JPH03233338A - Integrating sphere inner wall reflectance measuring method - Google Patents

Integrating sphere inner wall reflectance measuring method

Info

Publication number
JPH03233338A
JPH03233338A JP22317190A JP22317190A JPH03233338A JP H03233338 A JPH03233338 A JP H03233338A JP 22317190 A JP22317190 A JP 22317190A JP 22317190 A JP22317190 A JP 22317190A JP H03233338 A JPH03233338 A JP H03233338A
Authority
JP
Japan
Prior art keywords
integrating sphere
reflectance
wall
light
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22317190A
Other languages
Japanese (ja)
Other versions
JPH0797065B2 (en
Inventor
Kenichi Suzuki
健一 鈴木
Yoshihiro Ono
義弘 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22317190A priority Critical patent/JPH0797065B2/en
Publication of JPH03233338A publication Critical patent/JPH03233338A/en
Publication of JPH0797065B2 publication Critical patent/JPH0797065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the reflectance of the inner wall of an integrating sphere with high accuracy by recognizing the area of the inner wall of the integrating sphere, that of a photoabsorbing sheet, and their reflectances, and performing relative measurement between the cases where the photoabsorbing sheet is inserted or not inserted to the integrating sphere. CONSTITUTION:The integrating sphere 1 is provided with a receiver 2 at part of an inner wall plane, and a light shielding plate 4 which shields radiation light in the specific direction of a light source. Assuming output from the receiver 2 when the light source 3 having a constant beam of light is lit in the integrating sphere as I0, and the output of the receiver when the photoabsorbing sheet 5 with area of (s) and reflectance of rho1 is placed on the wall plane of the integrating sphere with which the radiation light of the light source is shielded as I1, the reflectance (rho) of the wall plane of the integrating sphere can be found by equation (where, a=I1/I0, c=a/A, A: area of in-sphere wall of integrating sphere). In such a way, since the reflectance of the inner wall plane can be obtained by an inverse operation by measuring the change of the efficiency of the integrating sphere, the measuring of the reflectance under the same optical condition can be performed, which improves the accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(上 光放射測定の分野で広く使用されている積
分球の特性測定に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to the measurement of characteristics of integrating spheres widely used in the field of optical radiation measurements.

従来の技術 積分球(よ 光源の全光束を測定する球形光束計として
、あるいは 分光放射計の入射光学系として、あるいは
 分光光度計において材料の拡散反射率を測定するため
の光学系としてなど、光放射測定の分野で広く使用され
ていも これらの用途において、積分球の効率(入射光に対す瓜
 受光窓からの出射光束の比)は装置の感度限界や分光
応答度を決める重要な特性であり、これは主に積分球の
内壁面に塗布された白色塗料の反射率によって決まも 積分球の内壁面を完全拡散面と仮定し その反射率をρ
(λ)とすると、積分球の効率T(λHL丁(λ)=k
・ρ(λ)/(1−ρ(λ))・・・・0(11)(k
は定数) で表されも すなわ板 積分球の効率を求めるために(
よ ρ(λ)の測定が必要となんこのρ(λ)を測定す
る従来の方法として(よ 内壁面に塗布したものと同じ
白色塗料を小さなサンプルに塗布して、それを分光光度
計で測定する方法 あるい(よ 大きな積分球に対して
(よ 百般型の分光反射率計を球内に持ち込んで壁面に
受光部を直接当てて測定する方法が知られていも また
T(λ)を直接束める方法としては 積分球の外で分光
分布を測定した光源を積分球内に点灯する力\あるいは
その光を積分球内に導き、積分球の受光窓からの出射光
の分光分布を測定し これと、積分球外での分光分布と
の比から求める方法が知られていも 発明が解決しようとする課題 上記の従来の方法において、まず、同じ白色塗料を塗布
したサンプルの分光反射率を測定する方法で(友 内壁
面が汚れた状態や塗料が経年変化した状態の積分球その
ものの特性を測定することができな鶏 積分球の内壁用の白色塗料に(よ 硫酸バリウムやハロ
ンなど、反射率が非常に高い(95%〜99%)材料が
使用されモ(6)式かられかるように ρ(λ)が1に
近付くほど、T(λ)の誤差が増幅されもたとえば 反
射率98%を1%の誤差で99%と測定すれば T(λ
)の値としては誤差が100倍になり、100%の誤差
(測定値が2倍になる)を生じてしまう。
Conventional technology integrating sphere (i.e., as a spherical photometer to measure the total luminous flux of a light source, as an input optical system in a spectroradiometer, or as an optical system for measuring the diffuse reflectance of a material in a spectrophotometer, etc.) Although it is widely used in the field of radiometry, in these applications, the efficiency of the integrating sphere (the ratio of the luminous flux emitted from the melon receiving window to the incident light) is an important characteristic that determines the sensitivity limit and spectral response of the instrument. , this mainly depends on the reflectance of the white paint applied to the inner wall of the integrating sphere.Assuming that the inner wall of the integrating sphere is a completely diffusing surface, the reflectance is expressed as ρ.
(λ), the efficiency of the integrating sphere T(λHL(λ)=k
・ρ(λ)/(1-ρ(λ))・・・0(11)(k
is a constant), that is, a plate. To find the efficiency of the integrating sphere, (
The conventional method for measuring ρ(λ) is to apply the same white paint as that applied to the interior wall surface to a small sample and measure it with a spectrophotometer. There is a known method for measuring T(λ) for a large integrating sphere (for example, for a large integrating sphere). The method of bundling is to turn on a light source whose spectral distribution has been measured outside the integrating sphere, or to guide the light into the integrating sphere and measure the spectral distribution of the light emitted from the receiving window of the integrating sphere. Even if there is a known method to calculate this from the ratio of the spectral distribution outside the integrating sphere, the problem that the invention seeks to solve In the above conventional method, first, the spectral reflectance of a sample coated with the same white paint is calculated. It is not possible to measure the characteristics of the integrating sphere itself when the inner wall surface is dirty or the paint has changed over time. If a material with a very high reflectance (95% to 99%) is used and ρ(λ) approaches 1, as can be seen from equation (6), the error in T(λ) will be amplified. If we measure 98% as 99% with an error of 1%, then T(λ
), the error will be 100 times greater, resulting in a 100% error (the measured value will be doubled).

一般に入手できる回船型の分光反射率計の測定確度は1
%以上であり、反射率の高い内壁面に対してはT(λ)
の誤差が非常に大きくなも さらペ一般の分光反射率計
で(よ 材料への入射/出射の条件が限られており、積
分球の内壁面の測定に必要な条件(拡散入射/拡散出射
)での測定ができない場合が多(t ま?Q  光源の分光分布を積分球の外と中で測定する
方法で(上 積分球の効率の分光的な相対値は測定でき
る力t 壁面の(分光)反射率を求めることはできな鶏
 また この方法は分光測定器を積分球から着脱する機
構が必要であり、かつ入射条件を同じに保って測定する
必要があり、光量レベルも大きく異なるたべ 容易では
な(1このように 従来のいずれの方法を用いてに積分
球の内壁面の反射率を精度よく容易に測定する手段がな
かった 課題を解決するための手段 本発明は 積分球内壁面反射率測定方法に関し積分球の
中に光を吸収する物体を入れることを特徴とすも まな
 光吸収物体と光源との間に遮光板を介在させることを
特徴とすム さらに 光源として反射形ランプを用いる
ことを特徴とすもまた 複数の光吸収物体を用いた場合
、その反射率や形状を等しくすることを特徴とするもの
であも 作用 積分球の内壁の面積Aと光吸収シートの面積Sとその反
射率ρ1を知ることにより、積分球内に光吸収シートを
入れた時と入れない時の比較測定を行なうことにより、
積分球の内壁面反射率ρまたはρ(λ)を求めることが
できも また 積分球の内壁の面積Aや2枚の光吸収シートの面
積を知る必要な((3+=32とした場合)2枚の光吸
収シートを順次 積分球内に入れ光吸収シートを入れな
い場合との比較測定を行なうことにより、積分球の内壁
面め反射率ρまたはρ(λ)を求めることができも また 積分球の内壁の面積Aや2枚の光吸収シートの反
射率ρ1およびρ之を知る必要なく (ρ1=ρ2とし
た場合)、面積の比のみが判っている2枚の光吸収シー
トを順次 積分球内に入札 光吸収シートを入れない場
合との比較測定を行なうことにより、積分球の内壁面の
反射率ρまたはρ(λ)を求めることができも 実施例 本発明の実施例について、数式と図面を用いて説明すも 第1図(上 本発明の第1の実施例である積分球内壁面
反射率測定方法を説明したものであも 第1図において
、 lは積分域 2は受光像 3は光淑 4および6は
遮光[5は光吸収シートであa 第1図において、積分
球1の内壁面の面積をA[m’]、 光吸収シート5の
面積jjs[m”]、 光吸収シート5の反射率をρ1
とすも 光源3は点光源とすも 遮光板4は光源3から
の直射光が受光器2に当たらないような位置に置かれて
いも 遮光板6(よ 光吸収シート6を置く壁面の位置
に直射光が当たらないようにする位置に置かれていも 
受光器2(よ 積分球1の内壁面上の照度に比例した信
号を出力するものとすも また 以下の解析では 積分
球1の内壁面の反射特性は完全拡散であり、積分球l内
の光の相互反射における遮光板4の影響は無視できるも
のとすも 光吸収物体を積分球の中に入れた場合C瓜  入れない
場合に比べて、積分球内壁面のみかけの平均反射率が低
下し 積分球の効率T(λ)が(11)式にしたがって
大きく低下すも 内壁面の面積がAなる積分球の内壁面
上に 面積がSであり反射率がρ1(λ)なる光吸収シ
ートを置いた場合、内壁面のみかけの平均反射率ρ′(
λ)は 内壁面の真の反射率をρ(λ)とすると、 ρ°(λ〉−ρ(λ)0(i(s /A )(1−ρ1
(λ)/ρ(λ)))・・・・0(12) とな氏 また ρ1(λ)、sをρI(λ)〈<ρ(λ
)、S<<Aを満たすように選ぶことにより(12)式
1よρ′(λ)−ρ(λ)0(1(s /A )(1−
ρI(λ〉))・・・・0(13) で近似することができも 積分球の効率T(λ)は(1
2)、(13)式のρ′(λ)を(11)式のρ(λ)
に代入することにより求められも まず、光吸収シート5を積分球1内から除去した状態で
光源3を点灯した場合の受光器2の出カニーζ戴 (1
1)式の関係を用いて、I@=にρ/(1−ρ)   
   ・・・・・0(14)で表わされも ここF、 
 kは定数 ρは未知数であり積分球の内壁面の反射率
であも 次に 光吸収シート5を、第1図に示すように積分球l
の内壁面上に置いた場念 積分球下方には直射光が当た
らなl、1シたがって、受光器2の出力11は(11)
、(12)式か気 (kは定数〉・・・・0(15) で表わされ&  (14) &  (15)式において
、 S、A、 ρ1が既知であるの玄 連立方程式とし
て未知数ρとkを解くことができも すなわ板(14)
!(15ン式かム ただL  a = I +/ ■a c  = s / A Aは前記積分球の球内壁の面積 が得られも この関係により、光吸収シート1枚を用い
て、積分球1の内壁面の反射率を測定することができも 第2図G&  本発明第2の実施例を示すものであも 
第2図において、 1は積分域 2は受光像3は光猷 
4は遮光板 5は光吸収シートであも第2図において、
積分球1の内壁面の面積をA[が上 光吸収シート5の
面積をs[m”l 光吸収シート5の反射率をρ1とす
も 光源3は点光源とすも 遮光板4は光源3からの直
射光が受光器2に当たらないような位置に置かれていも
 受光器2(上 積分球Iの内壁面上の照度に比例した
信号を出力するものとすム また 以下の解析で(よ 
積分球lの内壁面の反射特性は完全拡散であり、積分球
1内の光の相互反射における遮光板4の影響は無視でき
るものとすも 第2図において、積分球内壁面反射率ρ(上 第1の実
施例と同様にして、(11)、(13)式から近似的に −a−b ρ=                   ・・・・
 (2〉(1−a)(1−b) ただし a = I I/ I・ b=(1−ρ1)s/Δ Aは前記積分球の球内壁の面積 が得られ この関係により、第1の実施例と同様にして
、光吸収シート1枚を用いて、積分球lの内壁面の反射
率を測定することができも本発明の第2の実施例(よ 
第1の実施例に比べて、少ない構成で実施することがで
き、積分球内の遮光板が減ること玄 容易に実施でき、
かつ測定精度を向上させることができも 第3図(友 本発明の第3の実施例を示すものであも 
第3図において、 1は積分域 2は受光器4は遮光板
 5は光吸収シート、 7は反射形ランプであも 第3
図の構成(友 第1図における遮光板6を除去し 光源
3を反射形ランプ7に置き換えたものであも 反射形ラ
ンプ7(よ 光吸収シート5を置く積分球lの壁面の位
置に光を放射しないものであり、反射形ランプ7を用い
ることにより、第1図における光11!3と遮光板6と
の組合せの効果と同等の効果を得ることができ、本発明
の第1の実施例と同様の手順で、(1)式により、積分
球内壁面反射率を測定することができも本発明の第3の
実施例は 第1の実施例に比べて、少ない構成で実施す
ることができ、積分球内の遮光板が減ることΔ 容易に
実施でき、か1測定端度を向上させることができも 第4図(友 本発明の第4の実施例である積分球内壁面
反射率測定方法を説明したものであも 第4図において
、 1は積分[2は受光像 4は遮光板 7は反射形ラ
ンプ、 8および9は光吸収シートであム 第4図にお
いて、積分球lの内壁面の面積をA[が1 光吸収シー
ト8の面積を431[10’1 反射率をρ1、光吸収
シート9の面積を82[が1反射率をρtとすも 遮光
板4は反射形ランプ7からの直射光が受光器2に当たら
ないような位置に置かれていも 受光器2(よ1積分球
1の内壁面上の照度に比例した信号を出力するものとす
ム反射形ランプ7ば 光吸収シート5を置く積分球1の
壁面の位置に光を放射しないものであム また 以下の
解析では 積分球1の内壁面の反射特性は完全拡散であ
り、積分球l内の光の相互反射における遮光板4の影響
は無視できるものとす氏ま衣 光吸収シート8および9
を積分球l内から除去した状態で反射形ランプ7を点灯
した場合の受光器2の出カニ0(よ 第1の実施例と同
a (14)式で表わされも 次に 光吸収シート8を、積分球1の内壁面上(第2図
の点線で示す)に置いた場合、受光器2の出力I+iよ
 (15)式と同様に 1−ρ(1−(s+/A)) −ρ1(s+/A)(k
は定数)・・・・0(16) 表わされも 次に 光吸収シート8を取り去り、同じ位置に光吸収シ
ート9を置いた場合、受光器2の出カニ2(よ (15
)式と同様阪 1−p(L−(st/A)) −9g(sa/A)(k
は定数)・・・・0(17) で表わされ4  (14)、(16)、(17)式から
なる連立方程式をρに対して解くことにより、積分球内
壁面反射率ρば ただL  a+=I+/Is ag=Ia/I・ となム この関係式か板 2枚の光吸収シート8および
9を用いて、積分球1の内壁面の反射率ρを測定するこ
とができも この実施例において(よ積分球の内壁面の
面積Aを知る必要がなく、 2種類の光吸収シートの個
々の面積および反射率を知るのみで、積分球内壁面反射
率を測定できるたべ精度の高い測定が可能となん 本発明第5の実施例として、図4の反射形ランプ7を点
光源に代えた場合が考えられも この場合、第4の実施
例と同様にして、(11)、(13)式か板(1−a+
H1−at)(1)I−1)2)ただj、、  a +
 = I + / I *a 2= I s/ I・ b+=s1(1−ρ1) be=se(1−ρ2) (b+≠bi) なる式が導かれ 第4の実施例と同様の手順で、(4)
式から積分球の内壁面の反射率を測定することができも 本発明の第6の実施例として、第4の実施例(第4図)
における2枚の光吸収シート8および9の面積を等しく
すれハ(3)式より、 31=32とおくことにより、 a  I−a  2 が導かれモ(5)式により、 2枚の光吸収シートの面
積を知る必要なく、積分球内壁面反射率ρを求めること
ができるので、さらに精度の高い測定をすることができ
も 本発明の第7の実施例として、第4図における反射型ラ
ンプ7を点光源に代え 2枚の光吸収シート8および9
を同じ材料で製作する場合を考えも このとき、 2枚
の光吸収シート8および9(よその反射率が等しいとみ
なすことができも したがって、(4)式により、 ρ
1=ρ2とおくことにより、ただL  d=sa/s+ が導かれモ(6)式より、 2種類の光吸収シートの反
射率をそれぞれ求める必要がなく、積分球内壁面反射率
ρを求めることができも 本発明の第8の実施例として、材料および面積がそれぞ
れ等しい単位シートを作成し 第7の実施例における光
吸収シート8を単位シート1次光吸収シート9を単位シ
ート2枚で構成すれば光吸収シートを作成する際に面積
を知る必要がなく、また光吸収シート8および9に用い
た単位シートの枚数の比が光吸収シート8および9の面
積比になるので便利であも 一般に 積分球の内壁面の反射率には波長選択性があん
 上記の第1〜第8の実施例で述べられている反射率ρ
、ρ1、ρ2(ヨ  内壁面の分光反射率を、光源の分
光分布の関数と受光器の分光応答度の関数との積の関数
で電価積分した値を意味す氏 たとえば 受光器の分光
応答度がV(λ)関数(標準比視感度)と等しければ 
ρ、ρ1、ρ2は光源に対する視感反射率として表わさ
れも 受光器がl波長のみ選択的に応答するものであれ
ばその波長をλとすると、分光反射率ρ(λ)を測定す
ることになん この場念 ρ1、ρ!L それぞれ ρ
1(λ)、ρ2(λ)で求めておくことになんこのよう
にして、受光器を分光測定器におきかえ各波長毎に実施
例1〜実施例8の測定を行なうことにより、積分球内壁
面の分光反射率ρ(λ)を測定することができも 第5図(友 本発明の第9の実施例である積分球内壁面
反射率測定方法を示したものであも 第5図において、
 lは積分凍 4は遮光K 7は反射形ランプ、 8お
よび9は光吸収シート、 10は分光測定器であも 反
射形ランプ7(友 光吸収シート5を置く積分球lの壁
面の位置に光を放射しないものである。光吸収シート8
および9の面積は等しいものとすも また 以下の解析
で(よ 積分球1の内壁面の反射特性は完全拡散であり
、積分球l内の光の相互反射における遮光板4の影響は
無視できるものとす′;6o  第6の実施例と同様に
光吸収シート8および9を積分球1内から取り出した状
態で各波長の分光測定器lOの出力II(λ)をまず測
定し 次に 光吸収シート8を積分球l内に置いた場合
の分光測定器10の出力I1(λ)を測定し 次に 光
吸収シート8を取り除いて、光吸収シート9を積分球l
内に置いた場合の分光測定器10の出力Is(λ)を測
定すると、(5)式におけるaI 、 a 2 + ρ
’ +ρ2を、 aI(λ)、 a 2(λ)、ρ1(
λ)、ρ2(λ)におきかえて、 ・・・・0(9) なる関係式により、積分球内壁面の分光反射率ρ(λ)
を求めることができも 本発明の第10の実施例として、第9の実施例(第5図
)における反射形ランプ7を点光源に代え 光吸収シー
ト8および9を同じ材料で製作した場合が考えられも 
第7または8の実施例において、(6)式におけるa 
l、 a 2.ρ1.ρ2を、 aI(λ)、as(λ
)、ρI(λ)、ρ2(λ)におきかえて、・・・・・
 (10) ただL   d  =   sa/s+a1(λ)=I
1(λ)/Is(λ) a之(λ)=I*(λ)/I0(λ) なる関係が得られも この関係式を用いることにより、
第9の実施例と同様の手順にて、光吸収シート8および
9の分光反射率ρ1(λ)、ρ2(λ)を知る必要なく
、それらの面積の比dだけを求めておけば 上記の比較
測定により積分球内壁面の分光反射率ρ(λ)を求める
ことができも発明の効果 以上のように 本発明による積分球内壁面反射率測定方
法(よ 積分球の効率の変化を測定して、内壁面の反射
率を逆算する方法であるた数 積分球が機能しているの
と同じ光学的条件(拡散入射/拡散反射)での反射率の
測定ができるた碌 原理的にきわめて確度が高t、% また 積分球の内壁面の反射率を容易に測定することが
可能になム さらに 通常に積分球を使用する状態で、
面積(相異なる)の知れた2枚の光吸収シート(反射率
は同じ)を用いることにより、その光吸収シートの反射
率や積分球の内壁の面積を知る必要なく、積分球の内壁
面の反射率を容易に測定することが可能になa また 
積分球に分光測定器を接続することにより、積分球の内
壁面の分光反射率をより容易に測定することが可能にな
ん 換言すれば 本発明は 容易にかつ高確度で積分球内壁
面反射率を測定する方法を実現するものであり、積分球
の(分光的)効率の校正負 内壁面の白色塗料のよごれ
や経年変化の実測など、積分球の特性評価に広く応用で
きる技術を提供するものであり、その実用性はきわめて
高(t
The measurement accuracy of commonly available reversible spectral reflectance meters is 1.
% or more, and T(λ) for the inner wall surface with high reflectance.
However, the error in the measurement of the inner wall surface of the integrating sphere is very large. ) In many cases, it is not possible to measure the spectral distribution of the light source outside and inside the integrating sphere. Also, this method requires a mechanism for attaching and detaching the spectrometer from the integrating sphere, and it is also necessary to measure while keeping the incident conditions the same, and the light level can vary widely. This invention is a method for solving the problem that there was no means to accurately and easily measure the reflectance of the inner wall surface of an integrating sphere using any of the conventional methods. Regarding the reflectance measurement method, it is characterized by placing a light-absorbing object inside an integrating sphere; it is characterized by interposing a light-shielding plate between the light-absorbing object and the light source; and it is also characterized by a reflective lamp as a light source. It is also characterized in that when multiple light-absorbing objects are used, their reflectances and shapes are made equal.The area A of the inner wall of the action integrating sphere and the area of the light-absorbing sheet are By knowing S and its reflectance ρ1, we can perform comparative measurements with and without a light absorption sheet inside the integrating sphere.
It is possible to find the inner wall reflectance ρ or ρ(λ) of the integrating sphere, and it is also necessary to know the area A of the inner wall of the integrating sphere and the area of the two light absorption sheets (if (3+=32) 2 The reflectance ρ or ρ(λ) of the inner wall of the integrating sphere can be determined by sequentially placing two light-absorbing sheets inside the integrating sphere and performing comparative measurements with the case without the light-absorbing sheet. Without knowing the area A of the inner wall of the sphere or the reflectance ρ1 and ρ of the two light-absorbing sheets (if ρ1 = ρ2), we can sequentially integrate the two light-absorbing sheets for which only the area ratio is known. The reflectance ρ or ρ(λ) of the inner wall surface of the integrating sphere can be determined by performing comparative measurements with the case where no light-absorbing sheet is inserted into the sphere. Figure 1 (above) illustrates the method for measuring the reflectance of the inner wall of an integrating sphere, which is the first embodiment of the present invention. Image 3 is a light beam 4 and 6 are light shielding [5 is a light absorption sheet a] In Fig. 1, the area of the inner wall surface of the integrating sphere 1 is A [m'], and the area of the light absorption sheet 5 is jjs [m"] , the reflectance of the light absorption sheet 5 is ρ1
The light source 3 is a point light source. Even if the light shielding plate 4 is placed in a position where the direct light from the light source 3 does not hit the light receiver 2, Even if it is placed in a position where it is not exposed to direct light.
It is assumed that the receiver 2 outputs a signal proportional to the illuminance on the inner wall surface of integrating sphere 1. In the following analysis, the reflection characteristics of the inner wall surface of integrating sphere 1 are completely diffuse, and the It is assumed that the influence of the light shielding plate 4 on the mutual reflection of light can be ignored.If a light-absorbing object is inserted into the integrating sphere, the apparent average reflectance of the inner wall of the integrating sphere will be lower than when it is not inserted. Although the efficiency T(λ) of the integrating sphere decreases greatly according to equation (11), on the inner wall surface of the integrating sphere whose inner wall surface area is A, there is a light absorption sheet whose area is S and whose reflectance is ρ1(λ). , the apparent average reflectance of the inner wall surface ρ′(
λ) is ρ°(λ〉−ρ(λ)0(i(s/A)(1−ρ1), where ρ(λ) is the true reflectance of the inner wall surface.
(λ)/ρ(λ)))...0(12) Mr. Tona also sets ρ1(λ), s to ρI(λ)<<ρ(λ
), S<<A is selected so that ρ′(λ)−ρ(λ)0(1(s/A)(1−
Although it can be approximated by ρI(λ〉))...0(13), the efficiency T(λ) of the integrating sphere is (1
2), ρ′(λ) in equation (13) is changed to ρ(λ) in equation (11)
First, when the light source 3 is turned on with the light absorption sheet 5 removed from the integrating sphere 1, the output light of the light receiver 2 ζdai (1
1) Using the relationship of formula, I@= to ρ/(1-ρ)
...Also expressed as 0 (14) Here F,
k is a constant and ρ is an unknown quantity, which is the reflectance of the inner wall surface of the integrating sphere.
Since no direct light hits the integrating sphere below the sphere placed on the inner wall of the sphere, the output 11 of the light receiver 2 is (11)
, (12) is expressed as (k is a constant)...0 (15) & In equations (14) & (15), S, A, and ρ1 are known, and the unknown is the simultaneous equation. It is possible to solve ρ and k, that is, board (14)
! (A 15-inch cam is calculated as follows: L a = I + / ■ a c = s / A A is the area of the inner wall of the integrating sphere.) Based on this relationship, using one light-absorbing sheet, The reflectance of the inner wall surface can be measured. Figure 2 G& shows the second embodiment of the present invention.
In Figure 2, 1 is the integral area, 2 is the received light image, and 3 is the light beam.
4 is a light shielding plate and 5 is a light absorbing sheet. In Fig. 2,
The area of the inner wall surface of the integrating sphere 1 is A[. The area of the light absorption sheet 5 is s [m"l. The reflectance of the light absorption sheet 5 is ρ1. The light source 3 is a point light source. The light shielding plate 4 is a light source. Even if the receiver 2 (upper) is placed in a position where the direct light from 3 does not hit the receiver 2, it will output a signal proportional to the illuminance on the inner wall surface of the integrating sphere I. Also, in the following analysis, (Yo
The reflection characteristic of the inner wall surface of the integrating sphere l is completely diffused, and the influence of the light shielding plate 4 on mutual reflection of light within the integrating sphere 1 can be ignored. In FIG. 2, the reflectance of the inner wall surface of the integrating sphere ρ( As in the first embodiment, -a-b ρ= . . . approximately from equations (11) and (13).
(2> (1-a) (1-b) where a = I I/I・b=(1-ρ1)s/Δ A is the area of the inner wall of the integrating sphere, and from this relationship, the first In the same manner as in the second embodiment of the present invention, it is possible to measure the reflectance of the inner wall surface of the integrating sphere l using one light-absorbing sheet.
Compared to the first embodiment, it can be implemented with fewer configurations, and the number of light shielding plates inside the integrating sphere can be reduced.
Moreover, the measurement accuracy can be improved.
In Fig. 3, 1 is an integral region, 2 is a light receiver 4 is a light shielding plate, 5 is a light absorption sheet, and 7 is a reflective lamp.
The structure of the figure (see Figure 1) is similar to that in which the light shielding plate 6 in Figure 1 is removed and the light source 3 is replaced with a reflective lamp 7. By using the reflective lamp 7, it is possible to obtain an effect equivalent to the effect of the combination of the light 11!3 and the light shielding plate 6 in FIG. Although the inner wall reflectance of the integrating sphere can be measured using equation (1) using the same procedure as in the example, the third embodiment of the present invention can be implemented with fewer configurations than the first embodiment. It is possible to reduce the number of light-shielding plates inside the integrating sphere, which can be easily carried out, and the measurement accuracy can be improved. In Figure 4, 1 is the integral, 2 is the received light image, 4 is the light shielding plate, 7 is the reflective lamp, and 8 and 9 are the light absorbing sheets. Assuming that the area of the inner wall surface of l is A[1, the area of light absorption sheet 8 is 431[10'1, the reflectance is ρ1, the area of light absorption sheet 9 is 82[1], the reflectance is ρt, and the light shielding plate 4 is Even if the light receiver 2 is placed in a position where the direct light from the reflective lamp 7 does not hit the light receiver 2, the light receiver 2 (1) outputs a signal proportional to the illuminance on the inner wall surface of the integrating sphere 1. The shaped lamp 7 does not emit light to the wall surface of the integrating sphere 1 on which the light absorption sheet 5 is placed.In addition, in the following analysis, the reflection characteristics of the inner wall surface of the integrating sphere 1 are completely diffused, and the inside of the integrating sphere 1 is It is assumed that the influence of the light shielding plate 4 on mutual reflection of light can be ignored.
When the reflective lamp 7 is turned on with the light-absorbing sheet removed from the integrating sphere l, the output of the light receiver 2 is 0 (y), which is the same as in the first embodiment. 8 is placed on the inner wall surface of the integrating sphere 1 (indicated by the dotted line in Figure 2), the output I+i of the receiver 2 is 1-ρ(1-(s+/A)) as in equation (15). −ρ1(s+/A)(k
is a constant)...0(16) Next, when the light absorption sheet 8 is removed and the light absorption sheet 9 is placed in the same position, the output crab 2 of the light receiver 2 (y (15)
) equation, Saka1-p(L-(st/A)) -9g(sa/A)(k
is a constant)...0(17) 4 By solving the simultaneous equations consisting of equations (14), (16), and (17) for ρ, we can calculate the inner wall reflectance ρ of the integrating sphere. L a+=I+/Is ag=Ia/I・tonam This relational expression can be used to measure the reflectance ρ of the inner wall surface of the integrating sphere 1 using the two light-absorbing sheets 8 and 9. In this example, there is no need to know the area A of the inner wall surface of the integrating sphere, and the reflectance of the inner wall surface of the integrating sphere can be measured by simply knowing the individual areas and reflectances of the two types of light absorption sheets. As a fifth embodiment of the present invention, the reflective lamp 7 in FIG. 4 may be replaced with a point light source. In this case, as in the fourth embodiment, (11), (13) Equation or plate (1-a+
H1-at) (1) I-1) 2) Just j,, a +
= I + / I * a 2 = I s / I · b + = s1 (1 - ρ1) be = se (1 - ρ2) (b + ≠ bi) The following formula was derived and the same procedure as in the fourth example was used. ,(4)
The reflectance of the inner wall surface of the integrating sphere can be measured from the formula.As a sixth embodiment of the present invention, the fourth embodiment (Fig. 4)
By setting the areas of the two light absorption sheets 8 and 9 to be equal, and setting 31 = 32 from equation (3), a I - a 2 is derived, and from equation (5), the light absorption of the two sheets is Since it is possible to determine the reflectance ρ of the inner wall surface of the integrating sphere without knowing the area of the sheet, it is possible to perform even more accurate measurement. Replace 7 with a point light source and use two light absorption sheets 8 and 9
Consider the case where the two light absorbing sheets 8 and 9 are made of the same material.The reflectance of the two light absorbing sheets 8 and 9 can be considered to be equal. Therefore, according to equation (4), ρ
By setting 1=ρ2, L d=sa/s+ is simply derived, and from Equation (6), there is no need to calculate the reflectance of the two types of light-absorbing sheets, and the inner wall reflectance ρ of the integrating sphere can be calculated. However, as an eighth embodiment of the present invention, unit sheets having the same material and area are created, and the light-absorbing sheet 8 in the seventh embodiment is replaced by a unit sheet, and the primary light-absorbing sheet 9 is replaced by two unit sheets. This configuration is convenient because it is not necessary to know the area when creating the light-absorbing sheets, and the ratio of the number of unit sheets used for the light-absorbing sheets 8 and 9 becomes the area ratio of the light-absorbing sheets 8 and 9. In general, there is no wavelength selectivity in the reflectance of the inner wall surface of the integrating sphere.The reflectance ρ described in the first to eighth embodiments above
, ρ1, ρ2 (Y) Means the value obtained by integrating the spectral reflectance of the inner wall surface with the product of the spectral distribution function of the light source and the spectral response function of the receiver. For example, spectral response of the receiver. If the degree is equal to the V(λ) function (standard luminous efficiency)
ρ, ρ1, and ρ2 are expressed as the luminous reflectance for the light source.If the receiver selectively responds to only one wavelength, then let that wavelength be λ, then measure the spectral reflectance ρ(λ). Ninnan Kojo Nen ρ1, ρ! L each ρ
1(λ) and ρ2(λ), replace the light receiver with a spectrometer and perform the measurements in Examples 1 to 8 for each wavelength. It is possible to measure the spectral reflectance ρ(λ) of the wall surface. ,
l is an integral freezer; 4 is a light-shielding K; 7 is a reflective lamp; 8 and 9 are light absorption sheets; 10 is a spectrometer; It does not emit light.Light absorption sheet 8
Assuming that the areas of and 9 are equal, in the following analysis, the reflection characteristics of the inner wall surface of integrating sphere 1 are completely diffuse, and the influence of light shielding plate 4 on the mutual reflection of light within integrating sphere 1 can be ignored. 6o As in the sixth embodiment, with the light absorption sheets 8 and 9 taken out from the integrating sphere 1, first measure the output II (λ) of the spectrometer lO for each wavelength, and then measure the light Measure the output I1 (λ) of the spectrometer 10 when the absorption sheet 8 is placed inside the integrating sphere l.Next, the light absorption sheet 8 is removed and the light absorption sheet 9 is placed inside the integrating sphere l.
When the output Is(λ) of the spectrometer 10 is measured when placed within, aI, a 2 + ρ in equation (5)
'+ρ2, aI(λ), a2(λ), ρ1(
λ) and ρ2(λ), the spectral reflectance ρ(λ) of the inner wall surface of the integrating sphere is calculated by the relational expression: ...0(9)
However, as a tenth embodiment of the present invention, there is a case where the reflective lamp 7 in the ninth embodiment (Fig. 5) is replaced with a point light source and the light absorption sheets 8 and 9 are made of the same material. unthinkable
In the seventh or eighth embodiment, a in equation (6)
l, a 2. ρ1. ρ2, aI(λ), as(λ
), ρI(λ), ρ2(λ),...
(10) Just L d = sa/s + a1 (λ) = I
1(λ)/Is(λ) a之(λ)=I*(λ)/I0(λ) By using this relational expression,
By following the same procedure as in the ninth embodiment, it is not necessary to know the spectral reflectances ρ1 (λ) and ρ2 (λ) of the light absorption sheets 8 and 9, and only the ratio d of their areas can be determined. The spectral reflectance ρ(λ) of the inner wall surface of an integrating sphere can be determined by comparative measurement. This is a method of back-calculating the reflectance of the inner wall surface.It is a method that can measure the reflectance under the same optical conditions (diffuse incidence/diffuse reflection) under which the integrating sphere is functioning.In principle, it is extremely accurate. It is also possible to easily measure the reflectance of the inner wall surface of the integrating sphere.
By using two light-absorbing sheets (with the same reflectance) with known areas (different), it is possible to calculate the inner wall surface of the integrating sphere without having to know the reflectance of the light-absorbing sheets or the area of the inner wall of the integrating sphere. It is now possible to easily measure reflectancea and
By connecting a spectrometer to the integrating sphere, it is possible to more easily measure the spectral reflectance of the inner wall surface of the integrating sphere.In other words, the present invention can easily and accurately measure the reflectance of the inner wall surface of the integrating sphere. This technology realizes a method for measuring the (spectral) efficiency of an integrating sphere, and provides a technology that can be widely applied to the evaluation of the characteristics of an integrating sphere, such as calibrating the (spectral) efficiency of an integrating sphere. , and its practicality is extremely high (t

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図は本発明の異なる実施例における積分
球内壁面反射率測定方法の説明図であも1・・積分[2
・・受光a 3・・光[4、6・・遮光板、 5、8、
9・・光吸収シート、 7・・反射形ランプ、 lO・
・分光測定器 代理人の氏名 弁理士小Nlx;’4 wfi  ほか
2名第 図 笛
FIGS. 1 to 5 are explanatory diagrams of methods for measuring the reflectance of the inner wall of an integrating sphere in different embodiments of the present invention.
... Light reception a 3 ... Light [4, 6 ... Light shielding plate, 5, 8,
9. Light absorption sheet, 7. Reflective lamp, lO.
・Name of spectrometer agent Patent attorney small Nlx;'4 wfi and 2 others Figure whistle

Claims (12)

【特許請求の範囲】[Claims] (1)内壁面の一部に受光器を有し、光源の特定方向の
放射光を遮蔽する遮光板を有することを特徴とする積分
球において、一定の光束をもつ光源を前記積分球内に点
灯した時の前記受光器からの出力をI_0、面積がsで
反射率がρ_1なる光吸収シートを前記遮光板によって
前記光源の放射光が遮蔽される前記積分球の壁面上に置
いて前記光源を点灯した場合の前記受光器出力をI_1
としたとき、 ρ={1−a(1−c・ρ_1)}/{1−a(1−c
)}・・・(1) ただし、a=I_1/I_0 c=s/A Aは前記積分球の球内壁の面積なる関係により、前記積
分球の壁面の反射率ρを求めることを特徴とする積分球
内壁面反射率測定方法。
(1) In an integrating sphere characterized by having a light receiver on a part of the inner wall surface and a light shielding plate that blocks emitted light from the light source in a specific direction, a light source with a constant luminous flux is placed inside the integrating sphere. When the light is turned on, the output from the light receiver is I_0, and a light absorption sheet having an area of s and a reflectance of ρ_1 is placed on the wall surface of the integrating sphere where the light emitted from the light source is blocked by the light shielding plate, and the light source is The output of the photoreceiver when the light is turned on is I_1.
When, ρ={1-a(1-c・ρ_1)}/{1-a(1-c
)}...(1) However, a=I_1/I_0 c=s/A A is characterized by determining the reflectance ρ of the wall surface of the integrating sphere based on the relationship of the area of the inner wall of the integrating sphere. A method for measuring the reflectance of the inner wall of an integrating sphere.
(2)内壁面の一部に受光器を有する積分球において、
一定の光束をもつ光源を前記積分球内に点灯した時の前
記受光器からの出力をI_0、面積がsで反射率がρ_
1なる光吸収シートを前記積分球の壁面上に置いて前記
光源を点灯した場合の前記受光器出力をI_1としたと
き、 ρ={1−a−b}/{(1−a)(1−b)}・・・
(2) ただし、a=I_1/I_0 b=(1−ρ_1)s/A Aは前記積分球の球内壁の面積なる関係により、前記積
分球の壁面の反射率ρを求めることを特徴とする積分球
内壁面反射率測定方法。
(2) In an integrating sphere that has a light receiver on a part of its inner wall,
When a light source with a constant luminous flux is lit inside the integrating sphere, the output from the receiver is I_0, the area is s, and the reflectance is ρ_
When the light absorbing sheet 1 is placed on the wall of the integrating sphere and the light source is turned on, the output of the light receiver is I_1, then ρ={1-a-b}/{(1-a)(1 -b)}...
(2) However, a=I_1/I_0 b=(1-ρ_1)s/A A is characterized by determining the reflectance ρ of the wall surface of the integrating sphere based on the relationship of the area of the inner wall of the integrating sphere. A method for measuring the reflectance of the inner wall of an integrating sphere.
(3)請求項1に記載の積分球内壁面反射率測定方法に
おいて、光源と、遮光板を用いる代わりに特定方向に光
を放射しない反射形ランプを用いることを特徴とする積
分球内壁面反射率測定方法。
(3) In the integrating sphere inner wall reflectance measuring method according to claim 1, the light source and the integrating sphere inner wall reflectance are characterized in that a reflective lamp that does not emit light in a specific direction is used instead of using a light shielding plate. rate measurement method.
(4)請求項1または3に記載の積分球内壁面反射率測
定方法において、面積s_1、反射率ρ_1なる光吸収
シートAおよび面積s_2、反射率ρ_2なる光吸収シ
ートBを置いた場合の受光器出力をそれぞれI_1、I
_2としたとき、 ρ={s_1(1−ρ_1・a_2)−s_2(1−ρ
_2・a_1)}/{s_1(1−a_2)−s_2(
1−a_1)}・・・(3) ただし、a_1=I_1/I_0 a_2=I_2/I_0 なる関係により、積分球内壁面の反射率ρを求めること
を特徴とする積分球内壁面反射率測定方法。
(4) In the integrating sphere inner wall reflectance measurement method according to claim 1 or 3, light reception when a light absorption sheet A having an area s_1 and a reflectance ρ_1 and a light absorption sheet B having an area s_2 and a reflectance ρ_2 are placed. The device outputs are I_1 and I, respectively.
When _2, ρ={s_1(1-ρ_1・a_2)-s_2(1-ρ
_2・a_1)}/{s_1(1-a_2)-s_2(
1-a_1)}...(3) However, a_1=I_1/I_0 a_2=I_2/I_0 A method for measuring the reflectance of the inner wall surface of an integrating sphere, characterized by determining the reflectance ρ of the inner wall surface of the integrating sphere. .
(5)請求項2に記載の積分球内壁面反射率測定方法に
おいて、面積がs_1、反射率ρ_1なる光吸収シート
Aおよび面積s_2、反射率ρ_2なる光吸収シートB
を置いた場合の受光器出力をそれぞれI_1、I_2と
したとき、 ρ={b_1(a_2−1)−b_2(a_1−1)}
/{(1−a_1)(1−a_2)(b_1−b_2)
}・・・(4) ただし、a_1=I_1/I_0 a_2=I_2/I_0 b_1=s_1(1−ρ_1) b_2=s_2(1−ρ_2) (b_1≠b_2) なる関係により、積分球壁面反射率ρを求めることを特
徴とする積分球内壁面反射率測定方法。
(5) In the integrating sphere inner wall reflectance measurement method according to claim 2, light absorption sheet A has an area of s_1 and a reflectance of ρ_1, and light absorption sheet B has an area of s_2 and a reflectance of ρ_2.
When the receiver outputs are I_1 and I_2, respectively, ρ={b_1(a_2-1)-b_2(a_1-1)}
/{(1-a_1) (1-a_2) (b_1-b_2)
}...(4) However, a_1=I_1/I_0 a_2=I_2/I_0 b_1=s_1(1-ρ_1) b_2=s_2(1-ρ_2) (b_1≠b_2) According to the relationship, the integral sphere wall reflectance ρ A method for measuring the reflectance of an inner wall of an integrating sphere, which is characterized by determining .
(6)請求項4に記載の積分球内壁面反射率測定方法に
おいて、光吸収シートAおよび光吸収シートBの面積を
、s_1=s_2のように選ぶことにより、ρ={ρ_
2・a_1−ρ_1・a_2}/{a_1−a_2)}
・・・(5) なる関係により、積分球の壁面の反射率ρを求めること
を特徴とする積分球内壁面反射率測定方法。
(6) In the integrating sphere inner wall reflectance measurement method according to claim 4, by selecting the areas of the light absorption sheet A and the light absorption sheet B as s_1=s_2, ρ={ρ_
2・a_1−ρ_1・a_2}/{a_1−a_2)}
(5) A method for measuring the reflectance of an inner wall of an integrating sphere, characterized by determining the reflectance ρ of the wall of the integrating sphere from the following relationship.
(7)請求項5に記載の積分球内壁面反射率測定方法に
おいて、光吸収シートAおよび光吸収シートBの反射率
を、ρ_1=ρ_2のように選ぶことにより、ρ={a
_2−1−d(a_1−1)}/{(1−a_1)(1
−a_2)(1−d)}・・・(6)ただし、d=s_
2/s_1 なる関係により、積分球壁面反射率ρを求めることを特
徴とする積分球内壁面反射率測定方法。
(7) In the integrating sphere inner wall reflectance measuring method according to claim 5, by selecting the reflectance of the light absorption sheet A and the light absorption sheet B as ρ_1=ρ_2, ρ={a
_2-1-d(a_1-1)}/{(1-a_1)(1
-a_2)(1-d)}...(6) However, d=s_
2/s_1 A method for measuring inner wall reflectance of an integrating sphere, characterized in that the wall reflectance ρ of an integrating sphere is determined by the relationship: 2/s_1.
(8)請求項4または5に記載の積分球内壁面反射率測
定方法において、面積の等しい光吸収シートを単数もし
くは複数用いて、光吸収シートAおよびBを構成するこ
とを特徴とした積分球内壁面反射率測定方法。
(8) In the integrating sphere inner wall reflectance measuring method according to claim 4 or 5, the integrating sphere comprises one or more light absorbing sheets having the same area to constitute the light absorbing sheets A and B. Inner wall reflectance measurement method.
(9)請求項1または3に記載の積分球内壁面反射率測
定方法において、受光器を分光測定器に置き換え、I_
0、I_1を各波長において測定した値をI_0(λ)
、I_1(λ)とするとき、 ρ={1−a(λ)(1−c・ρ_1(λ))}/{1
−a(λ)(1−c)}・・・(7) ただし、a(λ)=I_1(λ)/I_0(λ)c=s
/A Aは前記積分球の球内壁の面積 ρ_1(λ)は光吸収シートの分光反射率 なる関係により、積分球内壁面の分光反射率ρ(λ)を
求めることを特長とする積分球内壁面反射率測定方法。
(9) In the integrating sphere inner wall reflectance measuring method according to claim 1 or 3, the light receiver is replaced with a spectrometer, and I_
0, I_1 at each wavelength is measured as I_0(λ)
, I_1(λ), then ρ={1-a(λ)(1-c・ρ_1(λ))}/{1
-a(λ)(1-c)}...(7) However, a(λ)=I_1(λ)/I_0(λ)c=s
/A A is the area of the inner wall of the integrating sphere where the area ρ_1(λ) of the inner wall of the integrating sphere is the spectral reflectance of the light absorption sheet, and the spectral reflectance ρ(λ) of the inner wall surface of the integrating sphere is determined from the relationship. Wall reflectance measurement method.
(10)請求項2に記載の積分球内壁面反射率測定方法
において、受光器を分光測定器に置き換え、I_0、I
_1を各波長において測定した値をI_0(λ)、I_
1(λ)と表わし、 ρ={1−a(λ)−b(λ)}/{(1−a(λ))
(1−b(λ))}・・・(8)ただし、a(λ)=I
_1(λ)/I_0(λ)b(λ)=(1−ρ_1(λ
))s/AAは前記積分球の球内壁の面積 ρ_1(λ)は光吸収シートの分光反射率 なる関係により、前記積分球の壁面の分光反射率ρ(λ
)を求めることを特徴とする積分球内壁面反射率測定方
法。
(10) In the integrating sphere inner wall reflectance measuring method according to claim 2, the light receiver is replaced with a spectrometer, and I_0, I
The value of _1 measured at each wavelength is I_0(λ), I_
1(λ), ρ={1-a(λ)-b(λ)}/{(1-a(λ))
(1-b(λ))}...(8) However, a(λ)=I
_1(λ)/I_0(λ)b(λ)=(1-ρ_1(λ
)) s/AA is the area ρ_1(λ) of the inner wall of the integrating sphere and the spectral reflectance of the light absorption sheet, so the spectral reflectance ρ(λ) of the wall of the integrating sphere is
) is a method for measuring the reflectance of an inner wall of an integrating sphere.
(11)請求項6に記載の積分球内壁面反射率測定方法
において、受光器を分光器に置き換え、I_0、I_1
、I_2を各波長において測定した値をI_0(λ)、
I_1(λ)、I_2(λ)とするとき、 ρ={ρ_2(λ)・a_1(λ)−ρ_1(λ)・a
_2(λ)}/{a_1(λ)−a_2(λ)}・・・
(9)なる関係により、前記積分球の壁面の分光反射率
ρ(λ)を求めることを特徴とする積分球内壁面反射率
測定方法。
(11) In the integrating sphere inner wall reflectance measuring method according to claim 6, the light receiver is replaced with a spectrometer, I_0, I_1
, I_2 at each wavelength is I_0(λ),
When I_1(λ) and I_2(λ), ρ={ρ_2(λ)・a_1(λ)−ρ_1(λ)・a
_2(λ)}/{a_1(λ)-a_2(λ)}...
(9) A method for measuring the reflectance of an inner wall of an integrating sphere, characterized in that the spectral reflectance ρ(λ) of the wall of the integrating sphere is determined by the following relationship.
(12)請求項7または8に記載の積分球内壁面反射率
測定方法において、受光器を分光器に置き換えI_0、
I_1、I_2を各波長において測定した値をI_0(
λ)、I_1(λ)、I_2(λ)とするとき、ρ={
a_2(λ)−1−d(a_1(λ)−1)}/{(1
−a_1(λ))(1−a_2(λ))(1−d)}・
・・(10)ただし、d=s_2/S_1 a_1(λ)=I_1(λ)/I_0(λ)a_2(λ
)=I_2(λ)/I_0(λ)なる関係により前記積
分球の壁面の分光反射率ρ(λ)を求めることを特徴と
する積分球内壁面反射率測定方法。
(12) In the integrating sphere inner wall reflectance measuring method according to claim 7 or 8, the light receiver is replaced with a spectrometer I_0,
I_0(
λ), I_1(λ), I_2(λ), then ρ={
a_2(λ)-1-d(a_1(λ)-1)}/{(1
-a_1(λ))(1-a_2(λ))(1-d)}・
...(10) However, d=s_2/S_1 a_1(λ)=I_1(λ)/I_0(λ)a_2(λ
)=I_2(λ)/I_0(λ) A method for measuring inner wall reflectance of an integrating sphere, characterized in that the spectral reflectance ρ(λ) of the wall surface of the integrating sphere is determined by the relationship:
JP22317190A 1989-12-28 1990-08-23 Measuring method of wall reflectance in integrating sphere Expired - Lifetime JPH0797065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22317190A JPH0797065B2 (en) 1989-12-28 1990-08-23 Measuring method of wall reflectance in integrating sphere

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34264989 1989-12-28
JP1-342649 1989-12-28
JP22317190A JPH0797065B2 (en) 1989-12-28 1990-08-23 Measuring method of wall reflectance in integrating sphere

Publications (2)

Publication Number Publication Date
JPH03233338A true JPH03233338A (en) 1991-10-17
JPH0797065B2 JPH0797065B2 (en) 1995-10-18

Family

ID=26525312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22317190A Expired - Lifetime JPH0797065B2 (en) 1989-12-28 1990-08-23 Measuring method of wall reflectance in integrating sphere

Country Status (1)

Country Link
JP (1) JPH0797065B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359406A (en) * 1992-05-15 1994-10-25 Matsushita Electric Industrial Co., Ltd. Luminous flux measuring apparatus which calculates spectral efficiencies for error compensation
US8625088B2 (en) 2009-12-01 2014-01-07 Korean Research Institute Of Standards And Science Integrating sphere photometer and measuring method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359406A (en) * 1992-05-15 1994-10-25 Matsushita Electric Industrial Co., Ltd. Luminous flux measuring apparatus which calculates spectral efficiencies for error compensation
US8625088B2 (en) 2009-12-01 2014-01-07 Korean Research Institute Of Standards And Science Integrating sphere photometer and measuring method of the same

Also Published As

Publication number Publication date
JPH0797065B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
JP3406640B2 (en) Portable spectrophotometer
US8072607B2 (en) Measuring device for measuring optical properties of transparent substrates
CN107870149B (en) Method and device for measuring spectrum and use thereof
US3572951A (en) Single mirror normal incidence reflectometer
WO2015010434A1 (en) Apparatus and method for measuring reflection characteristic of material
JP3014216B2 (en) Spectral radiation flux measuring device and total luminous flux measuring device
JPH0248054B2 (en)
US3245306A (en) Photometer and method
JPS5979841A (en) Apparatus for measuring absolute reflectivity
Clarke High accuracy spectrophotometry at the National Physical Laboratory
JPH03233338A (en) Integrating sphere inner wall reflectance measuring method
KR100302547B1 (en) Multifunctional Spectrophotometer with CCD detector and Integrating Sphere
JP2615913B2 (en) Infrared optical device
JPS6010132A (en) Optical measuring instrument
CN207231628U (en) A kind of architecture indoor daylighting measures detecting system
US4737651A (en) Optical apparatus for the measurement of coat weight of coated products
SU654853A1 (en) Photometric contact-free method of measuring non-transparent specimen roughness height
JPS61233328A (en) Colorimetric color difference meter
JPH0619324B2 (en) Spectral transmittance measurement method
JP2006242822A (en) Optical measuring device
JPH04204218A (en) Method for measuring spectral response of spherical integrating photometer
Hanssen et al. Nonimaging optics and the measurement of diffuse reflectance
JPH08136445A (en) Absorbance measuring device for liquid
Feng et al. Realization of diffuse reflectance in 3um-14um based on auxiliary integrating sphere method
CN113984679A (en) Light path structure capable of measuring multiple trace elements

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 15

EXPY Cancellation because of completion of term