JPH0323285B2 - - Google Patents
Info
- Publication number
- JPH0323285B2 JPH0323285B2 JP58053835A JP5383583A JPH0323285B2 JP H0323285 B2 JPH0323285 B2 JP H0323285B2 JP 58053835 A JP58053835 A JP 58053835A JP 5383583 A JP5383583 A JP 5383583A JP H0323285 B2 JPH0323285 B2 JP H0323285B2
- Authority
- JP
- Japan
- Prior art keywords
- hemispherical shell
- cutter
- hemispherical
- thick
- inner peripheral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 18
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 239000011257 shell material Substances 0.000 description 55
- 239000002184 metal Substances 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 11
- 238000003754 machining Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 241000252084 Anguilla Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C3/00—Milling particular work; Special milling operations; Machines therefor
- B23C3/02—Milling surfaces of revolution
- B23C3/04—Milling surfaces of revolution while revolving the work
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Milling Processes (AREA)
Description
【発明の詳細な説明】
本発明は、表面に突起部が形成される半球殻を
真球に成形するための方法に関し、特に大型の球
形耐圧殻に応用して好適なものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a hemispherical shell having protrusions on its surface into a true sphere, and is particularly suitable for application to large spherical pressure-resistant shells.
海洋底等を調査するための深海潜水船において
は、コントロール室となる球形の耐圧殻内に乗員
が搭乗するようになつているため、この耐圧殻に
出入りのためのハツチや覗き窓或いは各種制御ケ
ーブル等を通す穴を形成しなければならない。一
般に、耐圧殻は真球に加工された一対の半球殻を
溶接接合することで仕上げているが、その前に半
球殻にハツチ取り付け用のフランジや覗き窓のサ
ツシ或いはケーブル貫通穴等を加工しておく方が
作業性や溶接に伴う耐圧殻の熱的悪影響を防止す
る点で好ましい。この場合、耐圧殻の強度を保持
するために上記フランジやサツシの部分或いはケ
ーブル貫通穴の周囲を他の部分よりも厚肉にして
おかなければならず、そこで半球殻にこれらハツ
チや覗き窓或いはケーブル貫通穴を形成するため
の大径の穴を穿設し、ここにフランジやサツシと
なる環状の厚肉金物或いはケーブル貫通穴が形成
された厚肉金物を嵌め込み溶接するようにしてい
る。 In deep-sea submersibles used to investigate the ocean floor, the crew is mounted inside a spherical pressure-resistant shell that serves as a control room. Holes must be formed for cables, etc. to pass through. Generally, a pressure shell is finished by welding together a pair of hemispherical shells that have been machined into true spheres, but before that, a flange for attaching a hatch, a sash for a viewing window, a cable through hole, etc. are machined on the hemispherical shell. It is preferable to keep it in place from the viewpoint of workability and prevention of adverse thermal effects on the pressure shell due to welding. In this case, in order to maintain the strength of the pressure shell, the flanges, sashes, or the area around the cable penetration hole must be made thicker than other parts, so these hatches, observation windows, or A large-diameter hole is drilled to form a cable through hole, and an annular thick-walled metal piece that becomes a flange or sash, or a thick-walled metal piece with a cable through-hole formed therein, is fitted into the hole and welded.
ところで、このような半球殻の内周面を真球加
工する場合、上述した厚肉金物の一部が半球殻の
内周面から突出していると、既存の三次元切削加
工法では半球殻と厚肉金物との接合部分の一部が
切削刃具に対して死角となつていまい、ここの部
分が切削不能となる。これは、第4図aに示すよ
うに、半球殻素材1を水平状態に保持し、これを
鉛直軸回りに回転させてその内周面を切削刃具3
2により旋削加工する従来工法においては、厚肉
金物6の突出部分が切削刃具に干渉するためであ
り、従つて従来では厚肉金物を半球殻に嵌め込み
溶接する前に半球殻の内周面を真球加工し、この
後に半球殻に大径の穴を穿設して厚肉金物を嵌め
込み溶接するようにしていた。 By the way, when machining the inner circumferential surface of such a hemispherical shell into a true sphere, if a part of the above-mentioned thick-walled hardware protrudes from the inner circumferential surface of the hemispherical shell, the existing three-dimensional cutting method will not process it as a hemispherical shell. A part of the joint with the thick-walled hardware becomes a blind spot for the cutting tool, making it impossible to cut this part. As shown in FIG. 4a, the hemispherical shell material 1 is held in a horizontal state, rotated around a vertical axis, and the inner peripheral surface is cut by the cutting tool 3.
This is because the protruding part of the thick-walled hardware 6 interferes with the cutting tool in the conventional method of turning using the method 2. Therefore, in the conventional method, the inner peripheral surface of the hemispherical shell is cut before the thick-walled hardware is fitted into the hemispherical shell and welded. After processing a true sphere, a large-diameter hole was drilled in the hemispherical shell, and thick-walled metal fittings were inserted and welded.
この結果、仕上がつた半球殻には溶接歪が残留
することとなり、所定の耐圧力を確保するために
は溶接歪による強度低下を見越して耐圧殻の肉厚
を厚くしなければならなかつた。深海調査船を深
海中で走行させる場合、この深海調査船の重量と
浮力とを釣り合わせて駆動エネルギを最小にする
ことが機動性を高める点で重要であるが、現在の
技術では浮力よりも深海調査船の重量の方が遥か
に大きく、多量の浮力材を搭載する必要があり、
船の大型化及び高コスト化を避けることができな
かつた。 As a result, welding strain remains in the finished hemispherical shell, and in order to ensure a predetermined withstand pressure, it is necessary to increase the wall thickness of the pressure shell in anticipation of a decrease in strength due to welding strain. When driving a deep-sea research vessel in the deep sea, it is important to balance the weight and buoyancy of the deep-sea research vessel to minimize driving energy, but with current technology, it is important to balance the weight and buoyancy of the vessel to minimize drive energy. Deep-sea research vessels are much heavier and need to carry a large amount of buoyancy material.
It was impossible to avoid increasing the size and cost of ships.
本発明はかかる従来の耐圧殻の加工に際して生
ずる不具合を解消し、半球殻の内周面を真球面に
仕上げてその肉厚を最小限に抑え得る加工方法を
提供することを目的とし、これによつて耐圧殻の
軽量化ひいては船の小型化や低コスト化を企図し
たものである。 The purpose of the present invention is to provide a processing method that eliminates the problems that occur when processing conventional pressure-resistant shells, finishes the inner circumferential surface of a hemispherical shell to a true spherical surface, and minimizes the wall thickness. Therefore, it was intended to reduce the weight of the pressure hull, which in turn would reduce the size and cost of the ship.
この目的を達成する本発明の半球殻内周面の加
工方法にかかる構成は、内周面の一部に突起部が
形成された半球殻を、当該半球殻の中心軸がカツ
タの回転中心に対して一定角度傾斜するように支
持し、前記カツタを前記半球殻の内周面の形状に
沿つて半球殻の中心部と縁部との間で往復動させ
ると共に、カツタが往動あるいは復動するごとに
前記半球殻をその中心軸回りに所定角度ずつ回転
させることを特徴とする。 The structure of the method for processing the inner circumferential surface of a hemispherical shell of the present invention that achieves this objective is such that a hemispherical shell having a protrusion formed on a part of the inner circumferential surface is arranged such that the central axis of the hemispherical shell is aligned with the center of rotation of the cutter. The cutter is supported so as to be inclined at a certain angle with respect to the hemispherical shell, and the cutter is moved back and forth between the center and the edge of the hemispherical shell along the shape of the inner peripheral surface of the hemispherical shell, and the cutter is moved forward or backward. The hemispherical shell is rotated by a predetermined angle around its central axis each time the hemispherical shell is rotated.
上記半球殻内周面の加工方法においては、カツ
タが半球殻内周面の中心部と縁部との間で往復動
し、かつ半球殻がその中心軸回りに微少角度ずつ
回転されることにより、半球殻内周面は放射状に
少しずつ加工される。内周面に突起物があつても
カツタが突起物の形状に倣つて移動、例えば上下
方向に移動することにより加工は続行される。 In the method for processing the inner peripheral surface of a hemispherical shell, the cutter reciprocates between the center and the edge of the inner peripheral surface of the hemispherical shell, and the hemispherical shell is rotated by minute angles around its central axis. , the inner peripheral surface of the hemispherical shell is machined radially little by little. Even if there is a protrusion on the inner circumferential surface, the cutter moves to follow the shape of the protrusion, for example, in the vertical direction, and processing continues.
以下、本発明による半球殻内周面の加工方法を
図面に示す一実施例に基づき詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method of processing an inner circumferential surface of a hemispherical shell according to the present invention will be explained in detail based on an embodiment shown in the drawings.
第1図a〜dには本発明方法の一実施例に係る
加工工程を示し、第2図a,bには球面切削加工
の状態を示し、第3図には本発明に係る球面加工
の原理を示してある。第1図aに示すように半球
状に形成された半球殻素材1の所定位置に第1図
bに示すような大径の穴2を穿設し、ここに第1
図cに示すようにケーブル貫通穴3が形成された
厚肉金物4及び覗き窓5用の厚肉金物6をそれぞ
れ嵌め込み溶接する。なお、本実施例ではケーブ
ル貫通穴3用の厚肉金物4及び覗き窓5用の厚肉
金物6を半球殻素材1の大径の穴2に嵌め込み溶
接したが、場合によつてはいずれか一方のみが嵌
め込み溶接されたり或いはハツチ用の厚肉金物等
が嵌め込み溶接されることもある。 Figs. 1 a to d show the machining steps according to an embodiment of the method of the present invention, Figs. 2 a and b show the state of spherical surface cutting, and Fig. 3 shows the spherical surface machining process according to the present invention. The principle is shown. As shown in FIG. 1a, a large diameter hole 2 as shown in FIG. 1b is bored in a predetermined position of a hemispherical shell material 1 formed into a hemispherical shape.
As shown in FIG. c, a thick-walled metal fitting 4 having a cable through-hole 3 formed therein and a thick-walled metal fitting 6 for a viewing window 5 are respectively fitted and welded. In this embodiment, the thick-walled metal fittings 4 for the cable through-hole 3 and the thick-walled metal fittings 6 for the viewing window 5 are fitted into the large-diameter hole 2 of the hemispherical shell material 1 and welded, but depending on the case, either Only one side may be fitted and welded, or thick metal parts for hatches may be fitted and welded.
第2図a,bには球面加工に使われる装置が示
してある。この装置は、半球殻素材1を支持する
傾斜回転割出し台7と大型NC横中ぐり盤8とか
らなる。傾斜回転割出し台7は、ピンジヨイント
9とラツク10とにより傾斜可能な固定テーブル
11と、固定テーブル11上に設けられギヤモー
タ12により小刻みに回転可能となつている回転
テーブル13と、回転テーブル13上に装備され
た締付け治具14,15とからなつている。又、
大型NC横中ぐり盤8は、通常の中ぐり盤と同様
にコラム16、コラム16に沿つて上下動可能な
主軸頭17等からなるが、ここでは主軸頭17に
アンギユラアタツチメント18を取付けて、カツ
タ取付部の向きを下向きに変えてある。19はカ
ツタ取付部の下端部に装着されたカツタであり、
ここでは、被加工物表面を皮をむくように加工す
るボールエンドミルを使つている。カツタ19
は、主軸頭17により上下動(Z軸方向)、アタ
ツチメント18により前後方向(X軸方向)の二
次元的に自由に動くことができ、その動きはNC
コンピユータ20により制御される。NCコンピ
ユータ20には、内周面の形状を構成する球面及
び突起物(厚肉金物4,6)の形状に対応したプ
ラグラムがインプツトされている。又、前記傾斜
回転割出し台7の動きもコンピユータ20により
制御される。 Figures 2a and 2b show the equipment used for machining spherical surfaces. This device consists of an inclined rotary indexing table 7 that supports a hemispherical shell material 1 and a large NC horizontal boring machine 8. The tilting rotation indexing table 7 includes a fixed table 11 that can be tilted by a pin joint 9 and a rack 10, a rotary table 13 that is provided on the fixed table 11 and can be rotated in small increments by a gear motor 12, and a rotary table 13 that is arranged on the rotary table 13. It consists of tightening jigs 14 and 15 equipped with. or,
The large NC horizontal boring machine 8 is composed of a column 16, a spindle head 17 that can move up and down along the column 16, etc., like a normal boring machine, but here an angular attachment 18 is attached to the spindle head 17. After installing it, I changed the direction of the cutter attachment part to face down. 19 is a cutter attached to the lower end of the cutter attachment part,
Here, we use a ball end mill that processes the surface of the workpiece in a peeling manner. Katsuta 19
can freely move two-dimensionally in the vertical direction (Z-axis direction) by the spindle head 17 and in the longitudinal direction (X-axis direction) by the attachment 18.
It is controlled by a computer 20. The NC computer 20 is loaded with a program corresponding to the shape of the spherical surface and protrusions (thick-walled metal parts 4 and 6) that make up the shape of the inner peripheral surface. Further, the movement of the tilting rotary indexing table 7 is also controlled by the computer 20.
上記装置における傾斜回転割出し台7の回転テ
ーブル13上に、第1図cに示す状態の半球殻素
材1はその仮想中心線(中心軸)30を回転テー
ブル13の回転中心と一致させて、締付け治具1
4,15によつて固定される。この固定作業の際
には、作業をしやすいように回転テーブル13は
水平にしておく。 The hemispherical shell material 1 in the state shown in FIG. Tightening jig 1
4 and 15. During this fixing work, the rotary table 13 is kept horizontal to facilitate the work.
この後、回転テーブル13を固定テーブル11
と共に水平に対し45゜傾ける。つまり、半球殻素
材1は、カツタであるボールエンドミル19の回
転中心31に対して45゜傾いて支持された状態と
なるのである。 After this, the rotary table 13 is fixed to the fixed table 11.
and tilt it at 45 degrees to the horizontal. In other words, the hemispherical shell material 1 is supported at an angle of 45 degrees with respect to the rotation center 31 of the ball end mill 19, which is a cutter.
この状態でNC横中ぐり盤8のボールエンドミ
ル19によつて、内周面を切削加工するのである
が、NCコンピユータ20により制御されるボー
ルエンドミル19は、先ず、第3図に示すように
内周面の縁Aから中心Bへと内周面に沿つて移動
され、その軌跡部分を切削加工する。 In this state, the ball end mill 19 of the NC horizontal boring machine 8 is used to cut the inner circumferential surface. It is moved along the inner circumferential surface from the edge A of the circumferential surface to the center B, and its locus is cut.
ボールエンドミル17がBまで移動すると、
NCコンピユータ20の働きによりギヤモータ1
2が作動され、回転テーブル13と共に半球殻素
材1は0.2〜0.3゜回転される。 When the ball end mill 17 moves to B,
The gear motor 1 is controlled by the action of the NC computer 20.
2 is operated, and the hemispherical shell material 1 is rotated by 0.2 to 0.3 degrees together with the rotary table 13.
この後、ボールエンドミル19は半球面の中心
Bから縁Aへと移動され、先に加工した部分から
0.2〜0.3゜ずれた部分を直線的に切削加工する。 After this, the ball end mill 19 is moved from the center B of the hemisphere to the edge A, and from the previously machined part.
Linearly cut the part that is offset by 0.2~0.3°.
ボールエンドミル19が縁Aに来ると、また回
転テーブル13により半球殻素材1は0.2〜0.3゜回
転される。 When the ball end mill 19 reaches the edge A, the hemispherical shell material 1 is rotated by 0.2 to 0.3 degrees by the rotary table 13.
以上の手順を半球殻素材1が1周するまで多数
回(例えば1200〜1800回)繰り返すことによつ
て、半球殻素材1の内周面は全面に亘つて加工さ
れる。 By repeating the above procedure many times (for example, 1200 to 1800 times) until the hemispherical shell material 1 has made one revolution, the entire inner peripheral surface of the hemispherical shell material 1 is processed.
このように、半球殻素材1の内周面に対しその
半径方向に二次元的にボールエンドミル19を往
復動させると共に半球殻素材1をボールエンドミ
ル19が往動あるいは復動するごとに中心軸(対
称軸)回りに回転させることにより、半球状の内
面を所定の三次元的形状に削り出すことができる
のである。第1図dには加工終了後の半球殻の断
面形状を示してある。 In this way, the ball end mill 19 is reciprocated two-dimensionally in the radial direction of the inner peripheral surface of the hemispherical shell material 1, and the center axis ( The hemispherical inner surface can be carved into a predetermined three-dimensional shape by rotating it around the axis of symmetry. FIG. 1d shows the cross-sectional shape of the hemispherical shell after machining.
尚、厚肉金物4,6が突出する部分において
は、ボールエンドミル19はその形状に合わせて
移動するよう制御される。又、カツタとしてボー
ルエンドミル19を使つた場合、ボールエンドミ
ル19の切削深さは0.2〜2mm程度であるので、
全周面に亘つての切削加工を数回繰り返して成品
とする。更に又、半球殻素材1のきざみ回転送り
角度はカツタによる切削幅によつて決まるので、
その範囲はカツタの大小等によつて0.1〜1゜位と
なる。 In addition, in the portion where the thick metal parts 4 and 6 protrude, the ball end mill 19 is controlled to move according to the shape thereof. Also, when using the ball end mill 19 as a cutter, the cutting depth of the ball end mill 19 is approximately 0.2 to 2 mm, so
The finished product is made by repeating cutting several times over the entire circumference. Furthermore, since the increment rotation feed angle of the hemispherical shell material 1 is determined by the cutting width by the cutter,
The range is about 0.1 to 1° depending on the size of the katsuta.
半球殻素材1を傾ける角度としては、水平に対
し45゜が最も好ましいのであるが、その前後であ
ればある程度許容できる。要は、カツタに死角が
できなければよい。例えば、半球殻素材1を45゜
傾けてセツトすると、切削長l(X軸駆動長さ)
は半球殻素材1の内径Dの1/√2ですみ、又ボ
ールエンドミル19の高さ方向(Z軸方向)駆動
長さhは、半径Rの1/2(2−√2)ですること
になり、アンギユラアタツチメント18が全体に
短かくでき、削り出しに必要な剛性が得られ、ひ
いては必要な寸法精度の十分な確保が達成でき
る。又、従来工法のように半球殻素材1を水平に
セツトしたままボールエンドミル19を使つて加
工したとしても、第4図aに示すように、被切削
面とのなす角が0゜となる部分21や突起部周りで
死角部分22など、切削不可能な部分が生じてし
まうが、45゜傾けた場合には、第4図bに示すよ
うに、ボールエンドミル17と被切削面との当り
角が最小で45゜(第3図中におけるA点とB点)で
あり、切削死角部がなくなる。以上実施例をあげ
て説明したように、本発明に係る半球殻内周面の
加工方法によれば、あらかじめ厚肉金物を半球殻
に溶接してから半球殻の内周面を切削加工するこ
とができ、つまり、突起物のある半球殻内周面を
切削加工することができ、溶接歪の影響を受ける
ことなく半球殻の内周面を工作機械の加工精度に
対応した真球に仕上げることが可能となる。この
結果、半球殻の肉厚を最小限に抑えることがで
き、耐圧殻の軽量化ひいては深海調査船の小型化
及び低コスト化が達成可能となる。 The angle at which the hemispherical shell material 1 is tilted is most preferably 45° with respect to the horizontal, but any angle around that is acceptable to some extent. The point is that there should be no blind spots in the katsuta. For example, if the hemispherical shell material 1 is set at an angle of 45 degrees, the cutting length l (X-axis drive length)
should be 1/√2 of the inner diameter D of the hemispherical shell material 1, and the driving length h of the ball end mill 19 in the height direction (Z-axis direction) should be 1/2 (2-√2) of the radius R. Therefore, the angular attachment 18 can be shortened as a whole, the rigidity required for machining can be obtained, and the necessary dimensional accuracy can be sufficiently ensured. Furthermore, even if the hemispherical shell material 1 is set horizontally and processed using the ball end mill 19 as in the conventional method, as shown in Figure 4a, there will be a portion where the angle with the surface to be cut is 0°. 21 and blind areas 22 around the protrusions that cannot be cut, but if the ball end mill 17 is tilted at 45 degrees, the contact angle between the ball end mill 17 and the surface to be cut will change as shown in Figure 4b. The minimum angle is 45° (points A and B in Figure 3), and there are no blind spots in cutting. As described above with reference to the embodiments, according to the method for processing the inner circumferential surface of a hemispherical shell according to the present invention, a thick-walled metal object is welded to the hemispherical shell in advance, and then the inner circumferential surface of the hemispherical shell is cut. In other words, it is possible to cut the inner peripheral surface of a hemispherical shell that has protrusions, and it is possible to finish the inner peripheral surface of the hemispherical shell into a perfect sphere that corresponds to the processing accuracy of the machine tool without being affected by welding distortion. becomes possible. As a result, the wall thickness of the hemispherical shell can be minimized, making it possible to reduce the weight of the pressure-resistant shell and, in turn, to reduce the size and cost of the deep-sea research vessel.
第1図a,b,c,dは本発明の半球殻内周面
加工方法における前処理工程及び切削工程を示す
工程説明図、第2図a,bは本発明方法の実施状
態を装置と共に示す一部断面とした正面図と側面
図、第3図は本発明方法の加工原理を示す説明
図、第4図a,bは従来のものと本発明方法とに
おけるカツタと半球殻素材との関係を示す断面図
である。
図面中、1は半球殻素材、4,6は厚肉金物、
7は傾斜回転割出し台、8は大型NC横中ぐり
盤、12はギヤモータ、13は回転テーブル、1
8はアンギユラアタツチメント、19はボールエ
ンドミルである。
Figures 1a, b, c, and d are process explanatory diagrams showing the pretreatment process and cutting process in the method for processing the inner circumferential surface of a hemispherical shell of the present invention, and Figures 2a and b illustrate the implementation state of the method of the present invention together with the equipment. FIG. 3 is an explanatory diagram showing the processing principle of the method of the present invention, and FIGS. 4a and b show the relationship between the cutter and hemispherical shell material in the conventional method and the method of the present invention. FIG. 3 is a cross-sectional view showing the relationship. In the drawing, 1 is hemispherical shell material, 4 and 6 are thick metal parts,
7 is a tilting rotary indexing table, 8 is a large NC horizontal boring machine, 12 is a gear motor, 13 is a rotary table, 1
8 is an anguilla attachment, and 19 is a ball end mill.
Claims (1)
を、当該半球殻の中心軸がカツタの回転中心に対
して一定角度傾斜するように支持し、前記カツタ
を前記半球殻の内周面の形状に沿つて半球殻の中
心部と縁部との間で往復動させると共に、カツタ
が往動あるいは復動するごとに前記半球殻をその
中心軸回りに所定角度ずつ回転させるとを特徴と
する半球殻内周面の加工方法。1. A hemispherical shell in which a protrusion is formed on a part of the inner peripheral surface is supported such that the central axis of the hemispherical shell is inclined at a certain angle with respect to the rotation center of the cutter, and the cutter is attached to the inner circumference of the hemispherical shell. The hemispherical shell is reciprocated between the center and edge of the hemispherical shell along the shape of the surface, and the hemispherical shell is rotated by a predetermined angle around its central axis each time the cutter moves forward or backward. A method for processing the inner peripheral surface of a hemispherical shell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5383583A JPS59182011A (en) | 1983-03-31 | 1983-03-31 | Machining method of inner peripheral surface of semi-spherical hull |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5383583A JPS59182011A (en) | 1983-03-31 | 1983-03-31 | Machining method of inner peripheral surface of semi-spherical hull |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59182011A JPS59182011A (en) | 1984-10-16 |
JPH0323285B2 true JPH0323285B2 (en) | 1991-03-28 |
Family
ID=12953841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5383583A Granted JPS59182011A (en) | 1983-03-31 | 1983-03-31 | Machining method of inner peripheral surface of semi-spherical hull |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59182011A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6179508A (en) * | 1984-09-28 | 1986-04-23 | Komatsu Ltd | Numerical controlled slant face machining method |
US4878789A (en) * | 1988-07-26 | 1989-11-07 | Louis A. Grant, Inc. | Apparatus for cleaning titanium pots |
CN102310218B (en) * | 2011-07-04 | 2012-11-28 | 绥中四方电站装备制造有限公司 | Circumferential milling machine for machining inner-outer wall surfaces of cylindrical object |
CN108213531A (en) * | 2017-11-29 | 2018-06-29 | 内蒙古北方重工业集团有限公司 | The processing method of semicircle thin-wall part |
JP7542372B2 (en) * | 2020-09-15 | 2024-08-30 | 三菱重工コンプレッサ株式会社 | Manufacturing method of the cabin |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57173413A (en) * | 1981-04-17 | 1982-10-25 | Senda Tekkosho:Kk | Machining method of spherical surface |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955479U (en) * | 1972-08-22 | 1974-05-16 |
-
1983
- 1983-03-31 JP JP5383583A patent/JPS59182011A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57173413A (en) * | 1981-04-17 | 1982-10-25 | Senda Tekkosho:Kk | Machining method of spherical surface |
Also Published As
Publication number | Publication date |
---|---|
JPS59182011A (en) | 1984-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0411321B2 (en) | ||
KR100500514B1 (en) | Complex machining apparatus and friction stir welding method | |
JPH06190667A (en) | Composite body for use in frame structure of cutting machine and machining method | |
CA1249425A (en) | Numerical-control machining center for structural sections | |
GB2293994A (en) | Method and apparatus for manufacturing a rock bit leg | |
JPH0323285B2 (en) | ||
US4245939A (en) | Method and apparatus for machining spherical combustion chambers | |
CN114227149B (en) | High-precision machining tool and method for titanium alloy hemispherical assembly welding piece | |
JPS59182002A (en) | Machining method of inner peripheral wall of semi- spherical hull | |
JPS58171229A (en) | Structure of table for machining center | |
US11185991B2 (en) | Surface-machining assembly comprising an effector to be mounted on a robot arm and at least one effector bearing element by means of which the effector bears on the surface and/or on the tools with a ball joint provided therebetween | |
CN112620738A (en) | Machining tool, machining device and machining method for closed annular groove of aviation part | |
CN112792373A (en) | Aircraft engine casing spot facing machining tool, machining device and machining method | |
US5201618A (en) | Method for machining an ellipitical bore | |
EP1724038B1 (en) | Portable lathe | |
Lammlein et al. | The friction stir welding of hemispheres–a technique for manufacturing hollow spheres | |
CA3158838A1 (en) | Machine tools and methods of operation thereof | |
CN113695619A (en) | Reverse step hole machining method and centrifugal boring cutter | |
JPS625877Y2 (en) | ||
CN219967304U (en) | Circulation cooling device for turning center | |
JPS59205212A (en) | Cutting device for internal surface of spherical shell | |
JP2001138176A (en) | Diagonal hole machining method, and nc machining device | |
JPH0634935Y2 (en) | Hole inner peripheral surface processing tool | |
JPS5732896A (en) | Positioner for welding | |
CN115230901B (en) | Connection method of reducer cylindrical shell ring in ship pressure-bearing shell and ship |