JPH0323225A - Production of goethite - Google Patents

Production of goethite

Info

Publication number
JPH0323225A
JPH0323225A JP15671189A JP15671189A JPH0323225A JP H0323225 A JPH0323225 A JP H0323225A JP 15671189 A JP15671189 A JP 15671189A JP 15671189 A JP15671189 A JP 15671189A JP H0323225 A JPH0323225 A JP H0323225A
Authority
JP
Japan
Prior art keywords
reaction
goethite
surface area
specific surface
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15671189A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Hashimoto
順義 橋本
Kozo Iwasaki
岩崎 晃三
Kimiteru Tagawa
公照 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15671189A priority Critical patent/JPH0323225A/en
Publication of JPH0323225A publication Critical patent/JPH0323225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To obtain goethite reduced in the changes with the lapse of time until the conclusion of reaction in the number of particles and specific surface area, increased in specific surface area, and having uniform particle size distribution by carrying out rapid oxidation directly after the initiation of reaction at the time of oxidizing a hydroxide formed by allowing an aqueous alkali to react with an aqueous solution of ferrous salt. CONSTITUTION:In a method for producing goethite by oxidizing a suspension of hydroxide prepared by allowing an aqueous solution of ferrous salt and an aqueous alkali to react with each other by means of an oxidizing gas, rapid oxidation is carried out based on the curve of the change in the rate of oxidation from Fe<2+> ions to Fe<3+> ions with the lapse of time directly after the initiation of the reaction, by which acicular crystals having 100-120m<2>/g specific surface area and uniform particle size distribution (sigmaL/L<=0.4) are obtained. By carrying out rapid oxidation as first as possible directly after the initiation of oxidizing reaction as mentioned above, goethite reduced in the change in specific surface area as well as in the number of particles with the lapse of time until the conclusion of reaction, increased in specific surface area, and having uniform particle size distribution can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粒度分布の揃った比表面積の大きい針状ゲーサ
イトの製造法に関し、゛特に高記録密度が必要な8ms
ビデオテーブ用、高級オーディオテーブ用、ハイビジッ
ンテーブ用等優れた磁気特性が要求される磁気記録用磁
性材料の原料として好適なゲーサイトの製造方法に関す
るものである.〔従来の技術とRH】 粉末原料を加工して有用な製品とするときには、その粒
子形態に起因する特性が重要な役割を果す.M性材料に
おいても、出発原料であるゲーサイト粒子の影響がそれ
から得られる磁性材料の特性を大きく左右する.このよ
うな形態制御に関しては、今までに多くの検討がなされ
てきたが、中でもBET法による比表面積(以下Seと
記す)100rrf/g以上とし、かつ、粒度分布を揃
えることは非常に困難であった. 粒度分布を揃える方法としては、例えば(イ)特公昭5
2−21720号公報のように非酸化性の状態で数時間
強力攪拌して均一な水酸化物とした後酸化してゲーサイ
トとする方法、(ロ)特開昭53−56196号、同5
3−57200号、同53−75199号、同54−2
0998号、同54−79200号、同54−9369
7号公報などには可溶性ケイ酸塩の共存下に中和反応を
行なって均一な水酸化物よりなるフロックの均斉化を計
り、且つその後に針状晶ゲーサイト粒子の均一な生成反
応を行なう方法、 (ハ)特開昭51−86795号、同52−59095
号、同52−59096号、同52−59097号公報
などには水酸化第1鉄の酸化速度をwi限してゲーサイ
トに酸化する方法、 (二)¥?開昭56−22637号、同56−2263
8号公報などには常温で調製した種晶を用いる方法など
が記載されている. しかしながら、(イ)法においては数時間、好ましくは
2〜4時間の強力攪拌を要し、しかもこの撹拌手段のみ
では不均斎な水酸化第1鉄粒子からなるフロックを充分
に均一化することが困難である.(ロ)法においては使
用する可溶性ケイ酸塩はSiとしてPeに対し0.1〜
1.7原子%用いる必要があり、しかもゲーサイトはケ
イ酸塩をとり込んであたかもケイ酸塩で希釈されたと同
じ形になるので、これを常法によって還元して得られる
鉄粉末の磁気的性質は低下する.(ハ)法においてはデ
ーサイト製造工程において酸化速度を種々変化させねば
ならず時間がかかるとともに酸化速度の微妙な制御が必
要である.(二)法においては種晶を用いてはいるが、
反応条件、特に温度条件を厳密に管理しないとゲーサイ
トよりもマグネタイトが生成する危険性があるなどの問
題点を含んでいる. さらにこれらの公知技術では反応時間が長いために得ら
れるゲーサイト粒子は大きく戒長してし舞い、Se=4
0+d/g以下となりやす<、50r+{/g以上の比
表面積を有するゲーサイトを製造するのは困難であった
. 一方比表面積を大きくする方法としては(ホ)特開昭5
9−18119号に記載の如く、第1鉄塩水溶液とアル
カリ水溶液とを反応させて得られる水酸化物を、加圧雰
囲気下で酸化することによりSe = 50〜100n
?/gを有するゲーサイトを製造する方法が記載されて
いるが、Ssを充分に大きくするには限界があった.し
5かも、公知技術では、比表面積を大きくし、且つ粒度
分布を均一することは困難である.比表面積を大きくし
た時は粒度分布は規制できないし、粒度分布を均一にし
た時は比表面積は大きくできない. ゲーサイト粒子を製造する隙、生起する化学反応は掻く
有りふれた無機化学の反応式で表わされ、技術的にはさ
ほど難しくないと思われるが、製品となる粒子は■威分
及び組或(金漠戒分の重量比で表わす)■比表面積■粒
径分布(変動係数:σL/L(]で表わす)、■形状C
M比;L/D 〔一〕で表わす)が所定の値になるよう
に制御する必要がある. しかし,て、一般的な化学製品ならば、■項のみに着目
して製造すれば良いのに対し、この粒子は、例えば、F
e : Ni− 100 :  0.5 (it量比)
、比表面積:Se=35±1.8、変動係数: σL 
/t. −o.ss±0.05、軸比;L /D −1
1±I ( Fig L参照)等の値が指定され、■以
外に■、■、■という粒子形態の条件を満たすように制
御しながら製造することが要求される。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing acicular goethite with a uniform particle size distribution and a large specific surface area.
This invention relates to a method for producing goethite, which is suitable as a raw material for magnetic recording materials that require excellent magnetic properties, such as for video tapes, high-end audio tapes, and high-visibility tapes. [Prior Art and RH] When processing powder raw materials into useful products, the characteristics resulting from the particle morphology play an important role. Even in magnetic materials, the influence of goethite particles, which are the starting materials, greatly influences the properties of the magnetic materials obtained from them. Many studies have been made regarding this type of morphology control, but among them, it is extremely difficult to achieve a specific surface area (hereinafter referred to as Se) of 100 rrf/g or more and a uniform particle size distribution using the BET method. there were. As a method of making the particle size distribution uniform, for example, (a) Tokuko Sho 5
2-21720, a method of vigorously stirring for several hours in a non-oxidizing state to form a uniform hydroxide and then oxidizing it to make goethite; (b) JP-A-53-56196;
No. 3-57200, No. 53-75199, No. 54-2
No. 0998, No. 54-79200, No. 54-9369
In Publication No. 7, etc., a neutralization reaction is carried out in the coexistence of soluble silicate to homogenize a floc of uniform hydroxide, and then a reaction is carried out to uniformly produce acicular goethite particles. Method, (c) JP-A-51-86795, JP-A No. 52-59095
No. 52-59096, No. 52-59097, etc. describe a method of oxidizing ferrous hydroxide to goethite by limiting its oxidation rate to goethite. Kaisho 56-22637, Kaisho 56-2263
Publications such as No. 8 describe methods using seed crystals prepared at room temperature. However, method (a) requires strong stirring for several hours, preferably 2 to 4 hours, and it is difficult to sufficiently homogenize the flocs consisting of uneven ferrous hydroxide particles using only this stirring means. is difficult. In the (b) method, the soluble silicate used is 0.1 to 0.1 to Pe as Si.
It is necessary to use 1.7 at%, and since goethite incorporates silicate and becomes the same form as if it had been diluted with silicate, the magnetic properties deteriorate. In method (c), the oxidation rate must be varied in the dacite production process, which is time consuming and requires delicate control of the oxidation rate. (2) Although seed crystals are used in the method,
Problems include the risk of producing magnetite rather than goethite unless the reaction conditions, especially temperature conditions, are strictly controlled. Furthermore, in these known techniques, the reaction time is long, so the goethite particles obtained are greatly lengthened, and Se=4
It was difficult to produce goethite with a specific surface area of 50r+{/g or more. On the other hand, as a method to increase the specific surface area, (e) JP-A No. 5
As described in No. 9-18119, a hydroxide obtained by reacting a ferrous salt aqueous solution with an alkali aqueous solution is oxidized in a pressurized atmosphere to Se = 50 to 100n.
? Although a method for producing goethite having S/g has been described, there is a limit to making Ss sufficiently large. Furthermore, with known techniques, it is difficult to increase the specific surface area and make the particle size distribution uniform. When the specific surface area is increased, the particle size distribution cannot be controlled, and when the particle size distribution is made uniform, the specific surface area cannot be increased. The chemical reactions that occur during the production of goethite particles are expressed by common inorganic chemistry reaction formulas, and are not technically difficult, but the particles that become the product are (Represented by weight ratio of metal precepts) ■ Specific surface area ■ Particle size distribution (coefficient of variation: σL/L (expressed)), ■ Shape C
It is necessary to control the M ratio (L/D (expressed as 1)) to a predetermined value. However, if it is a general chemical product, it is only necessary to manufacture it by focusing on the
e: Ni-100: 0.5 (IT amount ratio)
, specific surface area: Se=35±1.8, coefficient of variation: σL
/t. -o. ss±0.05, axial ratio; L/D −1
Values such as 1±I (see Fig. L) are specified, and manufacturing is required to be controlled so as to satisfy the particle morphology conditions of ■, ■, and ■ in addition to ■.

対象とする化学反応自体は単純ではあるが、現実に粒子
が生威・戒長ずる間で起る現象は、少なくとも空気の気
相、反応液の液相、水酸化第1鉄の固相一l、ゲーサイ
トの固相−2からなる四相が関与する異相系反応であっ
て、然も、粒子の大きさ、形状、個数も同時に経時変化
するきわめて?j[雑な現象なのである.従って、単な
る経験的、定性的手法では所定の形態をもつ粒子を再現
性よく製造したり優れた性能をもつ粒子を開発するのは
困難であった. (!III!を解決するための手段〕 本発明者らは上記問題点に鑑み鋭意検討の結果、次の事
実を見出して本発明に到達した.すなわち、可能な限り
規模の大きな反応装置を用い、該反応装置内で行われて
いる複雑な現象を定量的に整理した結果、初期の酸化反
応速度が上記因子に対し、決定的な影響を及ぼしている
と云う意外な事実を見出したのである.すなわち、第1
鉄塩水溶液とアルカリ水溶液とを反応させて得られる水
酸化物を酸化してゲーサイトを製造する時に全Fe濃度
と Fe″′→Fe’゜への変化量の測定により酸化率
の経時変化曲線を採り、これを様々な酸化率の経時変化
の形について粒子数の経時変化と比表面積の経時変化を
求め、結果と対比すると、酸化反応開始直後に急速酸化
させるほど、粒子数、比表面積ともに反応終了までの経
時変化が小さく、比表面積が大きく、且つ均一な粒度分
布となることを見出した. すなわち、本発明は、 第1鉄塩水溶液とアルカリ水溶液とを反応せしめて得ら
れる水酸化物の懸濁液を酸化性ガスにより酸化してゲー
サイトを製造する方法において、第l鉄イオンから第2
鉄イオンへの酸化率の経時変化曲線に基づき反応開始直
後に急速酸化することにより′比表面積l00〜120
ryf/gで均一な粒度分布(σL/L < 0.4)
の針状結晶を得ることを特徴とするゲーサイトの製造方
法、を提供するものである. 以下、本発明を詳細に説明する. 本発明についてその構戒を説明すると、本発明において
は、反応に用いる第1鉄塩水溶液のp e ! +イオ
ン濃度は10〜50g/j!程度が望ましい.濃度の低
い方が急速酸化には有利であるが、工業的には容積効率
が低下するので、10g/1未満のものは好ましくない
.逆に50g/lより高すぎると容積効率の点では有利
となるが、本発明の特徴とする急速酸化が困難となり好
ましくない.本発明において、反応温度は低いほど酸化
速度が速くなり本発明の目的を達し易いが、低温の冷媒
を用いることはエネルギー面で経済的ではないため20
〜50℃程度が好ましい.空気等の酸化性ガスは反応条
件により最適値はあるが、通常反応による溶存酸素の消
費を補充するに十二分な量を通気すること力5好ましく
、その範囲は上記Fe”イオン濃度に対して100〜2
00N rtt/hr − KgモルF1゜程度である
.本発明において、急速酸化とは少なくともこの下限値
以上の酸化性ガスの通気量とするが、急速酸化を実現す
るのに、系を加圧したり、酸素濃度を高めたりする方法
も有効である.又反応に際して第1鉄塩水溶液に共沈物
としてNi, Cr,^1、Mn, CoSZn..T
I..Si, Mg等の硫酸塩あるいは硝酸塩の内一種
又は二種をp e f 4イオン100部に対し0,3
〜3部程度添加することが好ましい.又急速酸化時間は
原料の組威、濃度、反応温度等により各々最適範囲が決
められるべきであるが通常は10〜30分程度が望まし
い.次に実施例により更に詳しく説明する.実施例I 温度調節手段及び撹拌手段を備えた内容積8ボのステン
レススチール製の容器に、カセイソーダ水溶液(濃度1
.8モル/j!)  3.5ポを加えた.該容器底部に
円心円状にめぐらせたガス供給手段より、窒素ガスを5
.0 1 /■inの流量でカセイソーダ水溶液に供給
し始めた.カセイソーダ水溶液をa拌しながら硫酸第一
鉄水溶液(4度0. 226モル#!)  3.5rd
および硝酸−1−7ケル(0.0036モル/1 ) 
 280cc.硫酸亜鉛(0.0022モル/ I! 
)  280ccを加えた.大過剰のカセイソー7水溶
液に硯酸第一鉄水溶液を加えると瞬時に中和反応が起り
、水酸化第一鉄が懸濁状態で得られた.この懸e液に窒
素ガスを流していたガス供給装置からさらに空気2.0
N1/winを追加して流し、急速に酸化してゲーサイ
トを製造した.中和反応から酸化反応までの間懸濁液の
温度は35±0.5℃に保持された.懸濁液中の鉄(I
I)の含量を過マンガン酸カリウムによる自動滴定法で
2価の鉄濃度を測定して酸化率を求めながら反応を進め
M濁液が鮮かな黄色を呈した時点で酸化性ガスの供給を
止めた.このときの酸化率は99.7%を越えていた.
該容器を大気圧下に曝し撹拌しながら1時間放置した.
放置後の粘度はB型粘度針で測定した結果、350セン
チボアズであった.全酸化ガス供給時間は16分であっ
た.スラリーは針状のゲーサイト粒子よりなり、水洗後
濾過してウエットケーキを得た.ゲーサイト粒子の比表
面積として84.4rd/gの値を得た.粒子の大きさ
は長軸/短軸比で9.8であり、長柚の長さは0.11
5ymであった.これを粒度分布でみるとσL /Lは
0.40であった.結果を表−1に示した. 実施例2〜7 実!@1において、反応温度、酸化時間および共沈M戚
を表一lのごとく変更して、他の条件は第1表 第2表 全て実施例lと同じにしてゲーサイトの製造を行なった
. 結果を表−1に示した. 比較例1〜4 空気量を変え酸化速度を比較的ゆっくりとした以外は実
施例と同様に種々の条件でゲーサイトの製造を行なった
. 結果を表−2に示した.
Although the target chemical reaction itself is simple, the phenomena that actually occur while particles are being produced and produced are at least the gas phase of air, the liquid phase of the reaction liquid, and the solid phase of ferrous hydroxide. It is a heterophasic reaction involving four phases consisting of the solid phase-2 of goethite, and the size, shape, and number of particles also change over time. j[It is a complicated phenomenon. Therefore, it has been difficult to produce particles with a predetermined morphology with good reproducibility or to develop particles with excellent performance using purely empirical or qualitative methods. (Means for Solving !III!) In view of the above-mentioned problems, the present inventors have made extensive studies and have discovered the following fact, and have arrived at the present invention. As a result of quantitatively organizing the complex phenomena taking place within the reactor, they discovered the surprising fact that the initial oxidation reaction rate has a decisive influence on the above factors. .That is, the first
When goethite is produced by oxidizing the hydroxide obtained by reacting an aqueous iron salt solution with an aqueous alkaline solution, the oxidation rate change curve over time is determined by measuring the total Fe concentration and the amount of change from Fe″′ to Fe′°. , and then calculate the changes over time in the number of particles and the change in specific surface area over time for various forms of changes over time in the oxidation rate, and compare them with the results.The faster the oxidation is performed immediately after the start of the oxidation reaction, the greater the increase in both the number of particles and the specific surface area. It has been found that the change over time until the reaction is completed is small, the specific surface area is large, and the particle size distribution is uniform.In other words, the present invention provides a hydroxide obtained by reacting a ferrous salt aqueous solution with an alkali aqueous solution. In the method for producing goethite by oxidizing a suspension of
Based on the time-course curve of the oxidation rate to iron ions, rapid oxidation is performed immediately after the start of the reaction to increase the specific surface area l00 to 120.
Uniform particle size distribution at ryf/g (σL/L < 0.4)
The present invention provides a method for producing goethite, which is characterized by obtaining needle-like crystals. The present invention will be explained in detail below. To explain the structure of the present invention, in the present invention, p e ! of the ferrous salt aqueous solution used in the reaction! +Ion concentration is 10-50g/j! A certain degree is desirable. A lower concentration is advantageous for rapid oxidation, but from an industrial perspective, it is not preferable to have a concentration of less than 10 g/1 because the volumetric efficiency decreases. On the other hand, if it is too high than 50 g/l, it is advantageous in terms of volumetric efficiency, but it is not preferable because the rapid oxidation, which is a feature of the present invention, becomes difficult. In the present invention, the lower the reaction temperature, the faster the oxidation rate and the easier it is to achieve the purpose of the present invention, but since it is not economical in terms of energy to use a low-temperature refrigerant.
The temperature is preferably about 50°C. Although there is an optimum value for the oxidizing gas such as air depending on the reaction conditions, it is preferable to aerate an amount sufficient to replenish the consumption of dissolved oxygen by the normal reaction, and the range is within the range of the above Fe" ion concentration. Te100~2
00N rtt/hr - Kg mol F1°. In the present invention, rapid oxidation refers to an amount of oxidizing gas that is at least greater than this lower limit, but methods of pressurizing the system or increasing the oxygen concentration are also effective ways to achieve rapid oxidation. In addition, during the reaction, Ni, Cr,^1, Mn, CoSZn. .. T
I. .. One or two types of sulfates or nitrates such as Si, Mg, etc. are added to 0.3 parts per 100 parts of p e f 4 ions.
It is preferable to add about 3 parts. Further, the optimum range of rapid oxidation time should be determined depending on the composition, concentration, reaction temperature, etc. of the raw materials, but usually about 10 to 30 minutes is desirable. Next, this will be explained in more detail with examples. Example I A caustic soda aqueous solution (concentration 1
.. 8 mol/j! ) Added 3.5 points. From the gas supply means circularly distributed at the bottom of the container, 5 liters of nitrogen gas was supplied.
.. The solution was started to be supplied to the caustic soda aqueous solution at a flow rate of 0 1/■in. While stirring the caustic soda aqueous solution, add ferrous sulfate aqueous solution (4 degrees 0.226 mol #!) 3.5rd
and nitric acid -1-7 Kel (0.0036 mol/1)
280cc. Zinc sulfate (0.0022 mol/I!
) 280cc was added. When a ferrous boronate aqueous solution was added to a large excess of aqueous caustic acid 7 solution, a neutralization reaction occurred instantly and ferrous hydroxide was obtained in a suspended state. An additional 2.0 liters of air was added from the gas supply device that was flowing nitrogen gas into this suspended e-liquid.
N1/win was added and flowed to rapidly oxidize to produce goethite. The temperature of the suspension was maintained at 35 ± 0.5°C from the neutralization reaction to the oxidation reaction. Iron (I) in suspension
The content of I) was measured by the automatic titration method using potassium permanganate to measure the divalent iron concentration and the oxidation rate was determined while the reaction progressed and the supply of oxidizing gas was stopped when the M suspension became bright yellow. Ta. The oxidation rate at this time was over 99.7%.
The container was exposed to atmospheric pressure and left for 1 hour with stirring.
The viscosity after standing was measured with a B-type viscosity needle and was found to be 350 centiboads. The total oxidizing gas supply time was 16 minutes. The slurry consisted of needle-shaped goethite particles, and was washed with water and filtered to obtain a wet cake. A value of 84.4rd/g was obtained as the specific surface area of the goethite particles. The particle size has a long axis/short axis ratio of 9.8, and the length of long yuzu is 0.11.
It was 5ym. Looking at this in terms of particle size distribution, σL/L was 0.40. The results are shown in Table 1. Examples 2-7 Real! In @1, goethite was produced by changing the reaction temperature, oxidation time, and coprecipitated M ratio as shown in Table 1, and keeping all other conditions the same as in Example 1 in Tables 1 and 2. The results are shown in Table 1. Comparative Examples 1 to 4 Goethite was produced under various conditions in the same manner as in the example except that the amount of air was changed and the oxidation rate was relatively slow. The results are shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゲーサイト粒子を示すモデル図である.図にお
いて、Lは長袖の長さであり、Lは短軸の長さである.
Figure 1 is a model diagram showing goethite particles. In the figure, L is the length of the long sleeve, and L is the length of the short axis.

Claims (1)

【特許請求の範囲】[Claims] (1)第1鉄塩水溶液とアルカリ水溶液とを反応せしめ
て得られる水酸化物の懸濁液を酸化性ガスにより酸化し
てゲーサイトを製造する方法において、第1鉄イオンか
ら第2鉄イオンへの酸化率の経時変化曲線に基づき反応
開始直後に急速酸化することにより比表面積100〜1
20m^2/gで均一な粒度分布(σ_L/L≦0.4
)の針状結晶を得ることを特徴とするゲーサイトの製造
方法。
(1) In a method for producing goethite by oxidizing a hydroxide suspension obtained by reacting a ferrous salt aqueous solution and an alkaline aqueous solution with an oxidizing gas, ferrous ions are converted to ferric ions. Based on the time-course curve of the oxidation rate to
Uniform particle size distribution at 20m^2/g (σ_L/L≦0.4
) A method for producing goethite, characterized by obtaining needle-like crystals.
JP15671189A 1989-06-21 1989-06-21 Production of goethite Pending JPH0323225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15671189A JPH0323225A (en) 1989-06-21 1989-06-21 Production of goethite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15671189A JPH0323225A (en) 1989-06-21 1989-06-21 Production of goethite

Publications (1)

Publication Number Publication Date
JPH0323225A true JPH0323225A (en) 1991-01-31

Family

ID=15633666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15671189A Pending JPH0323225A (en) 1989-06-21 1989-06-21 Production of goethite

Country Status (1)

Country Link
JP (1) JPH0323225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910670A (en) * 1995-06-30 1997-01-14 Chugai Ro Co Ltd Nip pressure control method for coater head of roll coater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910670A (en) * 1995-06-30 1997-01-14 Chugai Ro Co Ltd Nip pressure control method for coater head of roll coater

Similar Documents

Publication Publication Date Title
US4990189A (en) Iron oxide pigments, a process for their preparation and their use
JPH0323225A (en) Production of goethite
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPH028972B2 (en)
US5139767A (en) Production method of goethite
JPS61186225A (en) Production of acicular goethite
JPH028971B2 (en)
JPH04219322A (en) Production of goethite
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPH04147909A (en) Production of magnetic metal powder for magnetic recording
JP2569580B2 (en) Method for producing acicular goethite
JPH0971421A (en) Production of hydrated ferric oxide powder for yellow pigment
JPS61141627A (en) Production of alpha-feooh needles
JPH11263623A (en) Production of magnetic powder
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPH02271503A (en) Magnetic alloy powder and its manufacture
JPH0551221A (en) Production of acicular goethite particle powder
JPH09188520A (en) Production of fusiform goethite
JPS5950607B2 (en) Method for producing acicular magnetic iron oxide particles
JPS60112626A (en) Manufacture of dense rod-shaped iron oxyhydroxide
JPS61140110A (en) Manufacture of acicular alpha-feooh for magnetic recording material
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPH0616426A (en) Production of spindle-shaped goethite granular powder
JPH0971422A (en) Production of hydrated ferric oxide powder for yellow pigment
JPS59562B2 (en) Ferromagnetic metal powder and its manufacturing method