JPH03232877A - Production of dihydrocoumarin - Google Patents

Production of dihydrocoumarin

Info

Publication number
JPH03232877A
JPH03232877A JP2513490A JP2513490A JPH03232877A JP H03232877 A JPH03232877 A JP H03232877A JP 2513490 A JP2513490 A JP 2513490A JP 2513490 A JP2513490 A JP 2513490A JP H03232877 A JPH03232877 A JP H03232877A
Authority
JP
Japan
Prior art keywords
dihydrocoumarin
coumarin
reaction
catalyst
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2513490A
Other languages
Japanese (ja)
Inventor
Kiyotaka Onishi
大西 清孝
Kazunori Seiga
清賀 和法
Taketeru Hashiguchi
橋口 武暉
Sumio Katahira
片平 住男
Minoru Hashigami
橋上 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKURA GOSEI KOGYO KK
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
KOKURA GOSEI KOGYO KK
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKURA GOSEI KOGYO KK, Nippon Steel Chemical Co Ltd filed Critical KOKURA GOSEI KOGYO KK
Priority to JP2513490A priority Critical patent/JPH03232877A/en
Publication of JPH03232877A publication Critical patent/JPH03232877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)

Abstract

PURPOSE:To obtain the title compound useful as an intermediate for drugs in high purity and efficiently by hydrogenating coumarin in an alcohol solvent in the presence of a hydrogenating catalyst under a specific condition. CONSTITUTION:Coumarin is hydrogenated in an alcohol solvent in the presence of a hydrogenating catalyst (e.g. Raneynickel catalyst) under a condition at 0-150 deg.C under 0.5-100kg/cm<2>.G hydrogen pressure to give dihydrocoumarin. In the reaction, preferably methanol or ethanol and advantageously isopropanol are used as the solvent and the amount of the solvent used is 0.5-10 pts.wt., preferably 1-5 pts.wt. based on 1 pt.wt. coumarin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医薬中間体や香料用として有用なジヒドロク
マリンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing dihydrocoumarin, which is useful as a pharmaceutical intermediate or a perfume.

〔従来の技術〕[Conventional technology]

クマリンあるいはジヒドロクマリンは、3−(2シクロ
ヘキサノイル)プロピオン酸エステルを白金系触媒の存
在下に加熱することにより得られることは知られている
(特開昭60−181.082号公報等)。また、クマ
リンを水素化触媒の存在下に水素化するとジヒドロクマ
リンが得られることも知られている(「接触水素化反応
」■東京化学同人、1987年4月10日発行、p28
8〜290)。
It is known that coumarin or dihydrocoumarin can be obtained by heating 3-(2cyclohexanoyl)propionic acid ester in the presence of a platinum catalyst (Japanese Patent Application Laid-open No. 181.082/1982, etc.) . It is also known that dihydrocoumarin can be obtained by hydrogenating coumarin in the presence of a hydrogenation catalyst ("Catalytic Hydrogenation Reaction", Tokyo Kagaku Dojin, April 10, 1987, p. 28).
8-290).

クマリンを水素化してジヒドロクマリンを製造する方法
においては、クマリンが68℃の融点を持っているため
、溶媒に溶解させて反応を行う必要がある。この目的で
使用する溶媒として、アルコールは、溶解度が太き(、
水素化反応を促進するため好ましいものであるが、反応
中あるいは反応終了後に生成したジヒドロクマリンが溶
媒のアルコールと反応して3−(2−ヒドロキシフェニ
ル)プロピオン酸エステルを副生ずる。そして、この副
生したエステルはジヒドロクマリンと沸点が近接してお
り、蒸留によって分離するのが困難である。
In the method of producing dihydrocoumarin by hydrogenating coumarin, since coumarin has a melting point of 68° C., it is necessary to dissolve it in a solvent to carry out the reaction. As a solvent used for this purpose, alcohol has a high solubility (,
Although this is preferable because it promotes the hydrogenation reaction, dihydrocoumarin produced during or after the reaction reacts with the solvent alcohol to produce 3-(2-hydroxyphenyl)propionate as a by-product. This by-produced ester has a boiling point close to that of dihydrocoumarin, and is difficult to separate by distillation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、ジヒドロクマリンを収率良く製造する
ことができるジヒドロクマリンの製造方法を提供するこ
とにある。
An object of the present invention is to provide a method for producing dihydrocoumarin that can produce dihydrocoumarin in good yield.

また、本発明の他の目的は、純度の高いジヒドロクマリ
ンを容易に製造することができるジヒドロクマリンの製
造方法を提供することにある。
Another object of the present invention is to provide a method for producing dihydrocoumarin that can easily produce dihydrocoumarin with high purity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、クマリンを、アルコール溶媒中で水素化触媒
の存在下に、温度0〜150℃及び水素圧0.5〜10
0kgZcrl−Gの条件で水素化するジヒドロクマリ
ンの製造方法、及び、クマリンをアルコール溶媒中で水
素化触媒の存在下に水素化し、得られた反応生成物を1
60〜250℃に加熱して副生した3−(2−ヒドロキ
シフェニル)プロピオン酸エステルを分解した後、蒸留
するジヒドロクマリンの製造方法である。
The present invention provides coumarin in an alcoholic solvent in the presence of a hydrogenation catalyst at a temperature of 0 to 150°C and a hydrogen pressure of 0.5 to 10°C.
A method for producing dihydrocoumarin in which coumarin is hydrogenated under the conditions of 0 kg Zcrl-G, and a reaction product obtained by hydrogenating coumarin in an alcohol solvent in the presence of a hydrogenation catalyst.
This is a method for producing dihydrocoumarin in which the by-produced 3-(2-hydroxyphenyl)propionic acid ester is decomposed by heating to 60 to 250°C and then distilled.

本発明において、ジヒドロクマリンの原料とするクマリ
ンは、0−クレゾールあるいはサリチルアルデヒド等か
ら合成されたものや、前記特開昭60181、082号
公報に記載された様な方法で合成されたジヒドロクマリ
ンを含むクマリン等、どの様なものであっても差し支え
ないが、精製を容易にするという点で純度の高いものを
使用するのが好ましい。
In the present invention, the coumarin used as the raw material for dihydrocoumarin is one synthesized from 0-cresol or salicylaldehyde, or dihydrocoumarin synthesized by the method described in JP-A-60181-082. Any type of coumarin may be used, but it is preferable to use one with high purity in order to facilitate purification.

溶媒として使用するアルコールとしては、常温で液状の
ものであれば使用できるが、好ましくは炭素数1〜5の
低級アルコールである。より好ましくは、ジヒドロクマ
リンと沸点差の大きいメタノール、エタノール、n−プ
ロパツール及びイソプロパツールである。このうち、イ
ソプロパツールは、触媒の劣化を抑制し、反応温度に近
い沸点を有する点で有利である。溶媒の使用量は原料ク
マリン1重量部に対し、0.5〜lO重量部、好ましく
は1〜5重量部である。
The alcohol used as a solvent may be any alcohol that is liquid at room temperature, but lower alcohols having 1 to 5 carbon atoms are preferred. More preferred are methanol, ethanol, n-propatool, and isopropatool, which have a large boiling point difference from dihydrocoumarin. Among these, isopropanol is advantageous in that it suppresses deterioration of the catalyst and has a boiling point close to the reaction temperature. The amount of the solvent used is 0.5 to 10 parts by weight, preferably 1 to 5 parts by weight, per 1 part by weight of the raw material coumarin.

水素化触媒としては、ラネーニッケル、安定化ニッケル
、パラジウム/カーボン、パラジウム/アルミナ、ルテ
ニウム/カーボン、ルテニウム/アルミナ等の触媒が使
用できるが、好ましくはラネーニッケル触媒、パラジウ
ム触媒である。原料クマリンに対する触媒の使用量は、
例えば、ラネニッケル触媒の場合には0.5〜20%(
重量%、以下同じ)、好ましくは1〜5%であり、また
、5X−パラジウム/カーボン担持触媒の場合には0.
1〜20%、好ましくは0.5〜5%である。
As the hydrogenation catalyst, catalysts such as Raney nickel, stabilized nickel, palladium/carbon, palladium/alumina, ruthenium/carbon, and ruthenium/alumina can be used, but Raney nickel catalysts and palladium catalysts are preferable. The amount of catalyst used for raw material coumarin is
For example, in the case of Raney nickel catalyst, 0.5 to 20% (
% by weight (hereinafter the same), preferably 1 to 5%, and 0.5% in the case of a 5X-palladium/carbon supported catalyst.
It is 1 to 20%, preferably 0.5 to 5%.

反応温度は0〜150℃、好ましくは20〜120℃、
より好ましくは20〜80℃である。反応温度が低すぎ
ると水素の吸収が遅く、高すぎると芳香環の核水素化が
生ずる。
The reaction temperature is 0 to 150°C, preferably 20 to 120°C,
More preferably it is 20 to 80°C. If the reaction temperature is too low, hydrogen absorption is slow; if the reaction temperature is too high, nuclear hydrogenation of aromatic rings occurs.

反応圧力は0 、 5〜100 kg/cnr・G 、
好ましくは1〜50 kglcrl−G 、より好まし
くは5〜30 kg / crl・Gである。圧力が高
すぎると水素化速度が急速に早くなり、反応温度の制御
が困難となる。また、反応時間は他の反応条件によって
異なるが、通常0.1〜10時間程度である。
The reaction pressure is 0, 5-100 kg/cnr・G,
Preferably it is 1 to 50 kglcrl-G, more preferably 5 to 30 kg/crl-G. If the pressure is too high, the hydrogenation rate will increase rapidly, making it difficult to control the reaction temperature. Further, the reaction time varies depending on other reaction conditions, but is usually about 0.1 to 10 hours.

反応終了後の触媒の除去は、反応液を冷却した後、減圧
濾過あるいは加圧濾過等により行うことができる。溶媒
は蒸留によって除去することが有利である。この際、3
−(2−ヒドロキシフェニル)プロピオン酸エステルの
副生を抑えるため、減圧下に低温で行うことが望ましい
。この様にして得られた生成物は、条件を選択すること
によって95%以上のジヒドロクマリンとすることがで
きる。
After the reaction is completed, the catalyst can be removed by filtration under reduced pressure or filtration under pressure after cooling the reaction solution. Advantageously, the solvent is removed by distillation. At this time, 3
In order to suppress the by-product of -(2-hydroxyphenyl)propionic acid ester, it is preferable to carry out the reaction under reduced pressure at a low temperature. The product thus obtained can be made to contain 95% or more dihydrocoumarin by selecting conditions.

上述の様にして製造されたジヒドロクマリンは、副生物
を不純物として含むので、これを除去することが望まし
い。以下、この除去方法について説明する。
Since the dihydrocoumarin produced as described above contains by-products as impurities, it is desirable to remove them. This removal method will be explained below.

本発明者らの研究によれば、この副生物の主なものは3
−(2−ヒドロキシフェニル)プロピオン酸エステルで
あり、これはジヒドロクマリンと沸点が近接しており、
このために蒸留ではこの副生物の分離が困難であるが、
加熱することによってこの副生物が低沸点物に分解し、
蒸留により容易に分離できることが判明した。
According to the research of the present inventors, the main by-products are 3
-(2-hydroxyphenyl)propionate, which has a boiling point close to that of dihydrocoumarin.
For this reason, it is difficult to separate this byproduct by distillation.
By heating, this by-product decomposes into low-boiling substances,
It was found that it could be easily separated by distillation.

そこで、本発明においては、上述の様に水素化して得ら
れた反応生成物を所定の温度に加熱してこの副生物を分
解した後、蒸留を行うことにより、高純度のジヒドロク
マリンを製造する。
Therefore, in the present invention, highly purified dihydrocoumarin is produced by heating the reaction product obtained by hydrogenation as described above to a predetermined temperature to decompose this byproduct, and then distilling it. .

副生物を加熱分解するための温度は、160〜250℃
、好ましくは180〜220℃、より好ましくは190
〜210℃である。この際の加熱分解温度が低すぎると
分解速度が遅くなり、あまりに高すぎるとジヒドロクマ
リンに焼臭がついて香料用等の用途に使用できなくなる
。加熱時間は温度によって異なるが、通常6〜30時間
の範囲である。
The temperature for thermal decomposition of by-products is 160-250°C
, preferably 180-220°C, more preferably 190°C
~210°C. If the thermal decomposition temperature at this time is too low, the decomposition rate will be slow, and if it is too high, dihydrocoumarin will have a burning odor and cannot be used for purposes such as perfumes. The heating time varies depending on the temperature, but is usually in the range of 6 to 30 hours.

加熱分解する方法としては、単にそのまま加熱して分解
する方法や窒素ガス等の不活性ガス雰囲気下に常圧又は
減圧下に加熱して分解する方法等の任意の方法を採用す
ることができるが、好ましくは不活性ガス雰囲気下に加
熱するのがよく、空気中での過度の加熱は過酸化物の生
成や分解等に伴う副生物が生成するので避けるのが望ま
しい。
Any method can be used for thermal decomposition, such as simply heating it as it is to decompose it or heating it under normal pressure or reduced pressure in an inert gas atmosphere such as nitrogen gas. Heating is preferably carried out under an inert gas atmosphere, and it is desirable to avoid excessive heating in air, as by-products are produced due to the production and decomposition of peroxides.

その他、上記の温度範囲にある蒸留装置に装入し、減圧
下に加熱分解しながら生成するアルコールを塔頂より取
り出す方法であってもよい。
Alternatively, a method may be used in which the alcohol is charged into a distillation apparatus in the above temperature range and the alcohol produced is taken out from the top of the column while being thermally decomposed under reduced pressure.

熱分解反応終了後の精製は、理論段数10段以上の蒸留
塔を使用して蒸留するのがよく、これによって容易に純
度99.5%以上のジヒドロクマリンとすることができ
る。そして、このジヒドロ 7 クマリンは再結晶等のこれ以上の精製をしな(でも医薬
中間体や香料用原料として使用できる。
Purification after the completion of the thermal decomposition reaction is preferably carried out by distillation using a distillation column having 10 or more theoretical plates, whereby dihydrocoumarin with a purity of 99.5% or more can be easily obtained. This dihydro 7 coumarin can be used as a pharmaceutical intermediate or a raw material for fragrances without further purification such as recrystallization.

〔実施例〕〔Example〕

実施例1 内容積llのオートクレーブ中にクマリン100g、イ
ソプロパツール300g及びラネーニッケル触媒(日揮
化学■製NN154D)5を仕込み、反応容器を窒素ガ
スでパージした後、水素を圧太し、第1表に示す条件で
反応を行った。
Example 1 100 g of coumarin, 300 g of isopropanol, and Raney nickel catalyst (NN154D manufactured by JGC Chemical Co., Ltd.) were charged into an autoclave having an internal volume of 1 liter, and after purging the reaction vessel with nitrogen gas, hydrogen was compressed. The reaction was carried out under the conditions shown below.

得られた反応生成物中のジヒドロクマリン付近の沸点を
有する留分を、GC及びGC−MSにより分析した。な
お、%は重量%を示す。
A fraction having a boiling point near dihydrocoumarin in the obtained reaction product was analyzed by GC and GC-MS. Note that % indicates weight %.

上記の反応条件及び結果を第1表に示す。The above reaction conditions and results are shown in Table 1.

第 ■ 表 次いで、実験No、 3で得られた反応生成物について
、濾過して触媒を除去した後の反応生成物100gをロ
ータリーエバポレーターで減圧下にイソプロパツールを
除去し、純度86%のジヒドロクマリン28gを得た。
Table 1 Next, regarding the reaction product obtained in Experiment No. 3, 100 g of the reaction product after filtering to remove the catalyst was used to remove isopropanol under reduced pressure using a rotary evaporator to obtain dihydrohydride with a purity of 86%. 28 g of coumarin was obtained.

実施例2 実施例1の実験No、 3と同様にして得られた反応生
成物(ジヒドロクマリン85.90%、3−(2−ヒド
ロキシフェニル)プロピオン酸イソプロピル13.17
X)300gを5001nlのフラスコに入れ、窒素ガ
スを100d/分の速度で吹き込みながら190℃で7
.2時間加熱した。
Example 2 Reaction product obtained in the same manner as in Experiment No. 3 of Example 1 (dihydrocoumarin 85.90%, isopropyl 3-(2-hydroxyphenyl)propionate 13.17%)
X) Put 300g into a 5001nl flask and heat at 190℃ for 7 hours while blowing nitrogen gas at a rate of 100d/min.
.. Heated for 2 hours.

加熱終了後の回収量は282.3gであり、GCで分析
した結果はジヒドロクマリン99.31%及び3−(2
−ヒドロキシフェニル)プロピオン酸イソプロピル0.
55%であった。
The amount recovered after heating was 282.3g, and the results of GC analysis showed that dihydrocoumarin was 99.31% and 3-(2
-Hydroxyphenyl)isopropyl propionate 0.
It was 55%.

また、この加熱処理したもの250gを蒸留装置に仕込
み、9mmHgの減圧下で蒸留して純度99゜1%のジ
ヒドロクマリン243.8gを得た。
Further, 250 g of this heat-treated product was charged into a distillation apparatus and distilled under reduced pressure of 9 mmHg to obtain 243.8 g of dihydrocoumarin with a purity of 99.1%.

実施例3 実施例1と同様にして得られた純度82.18%のジヒ
ドロクマリンを充填塔式精密蒸留塔(理論段数60段)
に仕込み、圧力150mmHg及び塔底温度190〜2
02℃の条件下に全還流状態で6時間処理した後、圧力
を70mm1gに下げ、還流比5で蒸留して185.6
〜185.9℃の留分を採取した。
Example 3 Dihydrocoumarin with a purity of 82.18% obtained in the same manner as in Example 1 was distilled into a packed precision distillation column (60 theoretical plates).
The pressure was 150 mmHg and the bottom temperature was 190-2.
After 6 hours of treatment at 02°C under total reflux, the pressure was lowered to 70 mm and 1 g, and distilled at a reflux ratio of 5 to 185.6
A fraction of ˜185.9° C. was collected.

得られた留分は、純度は99.78%以上のジヒドロク
マリンであった。
The obtained fraction was dihydrocoumarin with a purity of 99.78% or more.

比較例1 実施例2と同じ蒸留装置に実施例1の実験No、 3と
同様にして得られたジヒドロクマリン95gを仕込み、
4mmHgの減圧下で蒸留を行い、120℃までの留分
、125℃までの留分及び126℃までの留分をそれぞ
れ回収し、その収量と組成を調べた。結果を第2表に示
す。
Comparative Example 1 95 g of dihydrocoumarin obtained in the same manner as Experiment No. 3 of Example 1 was charged into the same distillation apparatus as Example 2.
Distillation was performed under reduced pressure of 4 mmHg, and the fractions up to 120°C, 125°C, and 126°C were collected, and their yields and compositions were investigated. The results are shown in Table 2.

第  2  表 また、この125℃までの留分56.5gを理論段数1
00段の精密蒸留装置に仕込み、圧力5mmHg、還流
比IOで蒸留したが、必要な純度99゜5%を得ること
ができなかった。
Table 2 also shows that 56.5 g of this fraction up to 125°C was
The product was charged into a 00-stage precision distillation apparatus and distilled at a pressure of 5 mmHg and a reflux ratio of IO, but the required purity of 99.5% could not be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法によれば、ジヒドロクマリンをクマリ
ンから収率良く得ることができ、また、熱分解操作を加
えることにより高純度のジヒドロクマリンを容易に製造
することができる。
According to the production method of the present invention, dihydrocoumarin can be obtained from coumarin in good yield, and highly pure dihydrocoumarin can be easily produced by adding a thermal decomposition operation.

Claims (2)

【特許請求の範囲】[Claims] (1)クマリンを、アルコール溶媒中で水素化触媒の存
在下に、温度0〜150℃及び水素圧0.5〜100k
g/cm^2・Gの条件で水素化することを特徴とする
ジヒドロクマリンの製造方法。
(1) Coumarin is prepared in an alcoholic solvent in the presence of a hydrogenation catalyst at a temperature of 0 to 150°C and a hydrogen pressure of 0.5 to 100k.
A method for producing dihydrocoumarin, characterized by hydrogenation under conditions of g/cm^2・G.
(2)クマリンをアルコール溶媒中で水素化触媒の存在
下に水素化し、得られた反応生成物を160〜250℃
に加熱して副生した3−(2−ヒドロキシフェニル)プ
ロピオン酸エステルを分解した後、蒸留することを特徴
とするジヒドロクマリンの製造方法。
(2) Hydrogenate coumarin in an alcohol solvent in the presence of a hydrogenation catalyst, and heat the resulting reaction product at a temperature of 160 to 250°C.
A method for producing dihydrocoumarin, which comprises heating to decompose 3-(2-hydroxyphenyl)propionic acid ester by-produced, and then distilling it.
JP2513490A 1990-02-06 1990-02-06 Production of dihydrocoumarin Pending JPH03232877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2513490A JPH03232877A (en) 1990-02-06 1990-02-06 Production of dihydrocoumarin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2513490A JPH03232877A (en) 1990-02-06 1990-02-06 Production of dihydrocoumarin

Publications (1)

Publication Number Publication Date
JPH03232877A true JPH03232877A (en) 1991-10-16

Family

ID=12157499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2513490A Pending JPH03232877A (en) 1990-02-06 1990-02-06 Production of dihydrocoumarin

Country Status (1)

Country Link
JP (1) JPH03232877A (en)

Similar Documents

Publication Publication Date Title
JP4929402B2 (en) Method for producing 3-methyl-cyclopentadecenones, method for producing R / S-muscone and method for producing optically active muscone
US4029709A (en) Process for the hydrogenation of citral to citronellal and of citronellal to citronellol using chromium-promoted Raney nickel catalyst
JPH03232877A (en) Production of dihydrocoumarin
US5990324A (en) Process for producing 3-methyltetrahydrofuran
KR100774627B1 (en) Method for preparing of optically pure R-form or S-form tetrahydro furfuryl alcohol using heterogeneous catalysts
JP3961938B2 (en) Production of tetrahydrogeraniol
US6137011A (en) Process for the preparation of bistrifluoromethylbenzylamines
JP3210148B2 (en) Method for hydrogenating dialkyl naphthalenedicarboxylate
US6429319B1 (en) Continuous process for the production of optically pure (S)-beta-hydroxy-gamma-butyrolactone
EP0417825B1 (en) Cymenol preparation by direct dehydrogenation
US5777170A (en) Process for the preparation of a naphthylbutanone
EP0257727B1 (en) Process for preparing cyclohexanonecarboxylic acid compounds
JP2001031614A (en) Production of hydroxyphenylcyclohexanone derivative
JPH02131449A (en) Preparation of 6-hydroxycaprate
RU2283301C2 (en) Method for preparing fluorinated benzonitrile
JP4472063B2 (en) Method for producing dicyclohexane derivative
CN116601136A (en) Method for producing organic compound
JPH03236372A (en) Preparation of n-substituted pyrrolidone-2- one
US4249028A (en) Selective conversion of d-isolimonene to d-3-menthene
MXPA02010924A (en) Production of 2 ethyl 3 methyl 1,4 diazine.
JPH036130B2 (en)
KR100651394B1 (en) Method for Preparing Isophthalaldehyde
JPH049780B2 (en)
JP4332777B2 (en) Process for producing trifluoromethoxycyclohexanes
JP2000191565A (en) Production of cyclododecanol and cyclododecanone