JPH03233126A - Exhaust gas purifier of engine - Google Patents

Exhaust gas purifier of engine

Info

Publication number
JPH03233126A
JPH03233126A JP2028010A JP2801090A JPH03233126A JP H03233126 A JPH03233126 A JP H03233126A JP 2028010 A JP2028010 A JP 2028010A JP 2801090 A JP2801090 A JP 2801090A JP H03233126 A JPH03233126 A JP H03233126A
Authority
JP
Japan
Prior art keywords
engine
regeneration
amount
particulates
trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2028010A
Other languages
Japanese (ja)
Other versions
JP2543608B2 (en
Inventor
Nobukazu Kanesaki
兼先 伸和
Yoshiki Sekiya
関谷 芳樹
Motohiro Niizawa
元啓 新沢
Shunichi Aoyama
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2801090A priority Critical patent/JP2543608B2/en
Publication of JPH03233126A publication Critical patent/JPH03233126A/en
Application granted granted Critical
Publication of JP2543608B2 publication Critical patent/JP2543608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To judge an appropriate regeneration timing regardless of engine performance deterioration and so forth, by obtaining an integrated amount of accumulated particulates, based on an output from an air-fuel ratio sensor. CONSTITUTION:Particulates discharge amount DELTAMp per unit time DELTAt is obtained, according to an output VA/F of an exhaust gas air-fuel ratio sensor 56 and to engine speed Ne at that time, by an accumulated amount calculating means 57. The discharge amount DELTAMp provides particulates discharge amount suited to the engine condition of performance degradation with good accuracy. The accumulating amount DELTAMp is integrated by a means 58 every unit time, a judgement means 59 judges whether it is at a regeneration timing or not based on the integrated value Mp, and a control means 60 controls a temperature raising device 54 so that a trap 53 may be regenerated at regeneration timing. As a result, regeneration is not carried out neither at too early timing nor too late timing even if performance degradation occurs on an engine itself or its fuel injection system.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はエンジンの排気浄化装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine exhaust purification device.

(従来の技術) 排気中に含まれるカーボン等の微粒子(パーティキュレ
ート)を排気通路に備えたトラップで捕集するようにし
であるエンジン(特にディーゼルエンジン)では、パー
ティキュレートの堆積により排気圧力が過度に上昇し、
エンジンおよびエミッション性能を低下させるため、堆
積され−たパーティキュレートを所定の時期に燃焼させ
トラップを再生する装置が設けられている(特開昭58
−51235号公報、SAEペーパー850015参照
)これを第8図で説明すると、エンジン1から排出され
るパーティキュレートは排気通路2に介装される耐熱性
フィルタ構造のトラップ3にて捕集される。
(Prior art) In engines (particularly diesel engines) in which particulates such as carbon contained in exhaust gas are collected in a trap provided in the exhaust passage, the exhaust pressure may become excessive due to the accumulation of particulates. rose to
In order to reduce engine and emission performance, a device is provided to regenerate the trap by burning the accumulated particulates at a predetermined time (Japanese Patent Laid-Open No. 58
(Refer to Publication No. 51235, SAE Paper 850015) To explain this with reference to FIG. 8, particulates discharged from the engine 1 are collected by a trap 3 having a heat-resistant filter structure interposed in the exhaust passage 2.

一方、吸ス通路5に吸気流量を絞るバタフライ型絞り弁
6が設けられ、この絞り弁6には、一端部が絞り弁6の
弁軸に固定され他端部がロッド8dに回動自由に取り付
けられるレバー7を介して、ダイヤプラム7クチユエー
タ8が連結される。
On the other hand, a butterfly-type throttle valve 6 is provided in the suction passage 5 to throttle the intake flow rate, and this throttle valve 6 has one end fixed to the valve shaft of the throttle valve 6 and the other end rotatably attached to a rod 8d. The diaphragm 7 and the cutuator 8 are connected via the attached lever 7.

このアクチュエータ8と、アクチュエータ8の圧力室8
bに導かれる制御負圧を制御装置15カ・らのデユーテ
ィ信号に応じて変化させ得る電磁弁9とから絞り弁駆動
装置が構成される。たとえば、デユーティ信号のデユー
ティ値(開弁時間割合)を増加させて、圧力室8bへの
負圧を強めると、ダイヤフラム8aがリターンスプリン
グ8Cに抗してロッド8dを図で右方へと移動させるの
で、絞り弁6が閉じていく。10は負圧ポンプである。
This actuator 8 and the pressure chamber 8 of the actuator 8
A throttle valve drive device is constituted by an electromagnetic valve 9 that can change the control negative pressure guided by the control device 15 in response to a duty signal from the control device 15 and the like. For example, when the duty value (valve opening time ratio) of the duty signal is increased to strengthen the negative pressure in the pressure chamber 8b, the diaphragm 8a moves the rod 8d to the right in the figure against the return spring 8C. Therefore, the throttle valve 6 closes. 10 is a negative pressure pump.

制御装置15には、燃料噴射ポンプ11にそれぞれ設け
られたエンジン1の負荷センサ12と回転数センサ13
、絞り弁6下流の吸気通路5に設けられた吸気圧センサ
14等からの信号が入力され、制御装置15では以下の
制御を行なう。
The control device 15 includes a load sensor 12 and a rotation speed sensor 13 of the engine 1, which are respectively provided in the fuel injection pump 11.
, signals from the intake pressure sensor 14 and the like provided in the intake passage 5 downstream of the throttle valve 6 are input, and the control device 15 performs the following control.

所定の走行距離や走行時間等からトラップ3の再生時期
にあると判断された場合に、そのときのエンジンの負荷
と回転数から定まる運転条件が、多量の余剰空気がエン
ジン1に流入する運転状態にあるかどうかを判定する。
When it is determined that it is time to regenerate the trap 3 based on the predetermined travel distance, travel time, etc., the operating conditions determined from the engine load and rotation speed at that time are the operating conditions in which a large amount of surplus air flows into the engine 1. Determine whether it is.

この運転状態にあることが判定されると、絞り弁6が所
定の角度まで閉じられるように、デユーティ信号を出力
し、かつ制御精度を高めるため吸気圧センサ14からの
信号に基づいて、紋り弁6下流の吸気負圧が略−定とな
るようにフィードバック制御する。
When it is determined that this operating state is present, a duty signal is output so that the throttle valve 6 is closed to a predetermined angle, and a duty signal is output based on the signal from the intake pressure sensor 14 to improve control accuracy. Feedback control is performed so that the intake negative pressure downstream of the valve 6 is approximately constant.

このようにして、エンジン1への空気導入量を減少させ
ると、排気温度が上昇するので、温度上昇した排気の熱
でトラップ3に捕集されたパーティキュレートが再燃焼
され、トラップ3が再生される。
In this way, when the amount of air introduced into the engine 1 is reduced, the exhaust temperature increases, so the particulates collected in the trap 3 are re-burned by the heat of the raised exhaust gas, and the trap 3 is regenerated. Ru.

(発明が解決しようとする課題) ところで、このような装置では、走行距離や走行時間か
ら再生時期が判断されるので、同じ走行距離や走行時間
でも、加減速を多く含む市街地走行であったかあるいは
郊外や高速道路での定常の多い走行であったか等、エン
ジンの使用条件が異なると、トラップに捕集されるパー
ティキュレートの量が大きく異なってくる。
(Problem to be Solved by the Invention) By the way, with such a device, the regeneration timing is determined based on the mileage and time, so even if the mileage and time are the same, if the trip was in a city area or in a suburb with many accelerations and decelerations. The amount of particulates collected in the trap will vary greatly depending on the operating conditions of the engine, such as whether the engine was driven regularly or on a highway.

このため、再生時期が早すぎて燃費が悪くなったり逆に
再生時期が遅すぎてパーティキュレート捕集1が限界を
越え、再生を行ったときには急激にパーティキュレート
が燃焼してトラップが溶損したりする。
For this reason, if the regeneration time is too early, fuel efficiency will deteriorate, or conversely, if the regeneration time is too late, particulate collection 1 will exceed its limit, and when regeneration is performed, the particulates will suddenly burn and the trap will melt. do.

さらに、経時変化によりエンジン自体や燃料噴射系の性
能が劣化してくると、エンジンから排出されるパーティ
キュレートの量が異なってくるので、これが再生時期の
判断を狂わせる。
Furthermore, if the performance of the engine itself or the fuel injection system deteriorates over time, the amount of particulates discharged from the engine will vary, which will disrupt the judgment of when to regenerate.

一方、トラップ前後差圧を検出し、この圧力検出値が所
定値を越えると、再生時期であると判断するものがある
。このものでは、センサの信頼性(耐熱性等)に問題が
あり、またトラップ担体が水分を吸着すると、これが測
定誤差として生ずる。
On the other hand, some devices detect the differential pressure across the trap and determine that it is time for regeneration when the detected pressure value exceeds a predetermined value. This method has problems with sensor reliability (heat resistance, etc.), and when the trap carrier absorbs moisture, this results in measurement errors.

この発明はこのような従来の課題に着目してなされたも
ので、エンジンからのパーティキュレート排出量と空燃
比との間に相関があることに着目し、空燃比センサ出力
に基づいてパーティキュレート捕集量の積算値を求める
ことにより、エンジンの性能劣化等があっても良好な再
生時期の判定精度の維持をはかる装置を提供することを
目的とする。
This invention was made in view of these conventional problems, and focused on the fact that there is a correlation between the amount of particulate emissions from the engine and the air-fuel ratio, and it is possible to capture particulates based on the air-fuel ratio sensor output. It is an object of the present invention to provide a device that maintains good regeneration timing determination accuracy even if there is deterioration in engine performance by calculating the integrated value of the collected amount.

(課題を解決するための手段) この発明は、第1図で示すように、排気中のパーティキ
ュレートを捕集し再生温度以上になると捕集したパーテ
ィキュレートを再燃焼させるトラップ53と、このトラ
ップ53を昇温させる装置54と、排気空燃比を検出す
゛るセンサ56と、この空燃比センサ出力■A/Fに応
じて単位時間当たりのパーティキュレート捕集量ΔMP
を計算する手段57と、この捕集量ΔMPを単位時間ご
とに積算する手段58と、この積算値MPより再生時期
にあるかどうかを判定する手段59と、再生時期になる
と前記トラップ53が再生されるように前記昇温装置5
4を制御する手段60とを設けた。
(Means for Solving the Problems) As shown in FIG. 1, the present invention includes a trap 53 that collects particulates in exhaust gas and re-burns the collected particulates when the temperature reaches a regeneration temperature or higher; 53, a sensor 56 that detects the exhaust air-fuel ratio, and an output of this air-fuel ratio sensor ■Amount of particulates collected per unit time ΔMP according to A/F.
means 57 for calculating the collected amount ΔMP, means 58 for integrating the collected amount ΔMP for each unit time, means 59 for determining whether or not it is time for regeneration based on this integrated value MP; The temperature increasing device 5
Means 60 for controlling 4 is provided.

(作用) そのときの空燃比センサ出力V A/Fに応じて単位時
間当たりのパーティキュレート排出1軒が求められると
、このmpは性能劣化を生じたエンジン状態に応じたパ
ーティキュレート排出量を精度良く与える。
(Function) When one particulate emission per unit time is determined according to the air-fuel ratio sensor output V A/F at that time, this mp calculates the particulate emission amount according to the engine condition that caused the performance deterioration. Give well.

この結果、エンジン自体や燃料噴射系に性能劣化を生じ
ても、再生時期が早すぎたり遅すぎたりすることがない
As a result, even if performance deterioration occurs in the engine itself or the fuel injection system, the regeneration timing will not be too early or too late.

(実施例) 第2図はこの発明の一実施例のシステム図である。図に
おいて、6は吸気通路5に設けられる常開のバタフライ
型絞り弁で、この吸気絞り弁6にはダイヤ7ラムアクチ
ユエータ8が連結される。
(Embodiment) FIG. 2 is a system diagram of an embodiment of the present invention. In the figure, 6 is a normally open butterfly type throttle valve provided in the intake passage 5, and a diamond 7 ram actuator 8 is connected to this intake throttle valve 6.

このアクチュエータ8の圧力室と負圧源(たとえば負圧
ポンプ)とを連通ずる通路には三方電磁弁19が介装さ
れ、この電磁弁19をOFFからONにすると、アクチ
ュエータ8の圧力室に大気圧に代えて一定圧の負圧が導
入され、吸気絞り弁6が一定角度まで閉じられる。アク
チュエータ8と電磁弁19は吸気絞り弁駆動装置を構成
する。
A three-way solenoid valve 19 is interposed in a passage that communicates the pressure chamber of the actuator 8 with a negative pressure source (for example, a negative pressure pump), and when this solenoid valve 19 is turned on from OFF, a large A constant negative pressure is introduced instead of atmospheric pressure, and the intake throttle valve 6 is closed to a constant angle. The actuator 8 and the solenoid valve 19 constitute an intake throttle valve driving device.

同様にして、トラップ3上流の排気通路2に常開のバタ
フライ型絞り弁21が、排気絞り弁21の上流よりこの
絞り弁21とトラップ3をバイパスする通路24に常閉
のバタフライ型バイパス弁25がそれぞれ設けられる。
Similarly, a normally open butterfly type throttle valve 21 is provided in the exhaust passage 2 upstream of the trap 3, and a normally closed butterfly type bypass valve 25 is provided in the passage 24 that bypasses this throttle valve 21 and the trap 3 from upstream of the exhaust throttle valve 21. are provided respectively.

排気絞り弁21に連結されるダイヤプラムアクチュエー
タ22と三方電磁弁23とから排気絞り弁駆動装置が、
またバイパス弁25に連結されるダイヤ7ラムアクチユ
エータ26と三方電磁弁27からバイパス弁駆動装置が
構成される。
An exhaust throttle valve driving device includes a diaphragm actuator 22 and a three-way solenoid valve 23 connected to the exhaust throttle valve 21.
A bypass valve driving device is constituted by a seven-diamond ram actuator 26 connected to the bypass valve 25 and a three-way solenoid valve 27.

トラップ3の上流側にはこれに近接してヒータ29が設
けられ、コントロールユニット41からの通電信号を受
けるとトラップ3を加熱する。
A heater 29 is provided close to the upstream side of the trap 3, and heats the trap 3 upon receiving an energization signal from the control unit 41.

こうして設けられた吸気絞ワ弁6とその駆動装置、排気
絞り弁21とその駆動装置、バイパス弁25とその駆動
装置、ヒータ29とその通電装置は第1図の昇温装置5
4を構成する。
The intake throttle valve 6 and its driving device provided in this way, the exhaust throttle valve 21 and its driving device, the bypass valve 25 and its driving device, and the heater 29 and its energizing device are the temperature raising device 5 of FIG.
4.

31は空燃比センサで排気中の空燃比に応じた出力V 
A/Fをする。32は熱電対からなる温度センサで、排
気温度TEXを検出する。34はエンジン1の回転数N
eを検出するセンサ(クランク角センサ)、35はポテ
ンショメータから構成されアクセルレバ−開度(エンジ
ン負荷)Qを検出するセンサ、36は冷却水温T―を検
出するセンサである。
31 is an air-fuel ratio sensor that outputs V according to the air-fuel ratio in the exhaust gas.
Turn on A/F. A temperature sensor 32 includes a thermocouple and detects the exhaust gas temperature TEX. 34 is the rotation speed N of engine 1
A sensor (crank angle sensor) 35 detects the accelerator lever opening (engine load) Q, which is composed of a potentiometer, and a sensor 36 detects the cooling water temperature T-.

これらセンサからの信号は、マイクロコンピュータから
なるコントロールユニット41に入力され、コントロー
ルユニット41でハ@ 3 図ト第4図に示すところに
したがって、3つの三方電磁弁19.23.27にON
、OFF信号を、ヒータ29に通電信号をそれぞれ出力
する。
Signals from these sensors are input to a control unit 41 consisting of a microcomputer, and the control unit 41 turns on three three-way solenoid valves 19, 23, and 27 according to the steps shown in Figures 3 and 4.
, an OFF signal, and an energization signal to the heater 29, respectively.

第3図は再生時期を判断するためのルーチンである。FIG. 3 shows a routine for determining the reproduction time.

SlとS2ではエンノン回転数Neと空燃比センサ出力
V A/Fを読み込む。
In Sl and S2, the engine speed Ne and the air-fuel ratio sensor output V A/F are read.

S3ではパーティキュレート捕集量の積算時期かどうか
みて、積算時期であればS4に進む。積算時期は一定の
時間間隔Δt(単位時間)で訪れる。
In S3, it is checked whether it is the time to integrate the amount of collected particulates, and if it is the time to integrate, the process advances to S4. The integration time comes at a constant time interval Δt (unit time).

S4と85は第1図の捕集量計算手段57の機能を果た
す部分である。まず、S4ではエンジンからの単位時間
Δを当たりのパーティキュレート排出量mp[g/ b
]をマツプ検索により求める。この01Pのマツプ特性
を第7図に示す。第5図で示すように、同一の回転数N
eであれば、空燃比A/Fがリッチになるほどmpが増
加し、空燃比A/Fが同じであれば回転数Neが増加す
るほどnapが増加する。一方、空燃比センサ出力V 
A/Fは空燃比A/Fに対して第6図の特性を有するの
で、第5図の横軸を空燃比A/Fから空燃比センサ出力
■A/Fに変換してmpの特性を描き直せば第7図の特
性となるのである。第7図のマツプはROMに記憶させ
ておく。
S4 and 85 are parts that perform the function of the collection amount calculation means 57 in FIG. First, in S4, the unit time Δ from the engine is expressed as the particulate emission amount mp [g/b
] is found by map search. The map characteristics of this 01P are shown in FIG. As shown in Figure 5, the same rotational speed N
If e, mp increases as the air-fuel ratio A/F becomes richer, and nap increases as the rotational speed Ne increases if the air-fuel ratio A/F is the same. On the other hand, air-fuel ratio sensor output V
Since A/F has the characteristics shown in Fig. 6 with respect to the air-fuel ratio A/F, the horizontal axis in Fig. 5 is converted from the air-fuel ratio A/F to the air-fuel ratio sensor output ■A/F to obtain the characteristics of mp. If we redraw it, we get the characteristics shown in Figure 7. The map shown in FIG. 7 is stored in the ROM.

第7図において、エンジン負荷Qでなく、空燃比センサ
出力V A/Fをパラメータとする理由は燃料噴射ポン
プ、噴射ノズル等の燃料噴射系やエンジン自体に生ずる
性能劣化の影響を受けないようにするためである。たと
えば、噴射ノズルに経時変化に伴う目詰まりを生じると
、燃料噴射量の減少により空燃比がリーン側にずれるた
め、エンジンからのパーティキュレート排出量が減少す
る。
In Figure 7, the reason why the air-fuel ratio sensor output V A/F is used as a parameter instead of the engine load Q is to avoid being affected by performance deterioration that occurs in the fuel injection system such as the fuel injection pump and injection nozzle, or the engine itself. This is to do so. For example, when an injection nozzle becomes clogged over time, the air-fuel ratio shifts to the lean side due to a decrease in the amount of fuel injected, resulting in a decrease in the amount of particulate emissions from the engine.

つまり、エンジン負荷Qに応じてImpを定めであると
、この減少量が誤差として生じる。
In other words, if Imp is determined according to the engine load Q, this amount of decrease will occur as an error.

これに対して、空燃比センサ出力V A/Fによるので
あれば、性能劣化に伴って空燃比がリーンやリッチのい
ずれの側にずれても、そのずれた空燃比に対して、エン
ジンからのパーティキュレート排出量が求められるので
あるから、誤差を生じなくとも済むのである。
On the other hand, if the air-fuel ratio sensor output V A/F is used, no matter whether the air-fuel ratio shifts to lean or rich due to performance deterioration, the engine will respond to the shifted air-fuel ratio. Since the amount of particulate emissions is determined, there is no need for errors.

S5では次式により単位時間あたりのパーティキュレー
ト捕集量ΔMPを求める。
In S5, the particulate collection amount ΔMP per unit time is determined using the following equation.

ΔMp=wap×η・・・Φ ただし、lはトラップの捕集係数(トラップに固有の一
定値、たとえば0.7〜0.8)である。
ΔMp=wap×η...Φ where l is the collection coefficient of the trap (a constant value specific to the trap, for example 0.7 to 0.8).

S6はS3とともに第1図の捕集量積算手段58の機能
を果たす部分で、ここでは次式によりΔMPを積算する
S6, together with S3, functions as the collection amount integrating means 58 shown in FIG. 1, and here, ΔMP is integrated using the following equation.

MP4−MP+ΔMP・・・■ つまり、■式によりΔMPを単位時間ΔtごとにMPに
加算していく。この結果、MPはトラップに堆積される
パーティキュレートの量を表す。
MP4-MP+ΔMP...■ In other words, ΔMP is added to MP every unit time Δt according to formula (2). As a result, MP represents the amount of particulates deposited in the trap.

S7は後述するS8.S22とともに第1図の再生時期
判定手段59の機能を果たす部分で、ここでは積算値M
Pと予め定めた基準値(たとえば10g)との比較によ
り、MP≧基準値であれば再生時期にあると判断しS8
に進む。S8では再生時期7ラグFを立てる(F=1と
する)。つまり、F=1は再生時期にあることを意味す
る。
S7 is S8, which will be described later. This part, together with S22, functions as the regeneration timing determination means 59 in FIG.
By comparing P with a predetermined reference value (for example, 10g), if MP≧reference value, it is determined that it is time for regeneration, and S8
Proceed to. In S8, the reproduction time 7 lag F is set (F=1). In other words, F=1 means that it is in the regeneration period.

S7でMP<基準値であれば、再生しなければならない
ほど堆積していないと判断してS9に進む。S9では、
排気と吸気の各絞り弁21,6、バイパス弁25、ヒー
タ29を何もしない状態にしておく。
If MP<the reference value in S7, it is determined that there is not enough accumulation to require regeneration, and the process proceeds to S9. In S9,
The exhaust and intake throttle valves 21 and 6, the bypass valve 25, and the heater 29 are kept inactive.

第4図は再生操作を行わせるためのルーチンである。FIG. 4 shows a routine for performing a playback operation.

S21では排気温度TEXと冷却水温Twを読み込み、
S22でF=1なら再生時期になったと判断して、3.
23〜S27に進み、ここでトラップ3が再生されるよ
うに、三方電磁弁19,23,27とヒータ29に指示
を与える。つまり、S23〜S27は第1図の制御手段
60の機能を果たす部分である。
In S21, read the exhaust temperature TEX and cooling water temperature Tw,
If F=1 in S22, it is determined that the regeneration time has come, and 3.
23 to S27, where instructions are given to the three-way solenoid valves 19, 23, 27 and the heater 29 so that the trap 3 is regenerated. That is, S23 to S27 are the parts that perform the function of the control means 60 in FIG.

S23では排気温度TEXが所定値T+(再生温度に等
しい400℃)以上がどうかみて、TEX≧T1であれ
ば何もしなくともトラップ3が再生されるので325に
進む。
In S23, it is checked whether the exhaust gas temperature TEX is equal to or higher than a predetermined value T+ (400° C., which is equal to the regeneration temperature), and if TEX≧T1, the trap 3 is regenerated without doing anything, so the process proceeds to 325.

この逆に”rEx<TlであればS24に進み、冷却水
温Twが所定値T2(たとえば50°C)以上あるかど
うかみて、そうであればS26に進む。
Conversely, if "rEx<Tl", the process proceeds to S24, and it is checked whether the cooling water temperature Tw is equal to or higher than the predetermined value T2 (for example, 50° C.), and if so, the process proceeds to S26.

S26では排気と吸気の両方を絞り、かつヒータ29を
ONにする。これらの作動により、排気温度が再生温度
まで高められ、トラップ3の再生が行なわれる。
In S26, both exhaust and intake are throttled and the heater 29 is turned on. Through these operations, the exhaust gas temperature is raised to the regeneration temperature, and the trap 3 is regenerated.

S24でTwが所定値T2より低い場合はS27に進み
、両絞り弁21,6、バイパス弁25ともすべて開く。
If Tw is lower than the predetermined value T2 in S24, the process proceeds to S27, where both throttle valves 21, 6 and bypass valve 25 are all opened.

両絞り弁21,6とも開く理由は、暖機前の低水温時は
排気温度も暖機完了後に比べて低いためトラップの再生
を行うことはできないし、吸気絞りや排×絞りを行うと
、もともと燃焼が安定しない低水温時にあってはエンジ
ンが失火して運転性が悪くなり、かつ失火によりパーテ
ィキュレートも増大するからである。また、バイパス弁
25を開くのは、冷たい排気によりトラップ3が冷やさ
れすぎないようにするためである。
The reason why both throttle valves 21 and 6 open is that when the water temperature is low before warming up, the exhaust temperature is also lower than after warming up, so the trap cannot be regenerated. This is because at low water temperatures where combustion is inherently unstable, the engine misfires, resulting in poor drivability, and misfires also increase particulates. Moreover, the reason why the bypass valve 25 is opened is to prevent the trap 3 from being too cooled by cold exhaust gas.

828では再生時間をカウントし、S29に進む。S2
9では、カウントした再生時間を所定時間(たとえば1
0分)と比較し、所定時間経過すれば、再生を終了した
と判断してS30に進む。
At 828, the playback time is counted, and the process advances to S29. S2
9, the counted playback time is set to a predetermined time (for example, 1
0 minutes), and if a predetermined period of time has elapsed, it is determined that the reproduction has ended and the process proceeds to S30.

S30では再生時期の判断のために用いたデータを消去
する。
In S30, the data used for determining the playback timing is erased.

ユニで、この例の作用を説明する。Uni will explain the effect of this example.

同一の走行距離や走行時間であっても、その間での車両
の走行状態が相違すると、エンジンからのパーティキュ
レート排出量が大きく異なってくる。
Even if the distance and time traveled are the same, if the driving conditions of the vehicle differ during that time, the amount of particulates emitted from the engine will vary greatly.

そこで、エンジンの負荷Qと回転数Neに応じてエンジ
ンからの単位時間当たりのパーティキュレート排出量を
計算し、その積算値から再生時期を判断するようにすれ
ば、エンジンのバラツキがない限り、再生時期の判断が
エンジンの使用条件に良く応じたものとなる。
Therefore, if the amount of particulate emissions per unit time from the engine is calculated according to the engine load Q and the rotational speed Ne, and the regeneration timing is determined from the integrated value, it is possible to regenerate as long as there are no variations in the engine. The timing will be determined in accordance with the usage conditions of the engine.

ところが、このように運転条件に応じて単位時間当たり
のパーティキュレート排出量を設定しても、その後に燃
料噴射系やエンジン自体に性能劣化を生ずると、その設
定値からのずれを生ずる。
However, even if the particulate emission amount per unit time is set according to the operating conditions in this way, if performance deterioration occurs in the fuel injection system or the engine itself thereafter, a deviation from the set value will occur.

つまり、当初は再生時期が精度良く判断されていても、
性能劣化に伴って、再生時期が早すぎたり遅すぎたりし
てくるのである。
In other words, even if the playback time is initially determined with high accuracy,
As performance deteriorates, the regeneration timing becomes too early or too late.

これに対して、この例ではそのときの空燃比センサ出力
V A/Fと回転数Neに応じて単位時間Δt当たりの
パーティキュレート排出量lapが求められると、この
IIIPは性能劣化を生じたエンジン状態に応じたパー
ティキュレート排出量を精度良く与える。第5図にも示
したように、燃料噴射系やエンノン自体に生ずる性能劣
化により、最終的には空燃比がリッチあるいはリーン側
にずれるのであるから、空燃比を検出している限り、性
能劣化が空燃比に織り込まれることになるからである。
On the other hand, in this example, if the particulate emission amount lap per unit time Δt is determined according to the air-fuel ratio sensor output V A/F and the rotational speed Ne at that time, this IIIP is the engine whose performance has deteriorated. To give accurate particulate emission amount according to the condition. As shown in Figure 5, performance deterioration that occurs in the fuel injection system and the ennon itself will eventually shift the air-fuel ratio to the rich or lean side, so as long as the air-fuel ratio is detected, the performance will deteriorate. This is because it is factored into the air-fuel ratio.

この結果、たとえエンジン自体や燃料噴射系に性能劣化
を生じても、再生時期の判断を適切に行うことができる
ので、再生時期が早すぎて燃費を悪くすることがない。
As a result, even if performance deterioration occurs in the engine itself or the fuel injection system, the regeneration timing can be appropriately determined, so that the regeneration timing will not be too early and cause fuel consumption to deteriorate.

また、再生時期が遅すぎてパーティキュレート堆積量が
限界を越え、再生を行ったときに急激にパーティキュレ
ートが燃焼してトラップが溶損したりすることも防止で
きる。
Furthermore, it is also possible to prevent the trap from being melted and damaged due to sudden combustion of particulates when the regeneration is performed due to too late regeneration and the amount of particulates accumulated exceeds the limit.

最後に、トラップ3の昇温装置は実施例のものに限られ
ることはなく、吸気絞りや排気絞りだけ、あるいはヒー
タだけを設けたものなど、要はトラップ温度を上昇させ
得るものであれば構わない。
Finally, the temperature raising device for the trap 3 is not limited to the one in the embodiment, and any device that can raise the trap temperature may be used, such as one equipped with only an intake throttle, an exhaust throttle, or only a heater. do not have.

(発明の効果) この発明は、空燃比センサ出力がら単位時間当たりのパ
ーティキュレート捕集量を求め、その積算値から再生時
期を判断することにしたため、エンジン自体や燃料噴射
系に性能劣化を生じても適切な再生時期を維持すること
ができ、燃費の改善とトラップの溶損防止をはかること
ができる。
(Effects of the Invention) This invention determines the amount of particulates collected per unit time from the air-fuel ratio sensor output, and determines the regeneration timing from the integrated value, which causes performance deterioration in the engine itself and the fuel injection system. However, it is possible to maintain an appropriate regeneration timing even when the trap is heated, thereby improving fuel efficiency and preventing trap erosion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のクレーム対応図、第2図は一実施例
のシステム図、第3図と第4図はこの実施例の制御動作
を説明するための流れ図、第5図は空燃比に対するパー
ティキュレート排出量の特性図、第6図は前記実施例の
空燃比センサの出力特性図、第7図はこの実施例のmp
の特性図、第8図は従来例のシステム図である。 2・・・排気通路、5・・・吸気通路、6・・・吸気絞
り弁、8・・・ダイヤプラムアクチュエータ、11・・
・燃料噴射ポンプ、19・・・三方電磁弁、21・・・
排気絞り弁、22・・・ダイヤ7″7ムアクチユエータ
、23・・・三方電磁弁、24・・・バイパス通路、2
5・・・バイパス弁、26・・・ダイヤプラムアクチュ
エータ、27・・・三方電磁弁、29・・・ヒータ、3
1・・・空燃比センサ、32・・・排気温度センサ、3
4・・・クランク角センサ(エンノン回転数センサ)、
35・・・アクセルレバ−開度センサ(エンノン負荷セ
ンサ)、41・・・コントロールユニット、53・・・
トラップ、54・・・昇温装置、56・・・空燃比セン
サ、57・・・捕集量計算手段、58・・・積算手段、
5つ・・・再生時期判定手段、60・・・制御手段。 第 図 第 8 図
Fig. 1 is a diagram corresponding to the claims of this invention, Fig. 2 is a system diagram of one embodiment, Figs. 3 and 4 are flowcharts for explaining the control operation of this embodiment, and Fig. 5 is a diagram for explaining the air-fuel ratio. A characteristic diagram of particulate emissions, FIG. 6 is an output characteristic diagram of the air-fuel ratio sensor of the above embodiment, and FIG. 7 is a characteristic diagram of the mp of this embodiment.
FIG. 8 is a system diagram of a conventional example. 2... Exhaust passage, 5... Intake passage, 6... Intake throttle valve, 8... Diaphragm actuator, 11...
・Fuel injection pump, 19... Three-way solenoid valve, 21...
Exhaust throttle valve, 22...Diamond 7"7 actuator, 23...Three-way solenoid valve, 24...Bypass passage, 2
5... Bypass valve, 26... Diaphragm actuator, 27... Three-way solenoid valve, 29... Heater, 3
1... Air-fuel ratio sensor, 32... Exhaust temperature sensor, 3
4...Crank angle sensor (Ennon rotation speed sensor),
35... Accelerator lever opening sensor (ennon load sensor), 41... Control unit, 53...
Trap, 54... Temperature raising device, 56... Air-fuel ratio sensor, 57... Collection amount calculation means, 58... Integration means,
5...Regeneration time determination means, 60...Control means. Figure 8

Claims (1)

【特許請求の範囲】[Claims] 排気中のパーティキュレートを捕集し再生温度以上にな
ると捕集したパーティキュレートを再燃焼させるトラッ
プと、このトラップを昇温させる装置と、排気空燃比を
検出するセンサと、この空燃比センサ出力に応じて単位
時間当たりのパーティキュレート捕集量を計算する手段
と、この捕集量を単位時間ごとに積算する手段と、この
積算値より再生時期にあるかどうかを判定する手段と、
再生時期になると前記トラップが再生されるように前記
昇温装置を制御する手段とを設けたことを特徴とするエ
ンジンの排気浄化装置。
A trap that collects particulates in the exhaust and re-burns the collected particulates when the temperature exceeds the regeneration temperature, a device that raises the temperature of this trap, a sensor that detects the exhaust air-fuel ratio, and an output from this air-fuel ratio sensor. means for calculating the amount of particulates collected per unit time accordingly, means for integrating this collected amount for each unit time, and means for determining whether it is time for regeneration based on this integrated value;
An exhaust gas purification device for an engine, comprising means for controlling the temperature raising device so that the trap is regenerated when a regeneration time comes.
JP2801090A 1990-02-07 1990-02-07 Engine exhaust purification device Expired - Lifetime JP2543608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2801090A JP2543608B2 (en) 1990-02-07 1990-02-07 Engine exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2801090A JP2543608B2 (en) 1990-02-07 1990-02-07 Engine exhaust purification device

Publications (2)

Publication Number Publication Date
JPH03233126A true JPH03233126A (en) 1991-10-17
JP2543608B2 JP2543608B2 (en) 1996-10-16

Family

ID=12236817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2801090A Expired - Lifetime JP2543608B2 (en) 1990-02-07 1990-02-07 Engine exhaust purification device

Country Status (1)

Country Link
JP (1) JP2543608B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2804173A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for ensuring the optimum regeneration of particulates in the filter present in the exhaust system of a Diesel automotive engine
FR2829798A1 (en) * 2001-09-14 2003-03-21 Renault Engine exhaust management system for ensuring optimum regeneration of particle filter in exhaust system comprises determining loaded state of filter and monitoring regeneration process
EP1591638A1 (en) * 2004-04-29 2005-11-02 Peugeot Citroen Automobiles S.A. Method to determine the loading of a trap for polluting substances
FR2877394A1 (en) * 2004-11-04 2006-05-05 Peugeot Citroen Automobiles Sa SYSTEM FOR ESTIMATING THE CHARGE IN SOILS OF A PARTICLE FILTER
JP2006316682A (en) * 2005-05-12 2006-11-24 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
DE102006000845A1 (en) * 2006-01-05 2007-07-12 Volkswagen Ag Method for determining the soot load of a particulate filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2804173A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for ensuring the optimum regeneration of particulates in the filter present in the exhaust system of a Diesel automotive engine
FR2829798A1 (en) * 2001-09-14 2003-03-21 Renault Engine exhaust management system for ensuring optimum regeneration of particle filter in exhaust system comprises determining loaded state of filter and monitoring regeneration process
WO2003025355A1 (en) * 2001-09-14 2003-03-27 Renault S.A.S. Method for controlling operating conditions of a particulate filter coated with a catalytic phase for combustion engine
EP1591638A1 (en) * 2004-04-29 2005-11-02 Peugeot Citroen Automobiles S.A. Method to determine the loading of a trap for polluting substances
FR2869639A1 (en) * 2004-04-29 2005-11-04 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE LOAD OF A TRAP FOR POLLUTANT SUBSTANCES
FR2877394A1 (en) * 2004-11-04 2006-05-05 Peugeot Citroen Automobiles Sa SYSTEM FOR ESTIMATING THE CHARGE IN SOILS OF A PARTICLE FILTER
JP2006316682A (en) * 2005-05-12 2006-11-24 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
DE102006000845A1 (en) * 2006-01-05 2007-07-12 Volkswagen Ag Method for determining the soot load of a particulate filter
EP1806486A3 (en) * 2006-01-05 2010-08-25 Volkswagen Ag Method for determining the soot load of a particle filter

Also Published As

Publication number Publication date
JP2543608B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US7146804B2 (en) Exhaust gas cleaning system having particulate filter
US7104049B2 (en) Exhaust gas purifying system and regeneration end determining method
US5195318A (en) Exhaust gas purifying device for an internal combustion engine
US7021051B2 (en) Method for regenerating particulate filter
US7040086B2 (en) Exhaust emission control system of internal combustion engine
US6990802B2 (en) Apparatus and method for regenerating particulate filter that removes particulates out of exhaust gas for internal combustion engine
US7980060B2 (en) Filter clogging determination apparatus for diesel engine
JP2005090357A (en) Regeneration control device of dpf
JPH09203313A (en) Degradation detecting device for catalyst
JPH03199616A (en) Exhaust gas cleaner for engine
JP4311071B2 (en) Defect determination method of exhaust purification system
JPH03233126A (en) Exhaust gas purifier of engine
JP2630024B2 (en) Engine exhaust purification device
JP4967993B2 (en) Exhaust gas recirculation diagnosis device for internal combustion engine
JPH03199615A (en) Exhaust gas cleaner for engine
JP2616074B2 (en) Engine exhaust purification device
JP4092480B2 (en) Exhaust gas purification device for internal combustion engine
JP2616075B2 (en) Engine exhaust purification device
JPH07224635A (en) Exhaust emission control device for diesel enging
JP2543607B2 (en) Engine exhaust purification device
JP2913777B2 (en) Engine exhaust purification device
JP4019832B2 (en) Diesel engine exhaust purification system
JP3003213B2 (en) Engine exhaust purification device
JPH04358714A (en) Exhaust purifying device for engine
JP4103429B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14