provided to detect the pressure inside each cylinder. Further, a crank angle sensor 10 (see FIG. 2) is provided to measure two required points in the compression stroke.

そして,これらのセンサ91〜93.10からの検出信
号は、第2図に示すように、空燃比計測手段の機能を有
するコンピュータl1へ入力される。
Detection signals from these sensors 91 to 93.10 are input to a computer l1 having the function of air-fuel ratio measuring means, as shown in FIG.

ところで,エンジンEの圧縮行程は、ポリトロープ過程
に従うことが知られている。ここで,ポリトロープ過程
とは、Pvnの値が一定である場合の、気体の膨張ある
いは圧縮をいう。そして、PおよびVは気体の圧力およ
び体積で、nはポリトロープ指数である. 上記のpvn=一定という関係(この関係式を■式とい
う)を、圧縮行程中にエンジンにあてはめると、Pは気
筒内圧縮圧力、■は気筒内体積ということになる。
By the way, it is known that the compression stroke of the engine E follows a polytropic process. Here, the polytropic process refers to expansion or compression of gas when the value of Pvn is constant. where P and V are the pressure and volume of the gas, and n is the polytropic index. When the above relationship that pvn=constant (this relational expression is referred to as equation (2)) is applied to the engine during the compression stroke, P is the in-cylinder compression pressure, and (2) is the in-cylinder volume.

今,■は圧縮圧力を測定する時期(クランク角)を決め
れば一定となるから、このようにすればPはnによって
変化することが理解できる。
Now, since (■) becomes constant if the timing (crank angle) at which the compression pressure is measured is determined, it can be understood that by doing this, P changes depending on n.

また、nは筒内に入った燃料と空気との混合割合,即ち
空燃比によって、第5図に示すように変化するから、圧
方を測定する基準クランク角A。,?エを第4図のよう
に決めると,各クランク角度での体積V.,V■が決ま
り、V s / V oは一定となる. 従って,上記の■式より, (vL/v.)n= (p,/Pa)”@という関係が
成り立つ。
In addition, since n changes as shown in FIG. 5 depending on the mixing ratio of fuel and air that enters the cylinder, that is, the air-fuel ratio, the reference crank angle A is used to measure the pressure. ,? If d is determined as shown in Fig. 4, the volume V at each crank angle. , V■ are determined, and V s /V o becomes constant. Therefore, from the above equation (2), the relationship (vL/v.)n=(p,/Pa)''@ holds true.

さらに,この■式の両辺について対数をとると、nlo
g (Vl/ Va) =log (Pi/ Pa) 
 ・・■くなるが,この■式を変形すると、 n=log (Px/ Pa) /log (Vx/ 
Vo)  ・・■となる。このようにして、ポリトロー
プ指数nを求めることができるのである。
Furthermore, if we take the logarithm of both sides of this equation, nlo
g (Vl/Va) = log (Pi/Pa)
...■However, if you transform this ■ equation, n=log (Px/Pa) /log (Vx/
Vo)... becomes ■. In this way, the polytropic index n can be determined.

また、ポリトロープ指数nと空燃比A/Fとの関係は、
第5図のような関係になるので,このポリトロープ指数
から気筒内の空燃比を計測することができるのである。
In addition, the relationship between the polytropic index n and the air-fuel ratio A/F is
Since the relationship is as shown in Figure 5, the air-fuel ratio in the cylinder can be measured from this polytropic index.

そして,上記のコンピュータ11が,気筒内圧縮圧力情
報とクランク角情報とを受け取って、上記のような演算
を行なうことにより,筒内空燃比を演算により計測する
のである9なお,この空燃比計測結果は、空燃比値表示
手段12に表示されるようになっている. さらに、上記コンピュータ11についての空燃比計測機
能をブロック図にして示すと、第3図のようになるが,
この第3図において、111はサンプルデータA/D変
換手段で、このサンプルデータA/D変換手段111は
、圧カセンサからの圧力信号およびクランク角センサか
らの基準クランク角信号を取り込んで、A/D変換する
ものである. また,112は演算手段で、この演算手段112は、上
記■式を演算する手段と、第5図に示す関係を予めテー
ブルに記憶しておく記憶手段とを有しており,上記■式
を演算したあと、上記記憶手段を検索して、計算したポ
リトロープ指数nから空燃比A/Fを求めるようになっ
ている。なお,A/F=f(n)という関数関係がわか
っていれば,ポリトロープ指数nを得たあと、更に演算
により空燃比A/Fを求めてもよい.したがって,この
場合は、上記■式を変形して、 A/F=f(n)=f(log(P,/PIl)/lo
g(V,/V,)) ・・■から直接空燃比を求めるこ
とも可能である。
Then, the above-mentioned computer 11 receives the cylinder compression pressure information and the crank angle information and performs the calculations described above to calculate the cylinder air-fuel ratio.9 Note that this air-fuel ratio measurement The results are displayed on the air-fuel ratio value display means 12. Furthermore, a block diagram of the air-fuel ratio measurement function of the computer 11 is shown in FIG. 3.
In this FIG. 3, 111 is a sample data A/D converting means, and this sample data A/D converting means 111 takes in a pressure signal from a pressure sensor and a reference crank angle signal from a crank angle sensor, This is a D conversion. Further, 112 is a calculation means, and this calculation means 112 has a means for calculating the above-mentioned formula (2) and a storage means for storing the relationship shown in FIG. 5 in a table in advance. After the calculation, the storage means is searched to obtain the air-fuel ratio A/F from the calculated polytropic index n. Note that if the functional relationship A/F=f(n) is known, the air-fuel ratio A/F may be determined by further calculation after obtaining the polytropic index n. Therefore, in this case, by transforming the above formula (■), A/F=f(n)=f(log(P,/PIl)/lo
g(V, /V,)) It is also possible to directly obtain the air-fuel ratio from ■.

さらに,113は得られた空燃比情報をD/A変換する
D/A変換手段であるが、空燃比値表示手段l2がアナ
ログ式ではなくディジタル式の場合は、このD/A変換
手段113は不要である.なお、第3図において、1a
は燃焼室、1bはピストン.1cは吸気弁,ldは排気
弁、1eは点火プラグである。
Furthermore, 113 is a D/A conversion means for D/A converting the obtained air-fuel ratio information, but if the air-fuel ratio value display means 12 is not an analog type but a digital type, this D/A conversion means 113 is It's not necessary. In addition, in Fig. 3, 1a
is the combustion chamber, and 1b is the piston. 1c is an intake valve, ld is an exhaust valve, and 1e is a spark plug.

さらに、第3図においては,1つの気筒(例えば、気筒
1)についての計測・信号処理系を示しているが、3つ
の気簡についても同様の構成になる。
Furthermore, although FIG. 3 shows the measurement/signal processing system for one cylinder (for example, cylinder 1), the configuration is similar for three cylinders.

このように、排気ガスからではなく、圧縮行程中の気筒
内圧力(1サイクルごとの)から空燃比を計測すること
ができるので、過渡的な空燃比の変化を1サイクルごと
に計測できるほか、多気筒エンジンでは、各気筒ごとの
空燃比を容易に計測することができる. したがって、この計測法を応用すれば、従来のように0
2センサを用いたフィードバック制御を行なわなくても
、この計測法で得られた空燃比情報を用いて空燃比II
J*を行なうこともできるものである。
In this way, the air-fuel ratio can be measured from the cylinder pressure during the compression stroke (for each cycle) rather than from the exhaust gas, so it is possible to measure transient changes in the air-fuel ratio for each cycle. In a multi-cylinder engine, the air-fuel ratio of each cylinder can be easily measured. Therefore, if this measurement method is applied, 0
Even without feedback control using two sensors, the air-fuel ratio can be adjusted using the air-fuel ratio information obtained by this measurement method.
It is also possible to perform J*.

[発明の効果] 以上詳述したように、本発明の内燃機関の空燃比計測方
法によれば,ポリトロープ過程に従う内燃機関の圧縮行
程において、該内燃機関の気筒内圧縮圧力を所要の2時
点で計測し、ポリトロープ指数を中間媒体情報として、
各時点での気筒内圧縮圧力から該気筒内の空燃比を計測
することが行なわれるので、過渡的な空燃比の変化を内
燃機関lサイクルごとに計測することができるほか,多
気筒エンジンでは、各気筒ごとの空燃比を容易に計測で
きる利点がある.
[Effects of the Invention] As detailed above, according to the air-fuel ratio measuring method for an internal combustion engine of the present invention, the compression pressure in the cylinder of the internal combustion engine is measured at two required points in the compression stroke of the internal combustion engine according to the polytropic process. and use the polytropic index as intermediate media information.
Since the air-fuel ratio in the cylinder is measured from the cylinder compression pressure at each point in time, transient changes in the air-fuel ratio can be measured every 1 cycle of the internal combustion engine, and in multi-cylinder engines, It has the advantage of being able to easily measure the air-fuel ratio for each cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜5図は本発明の一実施例としての内燃機関の空゜
燃比計測方法を示すもので,第1図は本方法によって空
燃比を計測されるべきエンジンシステムの概略構成図、
第2図は空燃比計測のためのブロック図、第3図は本方
法の実施要領を説明するためのブロック図、第4図は圧
縮圧カークランク角特性図,第5図は空燃比−ポリトロ
ープ指数特性図である。 工〜3一気筒,la−燃焼室、ib−ピストン、1c一
吸気弁、l d ・・一徘気弁、1 a−点火プラグ、
4 ・−=吸気通路,5・一排気通路、6−エアクリー
ナ、7・−・・スロットル弁、8−・・電磁弁、1 0
−・クランク角センサ、11−コンピュータ、12・・
・空燃比値表示手段,91〜93−・一圧カセンサ,1
11−サンプルデータA/D変換手段,112−・・・
演算手段、113−D/A変換手段,E一・エンジン。
1 to 5 show a method for measuring the air-fuel ratio of an internal combustion engine as an embodiment of the present invention, and FIG. 1 is a schematic configuration diagram of an engine system whose air-fuel ratio is to be measured by this method;
Fig. 2 is a block diagram for air-fuel ratio measurement, Fig. 3 is a block diagram for explaining the implementation procedure of this method, Fig. 4 is a compression pressure car crank angle characteristic diagram, and Fig. 5 is an air-fuel ratio-polytrope. It is an exponential characteristic diagram. Engineering ~ 3 one cylinder, la - combustion chamber, ib - piston, 1c one intake valve, l d... one wandering valve, 1 a - spark plug,
4--=intake passage, 5--exhaust passage, 6-air cleaner, 7--throttle valve, 8--electromagnetic valve, 1 0
-・Crank angle sensor, 11-Computer, 12...
・Air-fuel ratio value display means, 91 to 93-・One pressure sensor, 1
11-Sample data A/D conversion means, 112-...
Arithmetic means, 113-D/A conversion means, E-engine.

Claims (1)

【特許請求の範囲】[Claims] ポリトロープ過程に従う内燃機関の圧縮行程において、
該内燃機関の気筒内圧縮圧力を所要の2時点で計測し、
ポリトロープ指数を中間媒体情報として、各時点での気
筒内圧縮圧力から該気筒内の空燃比を計測することを特
徴とする、内燃機関の空燃比計測方法。
In the compression stroke of an internal combustion engine following a polytropic process,
Measuring the in-cylinder compression pressure of the internal combustion engine at two required points,
1. An air-fuel ratio measuring method for an internal combustion engine, characterized in that the air-fuel ratio in a cylinder is measured from the cylinder compression pressure at each point in time using a polytropic index as intermediate medium information.
JP15804289A 1989-06-20 1989-06-20 Air-fuel ratio measurement method for internal combustion engine Expired - Lifetime JP2765062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15804289A JP2765062B2 (en) 1989-06-20 1989-06-20 Air-fuel ratio measurement method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15804289A JP2765062B2 (en) 1989-06-20 1989-06-20 Air-fuel ratio measurement method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0323349A true JPH0323349A (en) 1991-01-31
JP2765062B2 JP2765062B2 (en) 1998-06-11

Family

ID=15663020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15804289A Expired - Lifetime JP2765062B2 (en) 1989-06-20 1989-06-20 Air-fuel ratio measurement method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2765062B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809581B1 (en) * 2006-08-24 2008-03-04 한양대학교 산학협력단 Cylinder pressure pegging method based on the least squares method with a varying polytropic coefficient
JP2011153556A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp Air-fuel ratio estimation system
EP2611272A2 (en) 2011-12-28 2013-07-03 TDK Corporation Bracket and electronic device
JP2015113755A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Diagnosis device for internal combustion engine
WO2015133172A1 (en) * 2014-03-07 2015-09-11 トヨタ自動車株式会社 Air-fuel ratio detection device for internal combustion engine
CN106337743A (en) * 2015-07-10 2017-01-18 本田技研工业株式会社 Control device for internal combustion engine
CN106337750A (en) * 2015-07-10 2017-01-18 本田技研工业株式会社 Internal Combustion Engine Control Apparatus
JP2017020488A (en) * 2015-07-10 2017-01-26 本田技研工業株式会社 Control device for internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809581B1 (en) * 2006-08-24 2008-03-04 한양대학교 산학협력단 Cylinder pressure pegging method based on the least squares method with a varying polytropic coefficient
JP2011153556A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp Air-fuel ratio estimation system
EP2611272A2 (en) 2011-12-28 2013-07-03 TDK Corporation Bracket and electronic device
US9903293B2 (en) 2013-12-11 2018-02-27 Toyota Jidosha Kabushiki Kaisha Diagnostic system for internal combustion engine
JP2015113755A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Diagnosis device for internal combustion engine
WO2015133172A1 (en) * 2014-03-07 2015-09-11 トヨタ自動車株式会社 Air-fuel ratio detection device for internal combustion engine
JP2015169149A (en) * 2014-03-07 2015-09-28 トヨタ自動車株式会社 Internal combustion engine air-fuel ratio detection device
US10371687B2 (en) 2014-03-07 2019-08-06 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio detection device for internal combustion engine
DE112015001142B4 (en) 2014-03-07 2021-12-09 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio detection device for an internal combustion engine
CN106337743A (en) * 2015-07-10 2017-01-18 本田技研工业株式会社 Control device for internal combustion engine
CN106337750A (en) * 2015-07-10 2017-01-18 本田技研工业株式会社 Internal Combustion Engine Control Apparatus
JP2017020488A (en) * 2015-07-10 2017-01-26 本田技研工業株式会社 Control device for internal combustion engine
CN106337743B (en) * 2015-07-10 2019-07-19 本田技研工业株式会社 The control device of internal combustion engine
CN106337750B (en) * 2015-07-10 2019-07-19 本田技研工业株式会社 The control device of internal combustion engine

Also Published As

Publication number Publication date
JP2765062B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
Szwaja et al. Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine
Maurya et al. Reciprocating engine combustion diagnostics
Torregrosa et al. Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines
Traver et al. Neural network-based diesel engine emissions prediction using in-cylinder combustion pressure
Taglialatela et al. Determination of combustion parameters using engine crankshaft speed
JP5023039B2 (en) In-cylinder pressure measuring device
Ceviz et al. Temperature and air–fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture
Benajes et al. Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications
US10054067B2 (en) Using ion current signal for engine performance and emissions measuring techniques and method for doing the same
Lindström et al. An empirical SI combustion model using laminar burning velocity correlations
EP1801399B1 (en) Apparatus and method for calculating work load of engine
Guardiola et al. Cylinder charge composition observation based on in-cylinder pressure measurement
Brecq et al. Modeling of in-cylinder pressure oscillations under knocking conditions: introduction to pressure envelope curve
JPH0323349A (en) Air-fuel ratio measuring method
US6401527B1 (en) Method for determining the torque developed by an internal combustion engine
JP2008540912A (en) Method and apparatus for determining the ratio between the fuel mass burned in a cylinder of an internal combustion engine and the fuel mass supplied to the cylinder
Cuisano et al. In-cylinder pressure statistical analysis and digital signal processing methods for studying the combustion of a natural gas/diesel heavy-duty engine at low load conditions
KR100465609B1 (en) Method for detecting periodic combustion fluctuations of internal combustion engine
JP4646819B2 (en) Abnormality determination device for internal combustion engine
Guardiola et al. Integration of intermittent measurement from in-cylinder pressure resonance in a multi-sensor mass flow estimator
Seuling et al. Model based engine speed evaluation for single-cylinder engine control
Tunestal et al. In-cylinder measurement for engine cold-start control
Pipitone et al. A study on the use of combustion phase indicators for MBT spark timing on a bi-fuel engine
Zeng et al. Reconstructing cylinder pressure of a spark-ignition engine for heat transfer and heat release analyses
Sanda et al. Statistical analysis of pressure indicator data of an internal combustion engine