JPH0323288B2 - - Google Patents

Info

Publication number
JPH0323288B2
JPH0323288B2 JP58097586A JP9758683A JPH0323288B2 JP H0323288 B2 JPH0323288 B2 JP H0323288B2 JP 58097586 A JP58097586 A JP 58097586A JP 9758683 A JP9758683 A JP 9758683A JP H0323288 B2 JPH0323288 B2 JP H0323288B2
Authority
JP
Japan
Prior art keywords
processing
ceramics
electrodes
workpiece
conductive liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58097586A
Other languages
Japanese (ja)
Other versions
JPS59224216A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP9758683A priority Critical patent/JPS59224216A/en
Priority to US06/615,416 priority patent/US4559115A/en
Priority to DE198484303619T priority patent/DE131367T1/en
Priority to EP84303619A priority patent/EP0131367B1/en
Priority to DE8484303619T priority patent/DE3477590D1/en
Publication of JPS59224216A publication Critical patent/JPS59224216A/en
Publication of JPH0323288B2 publication Critical patent/JPH0323288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress
    • B23P25/003Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress immediately preceding a cutting tool
    • B23P25/006Heating the workpiece by laser during machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

【発明の詳細な説明】 本発明はセラミツクスのような不良導体の通電
加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrically processing defective conductors such as ceramics.

放電加工は工作物電極と工具電極とに加工電源
を接続してパルス的に電気エネルギを供給して、
放電を発生させて加工を行なうものである。
In electrical discharge machining, a machining power source is connected to the workpiece electrode and the tool electrode, and electrical energy is supplied in pulses.
Machining is performed by generating electrical discharge.

従つて、放電加工し得る被加工体は電気の良導
体であることが第1の条件である。従つて、電気
の不良導体は従来の放電加工機で加工することが
できなかつた。最近あらゆる分野で活用されてい
るセラミツクスは成形、乾燥を経て最後に焼成さ
れたものであるが、しばしば2次加工の必要に迫
られることがある。しかし、このセラミツクスは
モリブデン高速度鋼を思いのままに切削すること
ができる程に硬いと共に極めて、脆いという欠点
があるから、通常の刃物で切削加工をすることは
できない。そこで硬度等に関係無く加工すること
ができる放電加工によつて加工しようとしても、
斯種のセラミツクスの多くは、常温では電気の不
良導体であるから、従来の放電加工方法によつて
はこのセラミツクスを加工することができなかつ
た。又、特公昭44−28639号公報には油中に於て
ダイヤモンドの表面に接する対向電極の先端に於
て火花放電を行なわせてダイヤモンドに溝を構成
する放電加工法が開示されているが、ダイヤモン
ドに代えてセラミツクスを用いた場合は、放電衝
撃でセラミツクスの被加工体全体が破壊されて所
望の加工形状の加工をすることができなかつた。
Therefore, the first condition for a workpiece that can be subjected to electrical discharge machining is that it be a good electrical conductor. Therefore, poor electrical conductors cannot be machined with conventional electric discharge machines. Ceramics, which are now being used in all sorts of fields, are molded, dried, and finally fired, but they often require secondary processing. However, this ceramic is hard enough to cut molybdenum high-speed steel at will, but it also has the disadvantage of being extremely brittle, so it cannot be cut with ordinary knives. Therefore, even if you try to process it by electric discharge machining, which can process regardless of hardness etc.,
Since many of these types of ceramics are poor conductors of electricity at room temperature, they cannot be processed using conventional electrical discharge machining methods. Furthermore, Japanese Patent Publication No. 44-28639 discloses an electric discharge machining method in which grooves are formed in a diamond by causing a spark discharge at the tip of a counter electrode in contact with the surface of the diamond in oil. When ceramics were used instead of diamond, the entire ceramic workpiece was destroyed by the discharge impact, making it impossible to machine the desired shape.

本発明はこのように常温で電気的に不良導体で
あるが温度上昇と共に電気抵抗が減少するセラミ
ツクス等を加工することを目的になされたもので
ある。そこで、加工すべき例として酸化アルミニ
ウムセラミツクスをとりあげてみると、この酸化
アルミニウムセラミツクスは1600℃の高温で使用
するルツボ等に用いて長期使用に耐えると共に、
結晶化学上、イオン結晶に属し、優れた電気絶縁
体であるところから、電気絶縁材料として広く用
いられている。この酸化アルミニウムセラミツク
スは、その原料は純粋な酸化アルミニウムであ
り、これを成形、乾燥して最後に焼成される。こ
のようにして成形された酸化アルミニウムセラミ
ツクスは前記したような長所を沢山備えており、
用途が広範囲に及んでいるにもかかわらず、欠点
もある。例えばセラミツクス共通の脆いという欠
点があり、強い機械的衝撃に耐えられず、セメン
トの床に落せば割れてしまう程である。更にこの
酸化アルミニウムセラミツクスは耐圧力性は充分
にあるが、引張を受ける能力が、圧力を受ける能
力に比べて10倍も小さい。そして急激な温度変化
に弱く、急熱、急冷等の耐温度衝撃性には劣つて
いる。従つてこのセラミツクスは従来の切削加
工、放電加工をもつて加工することはできないこ
とが理解される。そこで更にこのセラミツクスの
性質を調べてみると酸化セラミツクスを構成する
イオンの原子価電子は通常原子核の強い吸引力を
受けて、夫々のイオンに束縛され、外部から、電
場を加えてもこれらの原子価電子は自由な運動が
できないために、一般に酸化アルミニウム、酸化
硅素、酸化カリウム、酸化ナトリウム等の酸化物
セラミツクスは常温では電気絶縁体である。そこ
でこのイオンの外殻電子の束縛を解いてやるには
加熱すればよいことがわかつた。加熱により外殻
電子がエネルギを得て、原子核の吸引を克服して
自由電子となるから酸化物セラミツクスは温度上
昇と共に電気抵抗が小さくなり、一定の電子導電
特性を現すようになる。酸化アルミニウムセラミ
ツクスは1000℃で電気抵抗が僅かに106Ωcmとな
り、これは常温の時に比べて1憶分の1である。
また安定酸化ジルコニウムセラミツクスの抵抗は
更に低く1〜10Ωcmとなる。そこでこの耐温度衝
撃性の劣ることと、高温度での電導性に着目し
て、その加工方法を完成した。それは、常温で電
気的に不良導体であるが温度上昇と共に電気抵抗
が減少するセラミツクス等の被加工体の表面に近
接した位置に一対の電極の各先端が所望の放電間
隙を介して相対向するように配置すると共に、放
電間隙に耐熱絶縁物を被加工体表面に近接させて
設け放電間隙の断面形状、寸法を制限、狭窄せし
める。そしてこの一対の電極が相対向する被加工
体の放電間隙に対応する加工表面部に電解液等の
導電性液を付着介在せしめると共に前記一対の電
極間に間歇的な電圧パルスを印加し、該電極の各
先端間に前記導電性液を介して通電を伴う間歇的
な放電を生ぜしめ放電間隙に於ける電流密度を大
にすると共に放熱を制限することにより、放電間
隙の特に耐熱絶縁物を近接させた被加工体表面部
に、放電の結果生ずる熱、衝撃等の電気物理的作
用と、導電性液及び該液と通電を伴なう放電によ
り熱が付加された化学的及び電気化学的作用を付
与させることにより被加工体セラミツクス表面を
分解、溶解、溶融、又は脆弱化等変質部分を生じ
させ、更には、一部を溶融飛散させることによつ
て電気的不良導体である任意の耐熱材、窒化物、
炭化物、硅化物、硼化物、酸化物等のセラミツク
ス等の被加工体を加工する本発明の加工方法を例
示した図に基づいて説明する。
The present invention was made for the purpose of processing ceramics and the like that are electrically poor conductors at room temperature, but whose electrical resistance decreases as the temperature rises. Therefore, taking aluminum oxide ceramics as an example of processing, this aluminum oxide ceramics can be used in crucibles and the like that are used at high temperatures of 1600℃, and can withstand long-term use.
In terms of crystal chemistry, it belongs to ionic crystals and is an excellent electrical insulator, so it is widely used as an electrical insulating material. The raw material for aluminum oxide ceramics is pure aluminum oxide, which is molded, dried, and finally fired. The aluminum oxide ceramics formed in this way have many of the advantages mentioned above.
Despite their wide range of uses, they also have drawbacks. For example, ceramics have the common flaw of being brittle, meaning they cannot withstand strong mechanical shocks and will break if dropped on a cement floor. Furthermore, although this aluminum oxide ceramic has sufficient pressure resistance, its ability to withstand tension is ten times smaller than its ability to withstand pressure. Moreover, it is susceptible to rapid temperature changes and has poor resistance to temperature shocks such as rapid heating and cooling. Therefore, it is understood that this ceramic cannot be processed by conventional cutting or electrical discharge machining. Therefore, when we further investigated the properties of this ceramic, we found that the valence electrons of the ions that make up the oxidized ceramic are usually bound to each ion by the strong attraction of the atomic nucleus, and even if an electric field is applied from the outside, these atoms will not be able to move. Since valence electrons cannot move freely, oxide ceramics such as aluminum oxide, silicon oxide, potassium oxide, and sodium oxide are generally electrical insulators at room temperature. It was then discovered that heating the ion would be sufficient to release the binding of the outer shell electrons of the ion. As the outer shell electrons gain energy through heating, they overcome the attraction of the atomic nucleus and become free electrons, so as the temperature rises, the electrical resistance of oxide ceramics decreases, and they exhibit certain electronic conductivity characteristics. The electrical resistance of aluminum oxide ceramics is only 10 6 Ωcm at 1000°C, which is 1/100 millionth of that at room temperature.
Furthermore, the resistance of stable zirconium oxide ceramics is even lower, 1 to 10 Ωcm. Therefore, we focused on this poor temperature shock resistance and electrical conductivity at high temperatures, and completed a processing method. In this method, the tips of a pair of electrodes are placed close to the surface of a workpiece such as ceramics, which is an electrically poor conductor at room temperature but whose electrical resistance decreases as the temperature rises, and the tips of each electrode face each other across a desired discharge gap. In addition, a heat-resistant insulator is provided in the discharge gap close to the surface of the workpiece to limit and narrow the cross-sectional shape and dimensions of the discharge gap. Then, a conductive liquid such as an electrolytic solution is applied to the machining surface portion of the workpiece, which is opposed to each other, corresponding to the discharge gap, and intermittent voltage pulses are applied between the pair of electrodes. Intermittent discharge accompanied by current flow is generated between each tip of the electrode through the conductive liquid, increasing the current density in the discharge gap and restricting heat radiation, thereby reducing the heat-resistant insulation in the discharge gap. Electrophysical effects such as heat and shock generated as a result of electrical discharge on the surface of the workpiece brought close to the surface, and chemical and electrochemical effects that generate heat due to conductive liquid and electrical discharge that accompanies energization. By applying an action, the ceramic surface of the workpiece is decomposed, melted, melted, or deteriorated, such as becoming brittle, and a part of it is melted and scattered, thereby making it possible to remove any heat-resistant material that is an electrically poor conductor. materials, nitrides,
DESCRIPTION OF THE PREFERRED EMBODIMENTS The processing method of the present invention for processing workpieces such as ceramics made of carbides, silicides, borides, oxides, etc. will be explained based on diagrams illustrating examples.

第1図に於て、セラミツクス等の被加工体1は
テーブル2に固定する。このテーブに2はサドル
3に摺動可能に支持され、スクリユー4とスクリ
ユー4を回動するX軸サーボモータ5(第2図)
によつて、第1図に於て紙面と直交するX方向に
移動する。サドル3はベツド6に摺動可能に支持
されて、スクリユー7とスクリユー7を回動する
Y軸サーボモータ8により、X方向と直角のY方
向に移動する。このX軸サーボモータ5とY軸サ
ーボモータ8とは図示していない数値制御装置に
よつて制御され、被加工体1を水平面上において
任意の位置に移動する。ベツド6の側部にコラム
9,10を設け、このコラム9,10には水平な
ビーム11,12を固定する。このビーム11,
12には一対の移動台13,14を摺動可能に支
持し、この移動台13,14と螺合するスクリユ
ー15,16はビーム11,12に設けたブラケ
ツト17とコラム9,10とで枢支され、サーボ
モータ18,19によつて回動される。サーボモ
ータ18,19は図示していない数値制御装置又
は手動スイツチによつて駆動し、移動台13,1
4を夫々単独にビーム11,12上を移動,位置
決めする。
In FIG. 1, a workpiece 1 made of ceramics or the like is fixed to a table 2. As shown in FIG. 2 is slidably supported on this table by a saddle 3, and a screw 4 and an X-axis servo motor 5 that rotates the screw 4 (Fig. 2)
As a result, the robot moves in the X direction perpendicular to the plane of the paper in FIG. The saddle 3 is slidably supported by the bed 6 and is moved in the Y direction perpendicular to the X direction by a screw 7 and a Y-axis servo motor 8 that rotates the screw 7. The X-axis servo motor 5 and Y-axis servo motor 8 are controlled by a numerical control device (not shown), and move the workpiece 1 to an arbitrary position on a horizontal plane. Columns 9 and 10 are provided on the sides of the bed 6, and horizontal beams 11 and 12 are fixed to the columns 9 and 10. This beam 11,
A pair of movable bases 13 and 14 are slidably supported on 12, and screws 15 and 16 that are screwed together with the movable bases 13 and 14 are pivoted by brackets 17 provided on the beams 11 and 12 and columns 9 and 10. It is supported and rotated by servo motors 18 and 19. The servo motors 18 and 19 are driven by a numerical control device or a manual switch (not shown), and the movable bases 13 and 1
4 are individually moved and positioned on the beams 11 and 12, respectively.

第2図に於て移動台14に枢支した軸20はサ
ーボモータ21によつて回転方向の割出しと割出
し位置で位置決めされる。そしてこの軸20の一
方の端にはブラケツト22を固着する。この軸2
0、サーボモータ21は移動台13にも同様に設
けてあり、その一端部にブラケツト23を設け
る。このブラケツト22,23にはホルダ24,
25を枢支する。そしてこの枢支したホルダ2
4,25はブラケツト22,23に取付けたサー
ボモータ26,27の図示していない軸に設けた
ピニオンと、このピニオンに噛合うホルダ24,
25に設けた図示していないラツクによりホルダ
24,25をその軸心方向(図中A−Bの矢印方
向)に移動する。このサーボモータ26,27の
駆動は図示していない数値制御装置又は手動スイ
ツチの操作によつて行なわれる。このホルダ2
4,25に保持した棒状電極28,29は周知の
放電加工装置の高電圧直流電源30、放電用コン
デンサ31、抵抗32、スイツチ33に連係す
る。この電極28,29に代えて第3図に示すよ
うに円盤状の電極44を用いてもよい。この円盤
状電極44を用いると、電極が消耗した場合に、
所定角度回動させるだけでホルダ24,25の軸
方向の位置を補正することができるだけでなく、
所定速度で回転させて被加工体1表面の加工部又
はその近傍に擦過力を作用させたり、発生加工屑
やガス、導電性液等を排除、更新等させ加工作用
の促進に資することができる。電極28,29の
先端が相対向する被加工体表面の間隙には耐熱性
の絶縁板34が被加工体表面に近接するように挿
設される。この絶縁板34は電極28,29間の
通電を伴なう放電路を限定しようとするもので、
コラム9,10で支持されたバー35,36に枢
支し、同じくコラム9,10で支持されたスクリ
ユー37と螺合し、このスクリユー37はサーボ
モータ38によつて回動する。この絶縁板34
は、絶縁のためにのみ使用しないで、図示してい
ないが、次のように用いることができる。即ち、
ここに、ノズル孔を設けて、加工液である導電性
液41を噴射したり、滴下するのに兼用させて用
いることができる。又更に加工液と共に砥材を噴
射する構造にすることも可能である。
In FIG. 2, a shaft 20 pivotally supported on a movable table 14 is indexed in the rotational direction and positioned at the indexed position by a servo motor 21. A bracket 22 is fixed to one end of this shaft 20. This axis 2
0. A servo motor 21 is similarly provided on the movable table 13, and a bracket 23 is provided at one end thereof. The brackets 22 and 23 include a holder 24,
It supports 25. And this pivot holder 2
Reference numerals 4 and 25 indicate pinions provided on shafts (not shown) of servo motors 26 and 27 attached to brackets 22 and 23, and holders 24 and 24 that mesh with the pinions, respectively.
The holders 24 and 25 are moved in the axial direction (in the direction of the arrow A-B in the figure) by means of a rack (not shown) provided on the holder 25. The servo motors 26 and 27 are driven by a numerical control device or manual switch (not shown). This holder 2
Rod-shaped electrodes 28 and 29 held at 4 and 25 are connected to a high voltage DC power supply 30, a discharge capacitor 31, a resistor 32, and a switch 33 of a well-known electric discharge machining apparatus. In place of the electrodes 28 and 29, a disk-shaped electrode 44 may be used as shown in FIG. When this disk-shaped electrode 44 is used, when the electrode is worn out,
Not only can the axial positions of the holders 24 and 25 be corrected by simply rotating them by a predetermined angle, but also
By rotating at a predetermined speed, it is possible to apply a scratching force to the machined part on the surface of the workpiece 1 or its vicinity, or to remove or renew generated processing waste, gas, conductive liquid, etc., thereby contributing to the promotion of the processing action. . A heat-resistant insulating plate 34 is inserted into the gap between the surfaces of the workpiece where the tips of the electrodes 28 and 29 face each other so as to be close to the workpiece surface. This insulating plate 34 is intended to limit the discharge path that accompanies current flow between the electrodes 28 and 29.
It is pivotally supported by bars 35 and 36 supported by columns 9 and 10, and is threadedly engaged with a screw 37 also supported by columns 9 and 10. This screw 37 is rotated by a servo motor 38. This insulating plate 34
is not only used for insulation, but can be used as follows, although not shown. That is,
A nozzle hole is provided here and can be used for both spraying and dropping the conductive liquid 41, which is the machining liquid. Furthermore, it is also possible to have a structure in which the abrasive material is injected together with the machining fluid.

通常は被加工体1の表面にノズル39から導電
性液41を吐出して、被加工体1の表面に薄い導
電性液41の被膜を作ることによつて、一対の電
極28,29の間の対向間隙に導電路を構成す
る。被加工体1の表面から流れて液槽40の中に
たまつた導電性液41は図示していない循環装置
で、途中で浄化されながら循環して使用される。
この導電性液41には次のものがある。
Normally, a conductive liquid 41 is discharged from a nozzle 39 onto the surface of the workpiece 1 to form a thin film of the conductive liquid 41 on the surface of the workpiece 1, thereby forming a gap between the pair of electrodes 28 and 29. A conductive path is formed in the opposing gap. The conductive liquid 41 flowing from the surface of the workpiece 1 and collecting in the liquid tank 40 is circulated and used while being purified by a circulation device (not shown).
This conductive liquid 41 includes the following.

(a) 水。(a) Water.

(b) 酸又はアルカリを水に溶解したもの。(b) Acid or alkali dissolved in water.

(c) 塩酸、硫酸又は硝酸等の強酸水溶液。(c) Strong acid aqueous solutions such as hydrochloric acid, sulfuric acid or nitric acid.

(d) 苛性ソーダ又は苛性カリ等の強塩基の水溶
液。
(d) Aqueous solutions of strong bases such as caustic soda or caustic potash.

(e) 金属イオンを含有する電気メツキ又は無電解
メツキ用の水溶液。
(e) Aqueous solutions for electroplating or electroless plating containing metal ions.

この本装置全体はカバー42で覆い、中に発生
したガスは吸引器43で吸引して浄化する装置を
設けるとよい。
It is preferable to cover the entire device with a cover 42 and provide a device for purifying the gas generated therein by suctioning it with a suction device 43.

本発明は、被加工体1をテーブル2に固定し、
このテーブル2を図示していない数値制御装置に
よつて制御するX軸サーボモータ5とY軸サーボ
モータ8によつて水平面上の任意の位置に移動す
る。この被加工体1の上の電極28,29は図示
していない数値制御装置によつて制御するサーボ
モータ18,19によつて、ビーム11,12に
沿つて夫々任意の位置に移動する。そして、この
電極28,29の傾き角度は図示していない数値
制御装置によつて制御するサーボモータ21によ
つて夫々任意に選定することができる。このよう
にして、電極28,29の水平方向の位置と傾き
角度を制御移動するとともにサーボモータ26,
27で電極28,29をその軸心方向に移動して
被加工物1との間隙を制御して定める。電極2
8,29の間に設けた絶縁体34は図示していな
い数値制御装置又は手動スイツチによつて制御さ
れるサーボモータ38で被加工体1の加工位置に
移動し、電極28,29の間で直接放電するのを
防いで、放電電流が被加工体表面1の導電性液4
1の薄膜を介して確実に流れるように作用する。
The present invention fixes a workpiece 1 to a table 2,
This table 2 is moved to any position on a horizontal plane by an X-axis servo motor 5 and a Y-axis servo motor 8, which are controlled by a numerical control device (not shown). Electrodes 28 and 29 on the workpiece 1 are moved to arbitrary positions along the beams 11 and 12, respectively, by servo motors 18 and 19 controlled by a numerical control device (not shown). The inclination angles of the electrodes 28 and 29 can be arbitrarily selected by the servo motor 21 controlled by a numerical control device (not shown). In this way, the horizontal position and inclination angle of the electrodes 28 and 29 are controlled and moved, and the servo motor 26,
At step 27, the electrodes 28 and 29 are moved in the axial direction to control and define the gap with the workpiece 1. Electrode 2
The insulator 34 provided between the electrodes 28 and 29 is moved to the processing position of the workpiece 1 by a servo motor 38 controlled by a numerical controller or a manual switch (not shown), and is moved between the electrodes 28 and 29. This prevents direct discharge and allows the discharge current to flow through the conductive liquid 4 on the surface 1 of the workpiece.
This acts to ensure that the fluid flows through the thin film of No. 1.

以上の動きは全て数値制御装置で行なわれる
が、スイツチによる手動操作も可能である。
All of the above movements are performed by a numerical control device, but manual operation using a switch is also possible.

このようにして機械的な位置関係が定まつたな
らば、導電性液41をノズル39から噴出して被
加工体1の表面に被膜をつくり、電極28,29
間に間歇的な電圧パルスを印加すると、各電圧パ
ルスの印加開始時の初期の間、電極28,29間
に導電性液の薄膜を介して電解電流が流れ、即ち
電気化学的作用が生じるが、その後電解電流は急
激に増大してジユール加熱を伴ない、高温とな
り、ついには放電に移行するが、この電解及びジ
ユール加熱を伴なう状態での当該放電は、印加電
圧パルスの継続時間の終了と共に終り、次の電圧
パルス印加開始迄の電圧パルス休止期間中に、被
加工体表面に供給される新しい導電性液により、
放電間隙部の冷却、洗い流し、及び液の交換等が
行なわれて次の電圧パルスの印加に備え、以後上
述の電解、加熱、放電及び休止の作動を繰り返す
ことになる。そしてこのような放電等の被加工体
表面に対するエネルギ付与は、1乃至所定数の電
圧パルスを印加した後に又は所定の速度で連続的
にサーボモータ5,8を駆動することにより位置
を変更することができる。而して、導電性液の介
在下で上記電解、加熱、及び放電に晒される被加
工体の表面部分は、導電性液と被加工体セラミツ
クスの種類、性質等の組合せにもよるが、常温で
は接触導電性液の化学的作用や通電することによ
る電気化学的作用を受けにくいセラミツクスで
も、上記作用が加熱等された高温下で行なわれる
ことにより、上記一方又は両方の作用により反
応、溶解、溶融、又は変質部等を生じ、又放電に
よる熱と共に放電衝撃圧力も発生作用し、更に被
加工体表面の対応部分が高温化により電気抵抗が
減じて当該部分に電解、放電等の電流の一部が流
れる所から、上記放電衝撃圧力と相俟つて、被加
工体表面の当該部分に於て分解、溶融、溶融物の
衝撃飛散状態が生じることになる。そしてこのよ
うな現象が電圧パルスを間歇的に電極28,29
間に印加供給する毎に繰り返され、被加工体が表
面から順次加工されて行くことになる。
Once the mechanical positional relationship is determined in this way, the conductive liquid 41 is ejected from the nozzle 39 to form a film on the surface of the workpiece 1, and the electrodes 28, 29 are
When intermittent voltage pulses are applied between the electrodes 28 and 29, an electrolytic current flows between the electrodes 28 and 29 through the thin film of conductive liquid, i.e. an electrochemical effect occurs during the initial period at the beginning of each voltage pulse. , then the electrolytic current increases rapidly, accompanied by Joule heating, reaches a high temperature, and finally transitions to discharge, but the discharge in a state accompanied by electrolysis and Joule heating is shorter than the duration of the applied voltage pulse. The new conductive liquid is supplied to the surface of the workpiece during the voltage pulse pause period until the next voltage pulse application starts.
The discharge gap is cooled, washed away, and the liquid replaced, and in preparation for the application of the next voltage pulse, the above-described operations of electrolysis, heating, discharge, and pause are repeated. To apply energy such as electric discharge to the surface of the workpiece, the position can be changed by applying one to a predetermined number of voltage pulses or by continuously driving the servo motors 5 and 8 at a predetermined speed. I can do it. The surface portion of the workpiece that is exposed to the electrolysis, heating, and discharge in the presence of a conductive liquid may be kept at room temperature, depending on the combination of the conductive liquid and the ceramics of the workpiece, their properties, etc. Even with ceramics that are not susceptible to the chemical effects of contact conductive liquids or the electrochemical effects caused by electricity, when the above effects are carried out at high temperatures such as heating, they may react, dissolve, or dissolve due to one or both of the above effects. Melting or altered parts are generated, and discharge shock pressure is also generated along with heat due to discharge.Furthermore, the electrical resistance of the corresponding part of the surface of the workpiece decreases due to the increase in temperature, and a portion of the current due to electrolysis, discharge, etc. Coupled with the above-mentioned discharge impact pressure, decomposition, melting, and impact scattering of the molten material will occur at the part of the workpiece surface where the part flows. This phenomenon causes voltage pulses to be applied to the electrodes 28 and 29 intermittently.
The application is repeated each time the supply is applied, and the workpiece is sequentially machined from the surface.

そして本発明は、上記の如き各電圧パルス印加
毎の加工等の作用を所望の局部に集中限定した状
態で効率良く行なわれるようにするためになされ
たもので、被加工体表面に近接又は接触すると共
に表面に沿う方向に間隔を置いて放電電極28,
29を配置することによりその間に形成した放電
間隙を限定するために、上記放電間隙に耐熱絶縁
物を被加工体表面に近接して配置したものであ
る。即ち、放電電極間の放電間隙は、被加工体表
面と耐熱絶縁物間の導電性液が充満介在する薄フ
イルム状部分となり、この放電間隙に供給及び印
加条件等の制御が可能な電圧パルスにより、電解
電流、ジユール熱加熱電流及び放電電流が供給さ
れる所から、電解、熱、及び衝撃圧力等の発生作
用状態は集中していて効率良く行なわれ、かつ、
作用領域の制御変更等も容易であつてセラミツク
ス被加工体の目的とする加工を可能とするもので
ある。そしてかかる本発明は、前述図示説明の方
法、装置に種々の変更を加えて実施することがで
きる。
The present invention has been made in order to efficiently carry out the processing, etc. for each voltage pulse application as described above, while concentrating and limiting it to a desired local area. At the same time, discharge electrodes 28 are arranged at intervals along the surface.
29, a heat-resistant insulator is placed in the discharge gap close to the surface of the workpiece in order to limit the discharge gap formed therebetween. In other words, the discharge gap between the discharge electrodes becomes a thin film-like part filled with a conductive liquid between the surface of the workpiece and the heat-resistant insulator, and a voltage pulse that can be supplied to this discharge gap and control the application conditions, etc. , from where the electrolytic current, the thermoelectric heating current, and the discharge current are supplied, the generating action states such as electrolysis, heat, and impact pressure are concentrated and efficiently performed, and
It is easy to change the control of the action area, and it is possible to process the ceramic workpiece as desired. The present invention can be implemented by adding various changes to the method and apparatus illustrated and described above.

ここには図示していないが、被加工体1の加工
部へ供給する導電性液にレーザを照射して、加工
液を高温化して導電性を増すこともできる。又、
水中のプラズマ放電でセラミツクスを高温化し、
同時に中間電極たらしめることができる。水水中
にレーザを同時に照射して高温プラズマを作り放
電を生ぜしめてセラミツクスを電極とし、又他の
外部から高速液体(H2O)や砥粒を含む高圧液
体を供給したり、又はガス体を供給して加工す
る。このガス体としてはハロゲンガス、Cl2を供
給するのが最も効率が高いことになる。そして、
被加工体1の加工部又は装置全体を真空にしてこ
の真空中にガス(ハロゲン)を供給して加工すれ
ばイオンエツチングのドライ加工となる。油を用
いてCnHoのC(炭素)をレーザでコーテイングし
てこれを電極として放電加工することができる。
Although not shown here, it is also possible to irradiate the conductive liquid supplied to the processing portion of the workpiece 1 with a laser to heat the processing liquid and increase its conductivity. or,
Plasma discharge in water heats up ceramics,
At the same time, it can be used as an intermediate electrode. A high-temperature plasma is generated by irradiating a laser into water at the same time to generate a discharge, and ceramics are used as an electrode.Also, a high-speed liquid (H 2 O) or a high-pressure liquid containing abrasive grains is supplied from another external source, or a gaseous body is supplied. Supply and process. The most efficient way to supply this gas is to supply halogen gas, Cl 2 . and,
If the processing section of the workpiece 1 or the entire apparatus is evacuated and a gas (halogen) is supplied into the vacuum, processing is performed by dry ion etching. Electric discharge machining can be performed by coating C (carbon) of C n H o with a laser using oil and using this as an electrode.

以下本発明の実験例について説明する。 Experimental examples of the present invention will be explained below.

被加工体セラミツクスとしてS13N4を、耐熱絶
縁物としてS1Cを用いた。印加する電圧パルスの
無負荷電圧は約90V、導電性液の供給量は放電条
件等にもよるが約20c.c./min〜100c.c./minとし、
電極として水平断面が約8mm×15mmのグラフアイ
トを被加工体の表面に約7mmの間隔を隔てて並設
し、その7mmの隙間に、約5mm厚のSiC板25mmL
×20mmHを挿入する。なお、このSiC板の先端、
被加工体表面と対向する部分には10mmL×0.5mm
Hの凹部が形成されていて、この凹部が、グラフ
アイト電極間の通電及び放電路となつている。
S 13 N 4 was used as the workpiece ceramic, and S 1 C was used as the heat-resistant insulator. The no-load voltage of the voltage pulse to be applied is approximately 90 V, and the supply amount of the conductive liquid is approximately 20 c.c./min to 100 c.c./min, depending on the discharge conditions, etc.
As electrodes, graphite with a horizontal cross section of approximately 8 mm x 15 mm is placed in parallel on the surface of the workpiece at an interval of approximately 7 mm, and in the 7 mm gap, a 25 mm L S i C plate with a thickness of approximately 5 mm is placed.
Insert ×20mmH. In addition, the tip of this S i C board,
10mmL x 0.5mm for the part facing the surface of the workpiece
An H-shaped recess is formed, and this recess serves as a current conduction and discharge path between the graphite electrodes.

以上の構成として、電極とSiC板とを一体に固
定し、被加工体表面を10mm/min位の速度で移動
させるようにする。勿論1箇所に固定した状態で
使用しても良い。
With the above configuration, the electrode and the S i C plate are fixed together, and the surface of the workpiece is moved at a speed of about 10 mm/min. Of course, it may be used while being fixed at one location.

実験例 1 NaOH10%一残部水の導電性液を30c.c./minで
供給し、電圧パルスは電圧パルスの継続時間
50μS、電圧パルス間休止時間50μSで電流出力
10Aを用いた所、約5Aの平均電流が流れ、被加
工体の表面とSiC板先端間の上記隙間を介してグ
ラフアイト電極間に間歇放電が発生した。同一箇
所で約3分放電させた所、電極間のSiC板先端の
上記凹部に対応する被加工体表面部分が約5mm深
さ迄砥石等で容易に削れる程度に脆くなつてお
り、約2mm深さ迄はナイフで削ることが出来た。
Experimental example 1 A conductive liquid of 10% NaOH and the balance water is supplied at 30c.c./min, and the voltage pulse is set at the duration of the voltage pulse.
Current output with 50μS and pause time between voltage pulses of 50μS
When 10 A was used, an average current of about 5 A flowed, and intermittent discharge occurred between the graphite electrodes through the gap between the surface of the workpiece and the tip of the S i C plate. When the same point was discharged for about 3 minutes, the surface part of the workpiece corresponding to the above-mentioned recess at the tip of the S i C plate between the electrodes had become brittle to the extent that it could be easily ground with a grindstone to a depth of about 5 mm. I was able to scrape with a knife to a depth of 2mm.

実験例 2 導電性液としてHNO38%一残部水を用い、他
は実験例1と同一とした所、約3mm深さ迄脆くな
つており、表面約0.1mm厚の部分は熱的溶解によ
り除去されていた。
Experimental Example 2 Using 8% HNO 3 and the balance water as the conductive liquid, and using the same method as Experimental Example 1, the conductive liquid became brittle to a depth of about 3 mm, and the surface was about 0.1 mm thick due to thermal melting. It had been removed.

実験例 3 グラフアイト電極の間隙を約12mmとし、SiC板
に代えてビトリフアイドSiC砥石150mmφ、厚さ
10mmを挿入し、3000RPMで回転させ、砥石と被
加工体表面の間隙約0.1mmとし、この間隙を約200
Hzで、約4mm開離と復元近接を繰り返しながら、
実験例1と同一の導電性液を用い、かつ印加電圧
パルス条件継続50μS、休止50μS、電流出力Ip:
15Aのものを用い、平均加工電流約7.5Aとした
所、切込み約0.5mmで約15mm/minの移動速度で
加工を継続できた。
Experimental example 3 The gap between the graphite electrodes was set to approximately 12 mm, and a vitrified S i C grinding wheel of 150 mmφ and thickness was used instead of the S i C plate.
10mm, rotate at 3000RPM, make a gap of about 0.1mm between the grinding wheel and the surface of the workpiece, and increase this gap to about 200mm.
Hz, repeating about 4 mm separation and restoration approach,
The same conductive liquid as in Experimental Example 1 was used, and the applied voltage pulse conditions were 50 μS continuous, 50 μS pause, and current output Ip:
Using a 15A machine and an average machining current of about 7.5A, machining could be continued at a moving speed of about 15mm/min with a depth of cut of about 0.5mm.

以上述べた通り、本発明の方法によれば、従来
不可能とされていたセラミツクスのような不良導
体の二次加工を可能とした優れた効果を有するも
のである。
As described above, the method of the present invention has the excellent effect of enabling secondary processing of defective conductors such as ceramics, which was previously considered impossible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の正面
図、第2図は第1図の一部を断面した側面図、第
3図は電極の他の実施例図である。 1……被加工体、2……テーブル、3……サド
ル、5……X軸サーボモータ、6……ベツド、8
……Y軸サーボモータ、9,10……コラム、1
1,12……ビーム、13,14……移動台、1
8,19,21……サーボモータ、22,23…
…ブラケツト、24,25……ホルダ、26,2
7……サーボモータ、28,29……電極、34
……絶縁板。
FIG. 1 is a front view of an apparatus for carrying out the method of the present invention, FIG. 2 is a partially sectional side view of FIG. 1, and FIG. 3 is a view of another embodiment of the electrode. 1...Workpiece, 2...Table, 3...Saddle, 5...X-axis servo motor, 6...Bed, 8
... Y-axis servo motor, 9, 10 ... Column, 1
1, 12... Beam, 13, 14... Moving platform, 1
8, 19, 21... Servo motor, 22, 23...
...Bracket, 24, 25...Holder, 26, 2
7... Servo motor, 28, 29... Electrode, 34
...Insulating board.

Claims (1)

【特許請求の範囲】 1 常温で不良導体であるが温度上昇と共に電気
抵抗が減少するセラミツクス等の被加工体の所望
加工部に、各先端が所望の放電間隙を設けて、相
対向するように配置した一対の電極と前記被加工
体の少なくとも前記一対の電極の放電間隙に対応
する加工部表面に付着乃至は介在せしめる電解液
等の導電性液とを有し、前記一対の電極間に間歇
的な電圧パルスを印加し、該電極の各先端間に前
記導電性液を介する放電を生ぜしめるセラミツク
ス等の加工装置に於て、前記一対の電極の間の被
加工体に耐熱絶縁物を近接して設け、この耐熱絶
縁物と被加工体とでできた前記導電性液が介在す
る隙間を通して前記間歇的な電圧パルス印加に基
づく放電を生ぜしめることを特徴とするセラミツ
クス等の加工方法。 2 前記一対の電極が、夫々棒状電極である特許
請求の範囲第1項記載のセラミツクス等の加工方
法。 3 前記一対の電極が、夫々必要に応じて回転す
る円盤状電極である特許請求の範囲第1項記載の
セラミツクス等の加工方法。 4 前記一対の電極の被加工体加工部表面側の反
対後端側に於ける間隔が、先端側放電間隙間隔よ
りも充分大きく配置構成されている特許請求の範
囲第1項乃至第3項の何れか一に記載のセラミツ
クス等の加工方法。 5 前記一対の電極が、被加工体加工部表面に対
し近接移動又は近接のために送り出し可能に構成
されている特許請求の範囲第1項乃至第4項の何
れか一に記載のセラミツクス等の加工方法。 6 前記一対の電極に対し、これと相対向する被
加工体が前記対向方向とほぼ直角に相対的に制御
移動せしめられ、所望の加工部を順次に加工する
ように構成されている特許請求の範囲第1項乃至
第5項の何れか一に記載のセラミツクス等の加工
方法。 7 前記導電性液が水である特許請求の範囲第1
項乃至第6項の何れか一に記載のセラミツクス等
の加工方法。 8 前記導電性液が、酸又はアルカリを水に溶解
した加工液である特許請求の範囲第1項乃至第6
項の何れか一に記載のセラミツクス等の加工方
法。 9 前記導電性液が塩酸、硫酸、又は硝酸等の強
酸の水溶液から成る加工液である特許請求の範囲
第1項乃至第6項の何れか一に記載のセラミツク
ス等の加工方法。 10 前記導電性液が苛性ソーダ、又は苛性カリ
等の強塩基の水溶液から成る加工液である特許請
求の範囲第1項乃至第6項の何れか一に記載のセ
ラミツクス等の加工方法。 11 前記導電性液が、所望金属イオンを含有す
る電気メツキ、又は無電解メツキ用のメツキ水溶
液である特許請求の範囲第1項乃至第6項の何れ
か一に記載のセラミツクス等の加工方法。
[Scope of Claims] 1. Each tip is provided with a desired discharge gap in a desired machining area of a workpiece such as ceramics, which is a poor conductor at room temperature but whose electrical resistance decreases as the temperature rises, so that each tip faces each other. A conductive liquid such as an electrolyte that is attached to or interposed on the surface of the machined part corresponding to the discharge gap between at least the pair of electrodes of the workpiece, and has a conductive liquid such as an electrolyte that is interposed between the pair of electrodes. In a device for processing ceramics, etc., which applies a voltage pulse to generate a discharge through the conductive liquid between each tip of the electrode, a heat-resistant insulator is placed close to the workpiece between the pair of electrodes. A method for processing ceramics or the like, characterized in that a discharge is generated based on the intermittent application of voltage pulses through a gap between the heat-resistant insulator and the workpiece, in which the conductive liquid is interposed. 2. The method for processing ceramics or the like according to claim 1, wherein each of the pair of electrodes is a rod-shaped electrode. 3. The method for processing ceramics or the like according to claim 1, wherein the pair of electrodes are disk-shaped electrodes that rotate as required. 4. Claims 1 to 3, wherein the distance between the pair of electrodes on the rear end side opposite to the surface side of the machined part of the workpiece is arranged and configured to be sufficiently larger than the discharge gap on the tip side. A method for processing the ceramics, etc. described in any one of the above. 5. Ceramics, etc. according to any one of claims 1 to 4, wherein the pair of electrodes is configured to be able to move close to or be fed out for close proximity to the surface of the processed part of the workpiece. Processing method. 6. A workpiece facing the pair of electrodes is controlled to move relative to the pair of electrodes at substantially right angles to the opposing direction, and desired processing parts are sequentially processed. A method for processing ceramics, etc., according to any one of items 1 to 5. 7 Claim 1, wherein the conductive liquid is water
A method for processing ceramics, etc., according to any one of items 6 to 6. 8. Claims 1 to 6, wherein the conductive liquid is a processing liquid in which acid or alkali is dissolved in water.
A method for processing ceramics, etc. described in any one of the items. 9. The method for processing ceramics, etc. according to any one of claims 1 to 6, wherein the conductive liquid is a processing liquid consisting of an aqueous solution of a strong acid such as hydrochloric acid, sulfuric acid, or nitric acid. 10. The method for processing ceramics, etc., according to any one of claims 1 to 6, wherein the conductive liquid is a processing liquid consisting of an aqueous solution of a strong base such as caustic soda or caustic potash. 11. The method for processing ceramics or the like according to any one of claims 1 to 6, wherein the conductive liquid is an aqueous plating solution for electroplating or electroless plating containing desired metal ions.
JP9758683A 1983-05-30 1983-05-31 Electrical discharge machining method for faulty conductor Granted JPS59224216A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9758683A JPS59224216A (en) 1983-05-31 1983-05-31 Electrical discharge machining method for faulty conductor
US06/615,416 US4559115A (en) 1983-05-30 1984-05-30 Method of and apparatus for machining ceramic materials
DE198484303619T DE131367T1 (en) 1983-05-30 1984-05-30 METHOD AND DEVICE FOR MACHINING CERAMIC MATERIALS.
EP84303619A EP0131367B1 (en) 1983-05-30 1984-05-30 Method of and apparatus for machining ceramic materials
DE8484303619T DE3477590D1 (en) 1983-05-30 1984-05-30 Method of and apparatus for machining ceramic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9758683A JPS59224216A (en) 1983-05-31 1983-05-31 Electrical discharge machining method for faulty conductor

Publications (2)

Publication Number Publication Date
JPS59224216A JPS59224216A (en) 1984-12-17
JPH0323288B2 true JPH0323288B2 (en) 1991-03-28

Family

ID=14196337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9758683A Granted JPS59224216A (en) 1983-05-30 1983-05-31 Electrical discharge machining method for faulty conductor

Country Status (1)

Country Link
JP (1) JPS59224216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU102067B1 (en) 2020-09-17 2022-03-18 Narodowy Inst Lekow 7-Ethyl-10-hydroxycamptothecin derivatives for use in the treatment of cancer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3706124A1 (en) * 1987-02-25 1988-09-08 Agie Ag Ind Elektronik METHOD FOR ELECTROEROSIVELY MACHINING ELECTRICALLY LOW OR NON-CONDUCTIVE WORKPIECES, AND ELECTROEROSION MACHINE FOR IMPLEMENTING THE METHOD
JP2617842B2 (en) * 1991-10-18 1997-06-04 関西電力株式会社 Stone electrical destruction equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU102067B1 (en) 2020-09-17 2022-03-18 Narodowy Inst Lekow 7-Ethyl-10-hydroxycamptothecin derivatives for use in the treatment of cancer
EP3971189A1 (en) 2020-09-17 2022-03-23 Narodowy Instytut Leków 7-ethyl-10-hydroxycamptothecin derivatives for use in the treatment of cancer

Also Published As

Publication number Publication date
JPS59224216A (en) 1984-12-17

Similar Documents

Publication Publication Date Title
Jain et al. On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions
Gautam et al. Experimental investigations into ECSD process using various tool kinematics
Jain et al. On the machining of alumina and glass
Chak et al. The drilling of Al 2 O 3 using a pulsed DC supply with a rotary abrasive electrode by the electrochemical discharge process
Yang et al. Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte
Chak et al. Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply
US4559115A (en) Method of and apparatus for machining ceramic materials
Ghosh Electrochemical discharge machining: Principle and possibilities
CN1016764B (en) Method for the electroerosive machining of electrically slightly or non-conductive workpieces, as well as electro-erosion machine for performing the method
Chak et al. Machining of SiC by ECDM process using different electrode configurations under the effect of pulsed DC
JPH0323288B2 (en)
JPS59223282A (en) Ceramic working method
Ruszaj Unconventional processes of ceramic and composite materials shaping
Ali et al. Electrochemical Discharge Machining Technology Applied for Turning Operation
CN114406372B (en) Self-discharge auxiliary processing device and processing method for weakly conductive material and application of self-discharge auxiliary processing device and processing method
Nas et al. Surface roughness optimization of EDM process of Hastelloy C22 super alloy
Vaishya Review on Micromachining of Pyrex glass using Wire-ECDM
JPH0423609B2 (en)
Chak Spark-assisted electrochemical drilling of ceramics
CN113478032B (en) Electrolytic machining electrode for high-aspect-ratio groove and machining method
JPH0794088B2 (en) Processing method of non-conductive material by arc discharge in electrolyte
JP2012030330A (en) Electric discharge machining method, and electric discharge machining device
Panda ELECTROCHEMICAL SPARK MACHINING: A HYBRID MACHINING PROCESS
Setti Electric Discharge Grinding (EDG)
Setti 7 Electric Grinding Discharge (EDG)