JPH0323257B2 - - Google Patents

Info

Publication number
JPH0323257B2
JPH0323257B2 JP13090383A JP13090383A JPH0323257B2 JP H0323257 B2 JPH0323257 B2 JP H0323257B2 JP 13090383 A JP13090383 A JP 13090383A JP 13090383 A JP13090383 A JP 13090383A JP H0323257 B2 JPH0323257 B2 JP H0323257B2
Authority
JP
Japan
Prior art keywords
ingot
mold
hot water
supplied
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13090383A
Other languages
Japanese (ja)
Other versions
JPS6030553A (en
Inventor
Susumu Nawata
Masaharu Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP13090383A priority Critical patent/JPS6030553A/en
Publication of JPS6030553A publication Critical patent/JPS6030553A/en
Publication of JPH0323257B2 publication Critical patent/JPH0323257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Description

【発明の詳細な説明】 本発明は鋳塊の連続的鋳造法に係り、アルミニ
ウム等の鋳塊を連続的に鋳造するに当り、その組
織を改善し、該鋳塊によつて得られる圧延材の機
械的特性を良好ならしめることのできる方法を提
供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously casting an ingot, and when an ingot of aluminum or the like is continuously cast, the structure of the ingot is improved and the rolled material obtained from the ingot is improved. The purpose of this invention is to provide a method that can improve the mechanical properties of.

アルミニウム等の鋳塊を連続鋳造するには一般
的に上下方向において開放された枠形の金属製水
冷鋳型を用い、該鋳型下部に受台を装入した条件
下で該受台上に金属溶湯を連続的に供給し、鋳型
内に凝固した鋳塊を前記受台を下降させて鋳型下
部から引出し、このようにして引出された鋳塊に
冷却水を施して凝固させる方法が採られている。
ところがこのような連続的鋳造法(所謂半連続鋳
造を含む)においては鋳塊は外周部から順次に冷
却され中心部に向うほど冷却速度が遅くなるため
中心部では結晶粒度やデンドライトアームスペー
シング(以下DASという)などの組織が粗くな
る。又同じ理由で中高力合金角型鋳塊の中心部に
は多数のシユリンケージポロシテイが発生する。
斯様な関係は鋳塊の厚さが増すほど顕著であつ
て、上記のように外皮部と中心部と組織を異にし
た鋳塊を用いて製造された圧延板などにおける中
心部の機械的性質は表皮部に比較して劣ることに
なり、何れにしても所期するような特性を得難い
こととなる。
To continuously cast ingots such as aluminum, generally a frame-shaped metal water-cooled mold that is open in the vertical direction is used, and a pedestal is placed at the bottom of the mold, and the molten metal is poured onto the pedestal. A method is adopted in which the solidified ingot is continuously supplied into the mold, the pedestal is lowered and the ingot is pulled out from the bottom of the mold, and the ingot thus pulled out is subjected to cooling water and solidified. .
However, in such continuous casting methods (including so-called semi-continuous casting), the ingot is cooled sequentially from the outer periphery, and the cooling rate becomes slower toward the center. (called DAS), etc., become coarse. Also, for the same reason, a large number of linkage porosity occurs in the center of a rectangular ingot of medium-high strength alloy.
Such a relationship becomes more pronounced as the thickness of the ingot increases, and as mentioned above, the mechanical strength of the center of a rolled plate manufactured using an ingot with different textures between the outer skin and the center becomes more pronounced. The properties will be inferior to those of the skin, and in any case, it will be difficult to obtain the desired properties.

本発明は上記したような実情に鑑み研究を重ね
て開発されたものであつて、アルミニウム鋳塊の
如きを連続的に鋳造するに当り、水冷鋳型内に供
給される溶湯を直接的に鋳型内鋳塊の中心部に向
けて吐出させると共に、分配給湯ノズルによる給
湯を併用して鋳造することを提案するものであ
り、それによつて表層部から中心部まで略一様で
緻密な組織を形成し、又前記シユリンケージポロ
シテイなどの発生をなからしめようとするもので
ある。
The present invention was developed through repeated research in view of the above-mentioned circumstances, and is a method of directly casting molten metal supplied into a water-cooled mold into the mold when continuously casting aluminum ingots. It is proposed that the ingot be discharged toward the center of the ingot and be used in conjunction with the distribution nozzle to supply the ingot, thereby forming a nearly uniform and dense structure from the surface to the center. , and also attempts to eliminate the occurrence of the above-mentioned syringe porosity.

斯かる本発明について仔細を説明すると、添付
図面には上記のような本発明方法を角型鋳塊を得
る場合の装置として示されており、タンデイツシ
ユ1には鋳塊5内に形成される鋳塊8の中心部に
向けて直接給湯用ノズル2が上記鋳型5内の湯面
下部に相当に深く挿入されていてその挿入深さ位
置でタンデイツシユ1からの溶湯を直接的に吐出
するように成つている。又このようなノズル2の
両側にはフロート4を介して鋳型5内に給湯する
分配給湯ノズル3,3が対称的に配設され、同時
に給湯を行わしめており、鋳型5内溶湯7にはフ
イルター6を設け、又鋳型5には冷却水が送入さ
れて冷却効果を溶湯に与えると共にその下部に形
成されたノズル9から引き出される鋳塊8の周面
に冷却水を直接に供給して冷却するように成つて
いる。
To explain the present invention in detail, the attached drawing shows the method of the present invention as described above as an apparatus for obtaining a square ingot, and a tundish 1 has a mold formed in an ingot 5. A nozzle 2 for direct hot water supply is inserted considerably deep below the hot water level in the mold 5 toward the center of the lump 8, and the molten metal from the tundish 1 is directly discharged at the insertion depth position. It's on. Further, on both sides of such a nozzle 2, distributing hot water nozzles 3, 3 for supplying hot water into the mold 5 via a float 4 are arranged symmetrically, and the hot water is supplied at the same time. 6 is provided, and cooling water is fed into the mold 5 to give a cooling effect to the molten metal, and the cooling water is directly supplied to the circumferential surface of the ingot 8 drawn out from a nozzle 9 formed at the bottom of the mold 5 for cooling. It is designed to do so.

上記したような装置により実施される本発明方
法を更に説明すると、給湯用ノズル2から供給さ
れる溶湯量が多いほど鋳塊中心部における同一深
さ位置の溶湯温度が上昇し、一方鋳塊8の表面温
度はそれぞれの位置において同様であることから
相対的に中心部に対して与えられる冷却速度が速
くなり該中心部において緻密な結晶組織を形成す
ることができる。然してこのようにして鋳塊中心
部への給湯量が大となると、分配ノズル3から分
配供給される溶湯量が少なくなり鋳塊表層部が冷
えすぎてコールドシヤツト(凝固によるくびれ)
が発生したり、又浮遊晶も生じ易いこととなるの
で極端にノズル2からの給湯量を増大することは
不適切であつて、それらの関係は鋳塊の形状や大
きさによつても変動するが、一般的にノズル2に
よる給湯量は鋳型5内への給湯量の35〜70%、特
に40〜60%が好ましく、このようにすることによ
つて、全体を一様な結晶組織状態として鋳造する
ことができる。なお上記のようにすることにより
供給される溶湯の温度が同じであつても鋳型表層
部における温度が低くなるので全量をフロートを
用いたノズルから吐出させる従来法に比し表層部
にフエザー晶が発生し難くなる利点も確認されて
いる。直接給湯ノズル2は少なくともフロート4
ないし分配ノズル3よりは長く鋳型内溶湯中に挿
入することが必要であり、フイルター6について
も従来のものより粗いものを用いることが効果的
である。
To further explain the method of the present invention carried out by the above-mentioned apparatus, the larger the amount of molten metal supplied from the hot water supply nozzle 2, the higher the temperature of the molten metal at the same depth position in the center of the ingot. Since the surface temperature is the same at each position, the cooling rate applied to the center becomes relatively faster, and a dense crystal structure can be formed in the center. However, when the amount of molten metal supplied to the center of the ingot increases in this way, the amount of molten metal distributed and supplied from the distribution nozzle 3 decreases, and the surface layer of the ingot becomes too cold, resulting in cold shatter (constriction due to solidification).
It is inappropriate to increase the amount of hot water supplied from the nozzle 2 to an extreme extent, as this may easily cause floating crystals to occur, and the relationship between these may vary depending on the shape and size of the ingot. However, in general, the amount of hot water supplied by the nozzle 2 is preferably 35 to 70%, particularly 40 to 60%, of the amount of hot water supplied into the mold 5. By doing so, it is possible to maintain a uniform crystal structure throughout the mold. It can be cast as. By doing the above, even if the temperature of the molten metal supplied is the same, the temperature at the surface layer of the mold is lower, so compared to the conventional method in which the entire amount is discharged from a nozzle using a float, feather crystals are formed on the surface layer. It has also been confirmed that it is less likely to occur. Direct hot water supply nozzle 2 has at least float 4
It is necessary to insert the filter into the molten metal in the mold longer than the distribution nozzle 3, and it is effective to use a filter 6 that is coarser than the conventional filter.

上記したような本発明によるものの具体的な実
施例について説明すると以下の如くである。
Specific embodiments of the invention as described above will be described below.

内法が508×1060mmの角形矩形断面の鋳塊8を
連続鋳造するようにされた水冷鋳型5に対して第
1図のようにタンデイツシユ1から直接給湯ノズ
ル2と分配ノズル3,3により給湯し、鋳型5内
溶湯面から直接給湯ノズル2が40mmの深さまで挿
入された状態で、該ノズル2からは鋳型内給湯量
の52%を供給し、分配ノズル3,3からはそれぞ
れ約24%を供給する条件で99.5%アルミニウムを
半連続鋳造した。鋳型5底部からの鋳塊引出し速
度は7.5cm/minである。
As shown in Fig. 1, hot water is supplied directly from the tundish 1 through the hot water supply nozzle 2 and the distribution nozzles 3 to the water-cooled mold 5, which is designed to continuously cast an ingot 8 having a rectangular cross section with an internal diameter of 508 x 1060 mm. When the hot water supply nozzle 2 is inserted directly from the molten metal surface in the mold 5 to a depth of 40 mm, 52% of the amount of hot water supplied into the mold is supplied from the nozzle 2, and approximately 24% is supplied from the distribution nozzles 3 and 3, respectively. 99.5% aluminum was semi-continuously cast under the conditions supplied. The ingot drawing speed from the bottom of the mold 5 was 7.5 cm/min.

即ちこのようにして得られた鋳塊の中心部にお
ける結晶組織は第2図の顕微鏡写真の如くであ
り、微細な組織となつていることは明らかであ
る。これに対し直接給湯ノズル2を使用しないで
フロートを用いたノズルのみによる従来法によつ
て同じアルミニウムを同じ速度で半連続鋳造した
ときの鋳塊中心部の結晶組織は第3図の通りであ
つて、本発明方法によるものの結晶組織緻密性は
明確である。
That is, the crystal structure in the center of the ingot thus obtained is as shown in the micrograph of FIG. 2, and it is clear that it is a fine structure. On the other hand, when the same aluminum is semi-continuously cast at the same speed by the conventional method using only a float nozzle without using the direct hot water supply nozzle 2, the crystal structure at the center of the ingot is as shown in Figure 3. Therefore, the denseness of the crystal structure obtained by the method of the present invention is clear.

以上説明したような本発明によるときはこの種
連続的鋳造によつて得られる鋳塊の結晶組織を表
層部から中心部まで略一様な緻密状態として適切
に形成し、又シユリンケージポロシテイなどの発
生をなからしめて優質の鋳塊を提供し、それによ
つて斯様な鋳塊を用いて得られる板材その他の圧
延材等における機械的特性その他を良好とするこ
とができるものであつて、工業的にその効果の大
きい発明である。
According to the present invention as explained above, the crystal structure of the ingot obtained by this type of continuous casting is appropriately formed into a substantially uniform dense state from the surface layer to the center, and the crystal structure of the ingot obtained by this type of continuous casting is appropriately formed into a dense state, and It is possible to provide an ingot of excellent quality by eliminating the occurrence of such ingots, thereby improving the mechanical properties and other properties of plate materials and other rolled materials obtained using such an ingot, This invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであつ
て、第1図は本発明方法を実施するための装置の
1例を示した断面的説明図、第2図は本発明方法
によつて得られた鋳塊の1例についてその中心部
の結晶組織を示した顕微鏡写真、第3図はその比
較例によるものの顕微鏡写真であつて、何れも倍
率50倍を以て示すものである。 又上記第1図において、1はタンデイツシユ、
2は直接給湯ノズル、3は分配ノズル、4はフロ
ート、5は水冷鋳型、6はフイルター、7は溶
湯、8は鋳塊、9は冷却水を示すものである。
The drawings show the technical contents of the present invention, and FIG. 1 is a cross-sectional explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. FIG. 3 is a micrograph showing the crystal structure of the center of one example of the ingot produced, and FIG. 3 is a micrograph of a comparative example, both of which are shown at 50x magnification. Also, in Fig. 1 above, 1 is a tundish,
2 is a direct hot water supply nozzle, 3 is a distribution nozzle, 4 is a float, 5 is a water-cooled mold, 6 is a filter, 7 is a molten metal, 8 is an ingot, and 9 is a cooling water.

Claims (1)

【特許請求の範囲】[Claims] 1 水冷鋳型内に溶湯を供給して連続的に鋳塊を
得るに当つて、前記鋳型内中心部に設けられた直
接給湯ノズルと分配ノズルによつて上記溶湯を供
給し、前記直接給湯ノズルを分配ノズルよりも長
く鋳型内溶湯中に挿入し、該直接給湯ノズルによ
る給湯量を鋳型内給湯全量の35〜70%としたこと
を特徴とする鋳塊の連続的鋳造法。
1. When supplying molten metal into a water-cooled mold to continuously obtain an ingot, the molten metal is supplied through a direct hot water supply nozzle and a distribution nozzle provided in the center of the mold, and the above direct hot water supply nozzle is A continuous casting method for an ingot, characterized in that the ingot is inserted into the molten metal in the mold longer than the distribution nozzle, and the amount of hot water supplied by the direct hot water supply nozzle is 35 to 70% of the total amount of hot water supplied in the mold.
JP13090383A 1983-07-20 1983-07-20 Continuous casting method of ingot Granted JPS6030553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13090383A JPS6030553A (en) 1983-07-20 1983-07-20 Continuous casting method of ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13090383A JPS6030553A (en) 1983-07-20 1983-07-20 Continuous casting method of ingot

Publications (2)

Publication Number Publication Date
JPS6030553A JPS6030553A (en) 1985-02-16
JPH0323257B2 true JPH0323257B2 (en) 1991-03-28

Family

ID=15045414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13090383A Granted JPS6030553A (en) 1983-07-20 1983-07-20 Continuous casting method of ingot

Country Status (1)

Country Link
JP (1) JPS6030553A (en)

Also Published As

Publication number Publication date
JPS6030553A (en) 1985-02-16

Similar Documents

Publication Publication Date Title
JP2995519B2 (en) Light reduction of continuous cast strand
US5299724A (en) Apparatus and process for casting metal matrix composite materials
JPS57127553A (en) Hot top continuous casting method for aluminum
JPH0323257B2 (en)
US2841846A (en) Method of making metal castings
JPS58196146A (en) Continuous casting method of square casting ingot
JPH0262105B2 (en)
JPS59225872A (en) Casting method of hypereutectic aluminum-silicon alloy
JPS5923898B2 (en) Continuous casting method for high silicon aluminum alloy
JPH0122061B2 (en)
JPS60152349A (en) Casting method of terminal billet in continuous casting
JPH0768351A (en) Production of cooling roll for strip continuous casting and cooling roll thereof
JPH03193245A (en) Method for continuously casting strip
JPS5940539B2 (en) Continuous casting method
JPS6153144B2 (en)
JP2621978B2 (en) Cooling drum for thin slab casting
JPH0239344B2 (en)
JPS5973156A (en) Holding furnace for continuous horizontal casting
JPH0775856A (en) Cooling roll for continuous casting of strip
JPS63140739A (en) Mold
JP3344070B2 (en) Aluminum square ingot semi-continuous casting pedestal and method of manufacturing square ingot
JPS61245949A (en) Continuous casting method
JPH02207948A (en) Production of cast strip with single belt type continuous casting machine
JPS6033853A (en) Method for preventing formation of fir structure in bottom of aluminum casting ingot in continuous casting
JPS60158953A (en) Riser holding plate for steel ingot