JPH03232717A - Production of boric acid - Google Patents

Production of boric acid

Info

Publication number
JPH03232717A
JPH03232717A JP2025148A JP2514890A JPH03232717A JP H03232717 A JPH03232717 A JP H03232717A JP 2025148 A JP2025148 A JP 2025148A JP 2514890 A JP2514890 A JP 2514890A JP H03232717 A JPH03232717 A JP H03232717A
Authority
JP
Japan
Prior art keywords
boric acid
cation exchange
acid
alkali metal
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2025148A
Other languages
Japanese (ja)
Inventor
Toshikatsu Hamano
浜野 利勝
Yukio Matsumura
幸夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2025148A priority Critical patent/JPH03232717A/en
Publication of JPH03232717A publication Critical patent/JPH03232717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To efficiently obtain highly pure boric acid by arranging one or more cation exchange membranes to form a diffusive dialysio tank, charging a mineral acid into one of two compartments having the cation exchange membrane therebetween in the tank and charging an alkali metal borate aqueous solution into the other. CONSTITUTION:One or more, preferably plural, cation exchange membranes C are arranged at intervals to form a diffusive dialysis tank. The aqueous solutions of an alkali metal borate (e.g. sodium borate) is charged and circulated into alternate compartments A1, A2, A3 (hereinafter referred to as boric acid chambers), and the aqueous solution of a mineral acid (e.g. sulfuric acid) is also charged and circulated into the other compartments B1, B2, B3 (hereinafter referred to as mineral acid chambers) neighboring on the boric acid chambers A1, A2, A3 through the cation exchange membranes C, whereby hydrogen ions forming the mineral acids are transferred to the boric acid chambers through the cation exchange membranes C and alkali metal ions forming the alkali metal borate are also simultaneously transferred to the mineral acid chambers through the cation exchange membranes C. Boric acid is prepared in the boric acid chambers and the mineral acid is simultaneously converted into the alkali metal salt thereof in the mineral acid chambers.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ホウ酸の製造方法、詳しくは、陽イオン交換
膜を使用した効率の高いホウ酸の新規な製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing boric acid, and more particularly, to a novel method for producing boric acid with high efficiency using a cation exchange membrane.

[従来の技術] 従来、ホウ酸は工業的には、原料になるホウ酸ソーダに
硫酸を混入し、以下の反応により製造されている。
[Prior Art] Boric acid has conventionally been produced industrially by mixing sulfuric acid into sodium borate as a raw material and performing the following reaction.

NaJ40t + H*SO4+ 5HtO−e Na
1SO* +4’HsBO1+しかルながら、かかる方
法ではボウ硝が副成しこれを通常は晶析なと溶解度差に
より分離する為、その分離手段が複雑なばかりでなく、
原料ホウ素の利用率も高くて80%にとどまり、効率も
悪いものであった。
NaJ40t + H*SO4+ 5HtO-e Na
1SO* +4'HsBO1+However, in such a method, sulfate is formed as a by-product, and this is usually separated by crystallization and solubility difference, so the separation method is not only complicated, but also
The utilization rate of raw material boron was also high, at only 80%, and the efficiency was poor.

[発明の解決しようとする問題点] 本発明は、上記従来法と異なり、原料ホウ素の利用率が
高(、また複雑な分離操作も行なわないホウ酸の新規な
製造法を提供するものである。
[Problems to be Solved by the Invention] The present invention provides a novel method for producing boric acid that has a high utilization rate of raw material boron (and does not require complicated separation operations), unlike the above-mentioned conventional methods. .

[問題点を解決するための手段] 本発明の上記目的は、陽イオン交換膜を配置して構成し
た拡散透析槽において、陽イオン交換膜を介して槽の一
方の画室に鉱酸を、他方の画室にホウ酸のアルカリ金属
塩水溶液を、それぞれ存在させて循環することにより、
上記ホウ酸のアルカリ金属塩をホウ酸に転化することを
特徴とする製造方法を採用することにより達成されるこ
とが判明した。
[Means for Solving the Problems] The above object of the present invention is to provide a diffusion dialysis tank configured with a cation exchange membrane, in which mineral acid is supplied to one compartment of the tank via the cation exchange membrane, and to the other compartment. By circulating an aqueous solution of an alkali metal salt of boric acid in each chamber,
It has been found that this can be achieved by employing a manufacturing method characterized by converting the alkali metal salt of boric acid into boric acid.

本発明の製造方法の原理は、添付第1図により説明され
る。第1図の如(、−枚以上好ましくは複数枚の陽イオ
ン交換膜Cが間隔をおいて配列され、所謂拡散透析槽が
構成される。かかる拡散透析槽は好ましくは一つおきの
画室A1Am 、A3 (以下ホウ酸室ともいう)にホ
ウ素原料であるホウ酸のアルカリ金属塩(M2B40?
  : Mはアルカリ金属塩を表す)水溶液が供給され
、一方、かかる画室と陽イオン交換膜を介して隣接する
他方の画室B、 、B2 、B、 (以下鉱酸室という
)には鉱酸(MX:Mは酸根を表す)水溶液が供給され
る。
The principle of the manufacturing method of the present invention is explained with reference to the attached FIG. As shown in FIG. , A3 (hereinafter also referred to as the boric acid chamber) contains an alkali metal salt of boric acid (M2B40?), which is a boron raw material.
: M represents an alkali metal salt) aqueous solution is supplied, while the other compartment B, , B2, B, (hereinafter referred to as mineral acid compartment) adjacent to this compartment via a cation exchange membrane contains a mineral acid ( MX: M represents an acid radical) an aqueous solution is supplied.

このようにして、上記拡散透析槽に缶液を供給循環させ
た場合、第1図のように鉱酸を形成する水素イオンH゛
は陽イオン交換膜を通過してホウ酸のアルカリ金属塩が
存在する隣接するホウ酸室に移行し、同時にホウ酸のア
ルカリ金属塩を形成するアルカリ金属イオンM゛も陽イ
オン交換膜を通じて鉱酸が存在する隣接する鉱酸室に移
行する。
In this way, when the tank solution is supplied and circulated to the above-mentioned diffusion dialysis tank, the hydrogen ions H that form the mineral acid pass through the cation exchange membrane and the alkali metal salt of boric acid is converted into the alkali metal salt of boric acid. At the same time, the alkali metal ions M' that form an alkali metal salt of boric acid also migrate through the cation exchange membrane to the adjacent mineral acid chamber where mineral acid is present.

かくして、各画室内ではアルカリ金属イオンと水素イオ
ノンの置換が行なわれ、ホウ酸室A+ 、A2 、As
ではホウ素のアルカリ金属塩が転化してホウ酸が製造さ
れ、同時に鉱酸室B3.B2 。
In this way, alkali metal ions and hydrogen ions are replaced in each chamber, and boric acid chambers A+, A2, As
In the alkali metal salt of boron is converted to produce boric acid, and at the same time in the mineral acid chamber B3. B2.

B3では鉱酸が鉱酸のアルカリ金属塩に転化される。In B3, mineral acids are converted to alkali metal salts of mineral acids.

かくして、本発明では従来法の如(、ホウ酸が分離が煩
雑であるボウ硝などと混在して生成されるという欠点を
有さすに製造されるばかりではなく、また本発明では陽
イオン交換膜を通じた上記アルカリ金属イオンと水素イ
オンの置換は95〜99%に達するほど十分に行なわれ
るので、ホウ酸は純粋な形で製造できることが判明した
Thus, in the present invention, not only can boric acid be produced as in the conventional method (which has the drawback that boric acid is produced in a mixture with sulfur sulfate, etc., which is complicated to separate), but also, in the present invention, a cation exchange membrane is used. It has been found that the replacement of the alkali metal ions and hydrogen ions through is sufficient to reach 95-99%, so that boric acid can be produced in pure form.

本発明において、使用される陽イオン交換膜は解離度の
大きい強酸性の膜の使用が好ましく、なかでも、鉱酸を
形成する酸根が生成するホウ酸中に混合するのを防ぐ為
、好ましくは、陽イオンの輸率が好ましくは0.85以
上、特には0.9以上であるのが好ましい。
In the present invention, the cation exchange membrane used is preferably a strongly acidic membrane with a high degree of dissociation. Among these, it is preferable to use a strongly acidic membrane with a high degree of dissociation, especially in order to prevent acid radicals that form mineral acids from mixing with the boric acid produced. The transport number of the cation is preferably 0.85 or more, particularly 0.9 or more.

陽イオン交換膜を配列して構成される拡散透析槽は、い
ずれのタイプのものも使用できるが性能及び取り扱いの
容易性から所謂フィルタープレス(締付)型槽が有利に
使用できる。拡散透析槽に組込まれる陽イオン交換膜の
枚数は透析槽の能力に関係し、特に制限はないが、通常
好ましくは100〜1000枚が組込まれる。
Although any type of diffusion dialysis tank configured by arranging cation exchange membranes can be used, a so-called filter press (tightening) type tank is advantageously used in terms of performance and ease of handling. The number of cation exchange membranes incorporated into a diffusion dialysis tank is related to the capacity of the dialysis tank and is not particularly limited, but usually 100 to 1000 membranes are incorporated.

本発明において、原料のホウ酸のアルカリ金属塩は、好
ましく入手上の容易さからホウ酸ソーダ(N82B4o
t)が使用され、その濃度としては、溶解度の理由から
して、好ましくは1〜20重量%、特には8〜12重量
%の水溶液が使用される。一方、鉱酸としては硫酸、塩
酸、硝酸、酢酸等がいずれも使用可能であるが、なかで
も硫酸を使用した場合には有価物であるボウ硝が製造で
きるので特に好ましい。また、その濃度としてはボウ硝
濃度をある程度維持するための理由から、好ましくは1
〜50重量%、特には10〜30重量%が使用される。
In the present invention, the raw material alkali metal salt of boric acid is preferably sodium borate (N82B4o
t) is used, the concentration of which, for reasons of solubility, is preferably from 1 to 20% by weight, in particular from 8 to 12% by weight, in aqueous solution. On the other hand, as the mineral acid, sulfuric acid, hydrochloric acid, nitric acid, acetic acid, etc. can all be used, but among them, sulfuric acid is particularly preferred because it can produce sulfur salt, which is a valuable product. In addition, the concentration is preferably 1 for the reason of maintaining the concentration of sulfate to some extent.
~50% by weight, especially 10-30% by weight is used.

拡散透析槽へのホウ酸のアルカリ金属塩水溶液及び鉱酸
の供給は、向流又は併行流のいずれの方式も採用できる
。又、拡散移動速度を高める為に缶液は強制循環するの
が好ましく、膜面線速度は0.1〜200m/SeC好
ましくは5〜10am/secが採用される。
The aqueous solution of alkali metal salt of boric acid and mineral acid can be supplied to the diffusion dialysis tank by either countercurrent or parallel flow. Further, in order to increase the rate of diffusion and movement, it is preferable that the liquid in the tank is forcedly circulated, and the film surface linear velocity is preferably 0.1 to 200 m/Sec, preferably 5 to 10 am/sec.

更に、本発明では上記透析槽における陽イオン交換膜と
して一価陽イオン選択膜を使用することにより、鉱酸と
しては必ずしも純粋なものを使用しな(とも、例えば、
不純物を含む廃鉱酸を使用でき、この場合もホウ酸が上
記と同様に製造できるので一層有利となる。
Furthermore, in the present invention, by using a monovalent cation selective membrane as the cation exchange membrane in the dialysis tank, the mineral acid does not necessarily have to be pure (for example,
Waste mineral acid containing impurities can be used, which is even more advantageous since boric acid can also be produced in the same manner as above.

かくして、拡散透析槽のホウ酸室に生成されたホウ酸は
その純度に応じて必要に応じて好ましくは晶析などの手
段によりホウ酸ソーダや、分離し、極めて酸度の大きい
ホウ酸として製造できる。
In this way, the boric acid generated in the boric acid chamber of the diffusion dialysis tank can be separated and produced into sodium borate or boric acid with extremely high acidity, preferably by means such as crystallization, as necessary, depending on its purity. .

[発明の効果及び作用] 本発明では、上記のようにホウ酸が従来法に比べて原料
ホウ素からの利用率が大きく且つ純粋な形で製造できる
。また鉱酸としては所謂廃鉱酸も使用することもできる
ので、公害対策及び資源の有効利用上の利点も有する。
[Effects and Operations of the Invention] As described above, in the present invention, boric acid can be produced in a pure form with a higher utilization rate from raw material boron than in the conventional method. In addition, so-called waste mineral acid can also be used as the mineral acid, so it also has advantages in terms of pollution control and effective use of resources.

かかる本発明は、陽イオン交換膜を使用した拡散透析を
利用することで初めて可能になったものであるが、本発
明の場合、陽イオン交換膜を通過した水素イオンが、そ
のまま素通りすることな(、四ホウ酸(B、O,”−)
として存在する陰イオンと即座に反応してホウ酸(H2
BO3)を生成することは、予想外のことである。その
結果、アルカリ金属イオンと水素イオンの置換反応は、
上記したようにほぼ100%に近い収率で行なわれるこ
とにより、本発明のホウ酸の高い製造効率を可能ならし
めているものである。
The present invention was made possible for the first time by using diffusion dialysis using a cation exchange membrane, but in the case of the present invention, hydrogen ions that have passed through the cation exchange membrane do not pass through as is. (, Tetraboric acid (B, O, “-)
It immediately reacts with the anion present as boric acid (H2
BO3) is unexpected. As a result, the substitution reaction between alkali metal ions and hydrogen ions is
As mentioned above, by performing the process at a yield close to 100%, the boric acid of the present invention can be produced with high efficiency.

以下に本発明についての実施例を示す。Examples of the present invention are shown below.

[実施例] 陽イオン交換膜として、スルホン酸基をイオン交換基と
するスチレン−ジビニルベンゼン系強酸性膜(陽イオン
輸率0.92 、抵抗2.0〜3.5Ω・Cが、旭硝子
社製セレミオンCMV)を第1図に示されるようにlO
枚組込んで構成したフィルタープレス型拡散透析槽(旭
硝子社製T0−5型)のホウ酸室に8重量%のホウ駿ソ
ーダ水溶液71を循環し、一方鉱酸室には20重量%の
硫酸71を循環した。
[Example] As a cation exchange membrane, a styrene-divinylbenzene-based strongly acidic membrane with a sulfonic acid group as an ion exchange group (cation transfer number 0.92, resistance 2.0 to 3.5 Ω・C) was manufactured by Asahi Glass Co., Ltd. Selemion (CMV) manufactured by IO as shown in Figure 1.
In the boric acid chamber of a filter press type diffusion dialysis tank (T0-5 type manufactured by Asahi Glass Co., Ltd.), an 8% by weight boron soda aqueous solution 71 is circulated, while in the mineral acid chamber 20% by weight sulfuric acid is circulated. 71 was circulated.

上記拡散透析槽の運転後30分毎にサンプリングし、ホ
ウ酸室及び鉱酸室のそれぞれのNa+イオン濃度を測定
したところ、4時間後にはホウ酸室のNa”イオン濃度
は17.7g/lから0.7g/10に、鉱酸室のNa
+イオン濃度はOg/lから16g/lに変化した。ま
た、液量は水がホウ酸室から鉱酸室に移動し、ホウ酸室
の液量は71から6.41へ、鉱酸室の液量は71から
7.61に変わった。従ってNa”イオンは96%以上
移動したことになる。
After the operation of the above diffusion dialysis tank, sampling was carried out every 30 minutes and the concentration of Na+ ions in the boric acid chamber and the mineral acid chamber were measured. After 4 hours, the concentration of Na'' ions in the boric acid chamber was 17.7 g/l. From 0.7g/10 to 0.7g/10, Na in the mineral acid chamber
The + ion concentration changed from Og/l to 16 g/l. In addition, water moved from the boric acid chamber to the mineral acid chamber, and the liquid amount in the boric acid chamber changed from 71 to 6.41, and the liquid amount in the mineral acid chamber changed from 71 to 7.61. Therefore, more than 96% of the Na'' ions have migrated.

一方、かくしてホウ酸室から得られたホウ酸中の504
−濃度はo、ig/l以下であり、これから濃縮及び晶
析を行なうことにより、理論値の95%以上の回収率で
高純度のホウ酸を製造するととができた。
On the other hand, 504 in the boric acid thus obtained from the boric acid chamber
- The concentration was less than 0,ig/l, and by concentrating and crystallizing it, it was possible to produce highly pure boric acid with a recovery rate of 95% or more of the theoretical value.

[比較例] ホウ酸ソーダ606gを101の水に溶解し、硫酸(9
8%) 450 gを添加し、撹拌した。この溶液を減
圧濃縮しながら遠心分離器で結晶を取り出し、結晶に混
入してくるNa2SO4を分析した。その結果、結晶の
取り出し量が理論値の70%を越えた頃から徐々にNa
2SO4が増加し、80%を回収した時にはNa2SO
4が10%となった。
[Comparative Example] Dissolve 606 g of sodium borate in 101 parts of water, and add sulfuric acid (9
8%) was added and stirred. While concentrating this solution under reduced pressure, crystals were taken out using a centrifuge, and Na2SO4 mixed into the crystals was analyzed. As a result, from the time when the amount of crystals extracted exceeded 70% of the theoretical value, Na
2SO4 increases and when 80% is recovered Na2SO
4 became 10%.

従って高純度のH,PO,の回収は理論値70%であっ
た。
Therefore, the recovery of highly pure H, PO was 70% of the theoretical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のホウ酸の製造方法の原理を説明するた
めのものである。 C・・・・・・・・・・・・・・・陽イオン交換膜M 
B、O,・・・・・・・・・ホウ酸のアルカリ金属塩H
X  ・・・・・・・・・・・・酸
FIG. 1 is for explaining the principle of the method for producing boric acid of the present invention. C・・・・・・・・・・・・Cation exchange membrane M
B, O, ...... Alkali metal salt of boric acid H
X ・・・・・・・・・Acid

Claims (4)

【特許請求の範囲】[Claims] (1)陽イオン交換膜を配列して構成される拡散透析槽
において、陽イオン交換膜を介して隣接する一方の画室
に鉱酸を、他方の画室にホウ酸のアルカリ金属塩の水溶
液を、それぞれ存在させて循環することにより、上記ホ
ウ酸のアルカリ金属塩をホウ酸に転化することを特徴と
するホウ酸の製造方法。
(1) In a diffusion dialysis tank configured by arranging cation exchange membranes, mineral acid is supplied to one compartment adjacent to the cation exchange membrane, and an aqueous solution of an alkali metal salt of boric acid is supplied to the other compartment. A method for producing boric acid, which comprises converting the alkali metal salt of boric acid into boric acid by circulating them in the presence of each other.
(2)ホウ酸のアルカリ金属塩が、四ホウ酸ナトリウム
(Na_2B4_O_7)の1〜20%水溶液である請
求項1の方法。
(2) The method according to claim 1, wherein the alkali metal salt of boric acid is a 1-20% aqueous solution of sodium tetraborate (Na_2B4_O_7).
(3)鉱酸が1〜50%の硫酸である請求項1又は2の
方法。
(3) The method of claim 1 or 2, wherein the mineral acid is 1-50% sulfuric acid.
(4)陽イオン交換膜が、一価陽イオン選択膜である請
求項1、2又は3の方法。
(4) The method according to claim 1, 2 or 3, wherein the cation exchange membrane is a monovalent cation selective membrane.
JP2025148A 1990-02-06 1990-02-06 Production of boric acid Pending JPH03232717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025148A JPH03232717A (en) 1990-02-06 1990-02-06 Production of boric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025148A JPH03232717A (en) 1990-02-06 1990-02-06 Production of boric acid

Publications (1)

Publication Number Publication Date
JPH03232717A true JPH03232717A (en) 1991-10-16

Family

ID=12157917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025148A Pending JPH03232717A (en) 1990-02-06 1990-02-06 Production of boric acid

Country Status (1)

Country Link
JP (1) JPH03232717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621356B1 (en) * 2004-08-23 2006-09-13 요업기술원 Method of extracting boric-acid using microwave from borate-ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621356B1 (en) * 2004-08-23 2006-09-13 요업기술원 Method of extracting boric-acid using microwave from borate-ore

Similar Documents

Publication Publication Date Title
US20230087180A1 (en) Preparation of lithium carbonate from lithium chloride containing brines
US3787304A (en) Production of hf from fluorine by-products
AU2020374016B2 (en) Method for extracting lithium by means of extraction-back extraction separation and purification
US4238305A (en) Electrodialytic process for the conversion of impure soda values to sodium hydroxide and carbon dioxide
US5352345A (en) Ion exchange resin regenerant waste recovery and recycling via bipolar membranes
WO2020162796A9 (en) Method for producing lithium hydroxide monohydrate
CA2043351C (en) Process for the production of alkali metal hypophosphites
US4976838A (en) Method for purification of bases from materials comprising base and salt
JPS62161973A (en) Production of high-purity lithium carbonate
CN1039112C (en) Comprehensive utilization method for decomposition of B-Mg-Fe ore with sulfuric acid
EP4286335A1 (en) Method for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for an intermediate production of lithium carbonate or similar
US2764472A (en) Brine purification
CA2009616A1 (en) Method of producing carbonic acid salts of alkali metals
JPH03232717A (en) Production of boric acid
CN106048218A (en) Purification and impurity removal method for lithium chloride mixed solution
CN109534369A (en) A kind of film is integrated to prepare lithium chloride device and method thereof
KR20220108815A (en) Process and method for purifying lithium carbonate starting from impure lithium chloride solution
CN1089235A (en) The method of the single-phase decomposition system sodium bicarbonate of sodium sulfate and bicarbonate of ammonia
KR20230142589A (en) System and method for direct production of lithium hydroxide
US3690845A (en) Crystallization of a metal chlorate from a chlorate-chloride containing solution
US2863809A (en) Process for concentration of caustic cell liquor
US3846081A (en) Process for separating sodium sulfate from brines
US3013861A (en) Process for producing hydroxides
US20240011123A1 (en) Methods for regenerating li and ni from a solution
JPH0397880A (en) Method for preparation of aqeous sodium hydroxide solution of high cencentration