JPH03231314A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPH03231314A
JPH03231314A JP2613190A JP2613190A JPH03231314A JP H03231314 A JPH03231314 A JP H03231314A JP 2613190 A JP2613190 A JP 2613190A JP 2613190 A JP2613190 A JP 2613190A JP H03231314 A JPH03231314 A JP H03231314A
Authority
JP
Japan
Prior art keywords
fine movement
target position
laser
coarse
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2613190A
Other languages
Japanese (ja)
Inventor
Shigeru Sakuta
佐久田 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2613190A priority Critical patent/JPH03231314A/en
Priority to EP90104272A priority patent/EP0386702B1/en
Priority to US07/488,890 priority patent/US5062712A/en
Priority to DE69007833T priority patent/DE69007833T2/en
Publication of JPH03231314A publication Critical patent/JPH03231314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To attain the highly accurate positioning operation with a large stroke and at high speed by moving a rough or fine adjustment device to a target position in accordance with the difference between the position of an object to be positioned detected by a position sensor and a target position. CONSTITUTION:A main controller 30 produces a command to actuate a friction drive mechanism 3 and also gives a command to a laser controller 27 to actuate a laser oscillator 20. A laser beam is divided into two pieces by a beam splitter 21. On of both divided beams is reflected by a mirror 10 via an optical interferometer 22. This reflected beam produces an interference beam via an interferometer 22, and this interference beam is made incident on a receiver 25. Meanwhile the other laser beam is reflected by a bender 23 and then by a reflecting mirror 13 via an interferometer 24. Then an interference beam is produced by an interferometer 24 and made incident on a receiver 26. An electric signal S1 received from the receiver 25 is inputted to the controller 30. The controller 30 inputs a drive signal CB to the mechanism 3 in accordance with the deviation between the position of the mirror 10 and a target position to drive the mechanism 3. The mechanism 3 moves the mirror 13 to the target position via a rod 5 with the rough adjustment. Then the fine adjustment control is carried out with a signal S2 received from the receiver 26.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は粗動・微動等により位置決めを行う位置決め装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a positioning device that performs positioning by coarse movement, fine movement, etc.

(従来の技術) 被位置決め体を目標位置に位置決めする技術には種々あ
るが、このうち粗動装置及び微動装置を用いたデュアル
制御と呼ばれる技術がある。このデュアル制御は、被位
置決め体を粗動装置によって目標位置に向かって移動さ
せ、この後粗動装置を停止させ、次ぎに微動装置により
被位置決め体を微動させて目標位置に位置決めしている
。この場合、粗動装置は被位置決め体の位置を位置検出
センサにより検出しフィードバックして被位置決め体を
移動させており、又微動装置は被位置決め体の位置を上
記粗動装置の位置検出センサとは別の位置検出センサに
より検出しフィードバックして被位置決め体を移動させ
ている。
(Prior Art) There are various techniques for positioning an object to be positioned at a target position, among which there is a technique called dual control that uses a coarse movement device and a fine movement device. In this dual control, the object to be positioned is moved toward a target position by a coarse movement device, the coarse movement device is then stopped, and then the object to be positioned is finely moved by a fine movement device to position it at the target position. In this case, the coarse movement device detects the position of the object to be positioned using a position detection sensor and feeds it back to move the object to be positioned, and the fine movement device detects the position of the object to be positioned using the position detection sensor of the coarse movement device. is detected by another position detection sensor and fed back to move the object to be positioned.

(発明が解決しようとする課8) 以上のようにデュアル制御では粗動及び微動に対してそ
れぞれ別の位置検出センサを使用しなければならず構成
が複雑化し、又位置検出センサの精度(分解能)により
位置決め精度が制限されてしまう。このため、現状では
より高精度な位置決めが要求されている。
(Issue 8 to be solved by the invention) As described above, in dual control, separate position detection sensors must be used for coarse movement and fine movement, which complicates the configuration. ), which limits positioning accuracy. For this reason, higher precision positioning is currently required.

そこで本発明は、粗動及び微動による大ストローク及び
高速度の位置決めに加えて位置検出センサの精度よりも
高い精度で位置決めができる位置決め装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a positioning device that can perform large stroke and high-speed positioning by coarse and fine movements, as well as positioning with higher accuracy than that of a position detection sensor.

[発明の構成コ (課題を解決するための手段) 本発明は、被位置決め体を粗動移動させる粗動駆動機構
と、被位置決め体を微動させる微動素子と、位置決め体
の位置を検出する位置検出センサと、この位置検出セン
サによる検出位置と目標位置との差に基づいて粗動駆動
機構と微動素子とを選択的及び同時的に作動させ又は粗
動駆動機構と微動素子のうち少なくとも微動素子を選択
的に作動させる粗動微動制御手段と、微動素子の変位電
圧特性に従って変位に応じた電圧を微動素子に既印加電
圧に対して加減算的に印加して被位置決め体を目標位置
に位置決めする極微助手段とを備えて上記目的を達成し
ようとする位置決め装置である。
[Configuration of the Invention (Means for Solving the Problems) The present invention provides a coarse movement drive mechanism for coarsely moving a positioning object, a fine movement element for finely moving the positioning object, and a position detecting mechanism for detecting the position of the positioning object. selectively and simultaneously actuating the coarse movement drive mechanism and the fine movement element based on the difference between the detection position by the detection sensor and the target position, or at least the fine movement element of the coarse movement drive mechanism and the fine movement element. coarse and fine movement control means for selectively operating the fine movement element, and a voltage corresponding to the displacement applied to the fine movement element in an additive or subtractive manner with respect to the already applied voltage according to the displacement voltage characteristic of the fine movement element to position the object to be positioned at the target position. This is a positioning device that attempts to achieve the above object by being equipped with ultra-fine assisting means.

(作用) このような手段を備えたことにより、位置検出センサに
よる被位置決め体の検出位置と目標位置との差に応じて
粗動微動制御手段により粗動装置又は微動装置のうちい
ずれか一方又は両方が作動されて被位置決め体が目標位
置に向かって移動する。そして、極微助手段により微動
素子に対して変位電圧特性に従った変位に応じた電圧が
既印加電圧に対して加減算的に印加され、被位置決め体
が目標位置に位置決めされる。
(Function) By providing such means, the coarse movement control means controls either the coarse movement device or the fine movement device according to the difference between the detected position of the object to be positioned by the position detection sensor and the target position. Both are activated and the object to be positioned moves toward the target position. Then, a voltage corresponding to the displacement according to the displacement voltage characteristic is applied to the fine movement element by the fine movement means in an additive manner to the already applied voltage, and the object to be positioned is positioned at the target position.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は位置決め装置の構成図である。支持台1上には
スライダ2を移動させる摩擦駆動機構3が設けられてい
る。すなわち、この摩擦駆動機構3には静圧軸受4が備
えられ、この静圧軸受4により駆動ロッド5が支持され
ている。この駆動ロッド5の先端には前記スライダ2が
連結されて駆動ロッド5の移動に応動して移動するよう
になっている。なお、スライダ2は、静圧軸受6により
支持され、かつ両端を支持台7.8によって支持された
案内体8に案内されるようになっている。
FIG. 1 is a configuration diagram of a positioning device. A friction drive mechanism 3 for moving the slider 2 is provided on the support base 1 . That is, this friction drive mechanism 3 is equipped with a static pressure bearing 4, and a drive rod 5 is supported by this static pressure bearing 4. The slider 2 is connected to the tip of the drive rod 5 and moves in response to movement of the drive rod 5. The slider 2 is supported by a hydrostatic bearing 6 and guided by a guide body 8 supported at both ends by support stands 7.8.

このスライダ2上には反射ミラー10が取付けられると
ともに補助板11を介して圧電素子12が設けられてい
る。従って、反射ミラー10及び圧電素子12はスライ
ダ2の移動とともに移動する。この圧電素子12は拡大
して示すと第2図に示すように円柱状に形成されており
、電圧の印加によってX方向に変位するものとなってい
る。又、この圧電素子12の先端には反射ミラー13が
設けられている。ところで、かかる装置ではこの反射ミ
ラー13に対して位置決めが行われる。
A reflecting mirror 10 is mounted on the slider 2, and a piezoelectric element 12 is also provided with an auxiliary plate 11 interposed therebetween. Therefore, the reflecting mirror 10 and the piezoelectric element 12 move together with the movement of the slider 2. This piezoelectric element 12 is formed into a cylindrical shape as shown in FIG. 2 when shown in an enlarged view, and is displaced in the X direction by application of a voltage. Further, a reflecting mirror 13 is provided at the tip of this piezoelectric element 12. By the way, in such a device, positioning is performed with respect to the reflecting mirror 13.

又、支持台1上にはレーザ測長システムとじてレーザ発
振器20が設けられるとともにこのレーザ発振器20の
レーザ出力方向にビームスプリッタ21が設けられ、さ
らにこのビームスプリッタ21の各レーザ分岐出力方向
の一方に光干渉計22が配置され、他方にベンダ23及
び光干渉計24が配置されている。そして、各光干渉計
22゜24にはそれぞれレシーバ25.26が接続され
て各干渉光が各電気信号Sl+  82に変換出力され
るようになっている。なお、これら電気信号Sl+82
がレーザ測長システムの出力となる。
Further, a laser oscillator 20 as a laser length measurement system is provided on the support base 1, and a beam splitter 21 is provided in the laser output direction of the laser oscillator 20, and one of the laser branch output directions of the beam splitter 21 is provided. An optical interferometer 22 is placed on one side, and a bender 23 and an optical interferometer 24 are placed on the other side. Receivers 25 and 26 are connected to each of the optical interferometers 22 and 24, respectively, so that each interference light is converted into each electric signal Sl+ 82 and output. In addition, these electric signals Sl+82
is the output of the laser length measurement system.

又、レーザ発振器20はレーザコントローラ27の制御
によってレーザ光が出力制御される。
Further, the output of the laser beam of the laser oscillator 20 is controlled by a laser controller 27.

一方、主制御装置30が備えられ、この主制御装置30
によって粗動、微動及び極微動の各動作が制御される。
On the other hand, a main control device 30 is provided, and this main control device 30
Coarse movement, fine movement, and ultra-fine movement are controlled by .

すなわち、この主制御装置30は粗動制御、微動制御及
び極微動制御の各機能を有している。粗動制御は、レシ
ーバ25からの電気信号81を受けて反射ミラー10の
位置を求め、この位置と目標位置との偏差に応じた粗動
駆動信号CBを送出する機能である。なお、粗動駆動信
号CBは増幅器31を通して摩擦駆動機構3に送られ、
これによりフィードバック制御系が形成される。
That is, this main controller 30 has the functions of coarse movement control, fine movement control, and extremely fine movement control. Coarse movement control is a function of receiving the electric signal 81 from the receiver 25 to determine the position of the reflecting mirror 10, and sending out a coarse movement drive signal CB according to the deviation between this position and the target position. Note that the coarse movement drive signal CB is sent to the friction drive mechanism 3 through the amplifier 31,
This forms a feedback control system.

微動制御は、レシーバ26からの電気信号S2を受けて
スライダ2の位置を求め、この位置と目標位置との偏差
に応じた微動駆動信号CAを送出する機能である。この
微動駆動信号は電圧信号であって、レーザコントローラ
27を通して極微動用制御回路32に送られ、さらにこ
の極微動用制御回路32から増幅器33を通して圧電素
子12に加えられ、これによりフィードバック制御系が
形成される。
The fine movement control is a function of receiving the electric signal S2 from the receiver 26 to determine the position of the slider 2, and sending out a fine movement drive signal CA according to the deviation between this position and the target position. This fine movement drive signal is a voltage signal, and is sent to the ultra-fine movement control circuit 32 through the laser controller 27, and is further applied from the ultra-fine movement control circuit 32 to the piezoelectric element 12 through the amplifier 33, thereby forming a feedback control system. Ru.

極微動制御は、圧電素子12の変位電圧特性に従って所
望の変位に応じた電圧値を求めてこの電圧値CEをボー
ド34を通して極微動用制御回路32に送出するオーブ
ンループ制御の機能である。
The micro-movement control is an oven loop control function that determines a voltage value corresponding to a desired displacement according to the displacement voltage characteristics of the piezoelectric element 12 and sends this voltage value CE to the micro-movement control circuit 32 through the board 34.

極微動用制御回路32は前記微動駆動信号CAを圧電素
子12に送るとともにこの微動駆動信号CAの電圧値を
ラッチし、かつ極微動の電圧CEが送られてきたときに
この電圧値CEとラッチしている微動駆動信号CAの電
圧値とを加減算して圧電素子12に送る機能を有してい
る。具体的には第3図に示すように微動駆動信号CAを
ディジタル変換するA/D (アナログ/ディジタル)
変換回路35、このA/D変換回路35からのディジダ
ル微動駆動信号をラッチするラッチ回路36、このラッ
チ回路36の出力とボード34から送られてくる極微動
のディジタル電圧値とを加減算する加減算回路37、こ
の加減算回路37の加減算出力をアナログ変換するD/
A変換回路38及び微動駆動信号CAとD/A変換回路
38の変換出力とを切換える電磁スイッチ39から構成
されている。なお、この電磁スイッチ39は主制御装置
30からの指令によって切換えられる。
The micro-movement control circuit 32 sends the micro-movement drive signal CA to the piezoelectric element 12, latches the voltage value of the micro-movement drive signal CA, and latches the voltage value CE when the micro-movement voltage CE is sent. It has a function of adding and subtracting the voltage value of the fine movement drive signal CA and sending the result to the piezoelectric element 12. Specifically, as shown in Figure 3, an A/D (analog/digital) converts the fine movement drive signal CA into digital.
A conversion circuit 35, a latch circuit 36 that latches the digital micro-movement drive signal from the A/D conversion circuit 35, and an addition/subtraction circuit that adds and subtracts the output of the latch circuit 36 and the micro-movement digital voltage value sent from the board 34. 37, D/ which converts the addition/subtraction output of this addition/subtraction circuit 37 into analog.
It is composed of an A conversion circuit 38 and an electromagnetic switch 39 that switches between the fine movement drive signal CA and the conversion output of the D/A conversion circuit 38. Note that this electromagnetic switch 39 is switched by a command from the main controller 30.

次に上記の如く構成された装置の作用について説明する
Next, the operation of the apparatus configured as described above will be explained.

先ず、主制御装置30は粗動制御を行うに、摩擦駆動機
構3に対して動作指令を発して摩擦駆動機構3を動作可
能とするとともにレーザコントローラ27に動作指令を
発してレーザ発振器20を動作させる。これにより、レ
ーザ発振器20はレーザ光を出力する。このレーザ光は
ビームスプリッタ21で2方向に分岐され、その一方の
レーザ光は光干渉計22を通って反射ミラー10に到達
する。そして、この反射ミラー10で反射して再び光干
渉計22に入射する。この光干渉計22ではレーザ発振
器20からのレーザ光と反射ミラー10からの反射レー
ザ光との干渉光が発生し、この干渉光はレシーバ25に
送られて光強度に応じた電気信号S、に変換される。又
、ビームスプリッタ21で分岐された他方のレーザ光は
ベンダ23で反射し、光干渉計24を通って反射ミラー
13に送られる。そして、この反射ミラー13で反射し
て再び光干渉計24に入射する。この光干渉計24では
レーザ発振器20からのレーザ光と反射ミラー13から
の反射レーザ光との干渉光が発生し、この干渉光はレシ
ーバ26に送られて光強度に応じた電気信号S2に変換
される。なお、電気信号S2は微動動作時に用いられる
ので、粗動動作時には無視する。前記電気信号S8は主
制御装置30に送られ、この主制御装置30は電気信号
s1を受けて反射ミラー10の位置を求め、この位置と
目標位置との偏差に応じた粗動駆動信号CBを増幅器3
1を通して摩擦駆動機構3に送る。この摩擦駆動機構3
は粗動駆動信号CBを受けて駆動ロッド5を移動させる
。この駆動ロッド5が移動するとこれに応動してスライ
ダ2が移動し、反射ミラー13は目標位置に向かって移
動する。この粗動により反射ミラー13が目標位置に接
近すると、主制御装置30は粗動制御を停止して微動制
御を実行する。
First, to perform coarse motion control, the main controller 30 issues an operation command to the friction drive mechanism 3 to enable the friction drive mechanism 3 to operate, and also issues an operation command to the laser controller 27 to operate the laser oscillator 20. let Thereby, the laser oscillator 20 outputs laser light. This laser beam is split into two directions by a beam splitter 21, and one of the laser beams passes through an optical interferometer 22 and reaches the reflecting mirror 10. Then, the light is reflected by the reflecting mirror 10 and enters the optical interferometer 22 again. In this optical interferometer 22, interference light between the laser light from the laser oscillator 20 and the reflected laser light from the reflecting mirror 10 is generated, and this interference light is sent to the receiver 25 and converted into an electric signal S, which corresponds to the light intensity. converted. The other laser beam split by the beam splitter 21 is reflected by the bender 23 and sent to the reflecting mirror 13 through the optical interferometer 24. Then, the light is reflected by the reflecting mirror 13 and enters the optical interferometer 24 again. In this optical interferometer 24, interference light is generated between the laser light from the laser oscillator 20 and the reflected laser light from the reflection mirror 13, and this interference light is sent to the receiver 26 and converted into an electric signal S2 according to the light intensity. be done. Note that the electrical signal S2 is used during the fine movement operation, and therefore is ignored during the coarse movement operation. The electrical signal S8 is sent to the main controller 30, which receives the electrical signal s1, determines the position of the reflecting mirror 10, and generates a coarse drive signal CB according to the deviation between this position and the target position. Amplifier 3
1 to the friction drive mechanism 3. This friction drive mechanism 3
moves the drive rod 5 in response to the coarse movement drive signal CB. When the driving rod 5 moves, the slider 2 moves in response, and the reflecting mirror 13 moves toward the target position. When the reflecting mirror 13 approaches the target position due to this coarse movement, the main controller 30 stops the coarse movement control and executes fine movement control.

微動制御では主制御装置30は電磁スイッチ39をa端
子側に切換え、これとともに上記電気信号s2を受けて
反射ミラー13の位置を求め、この位置と目標位置との
偏差に応じた微動駆動信号CAを送出する。この微動駆
動信号CAはレーザコントローラ27を通して極微動用
制御回路32に送られ、さらにこの極微動用制御回路3
2から増幅器33を通して圧電素子12に加えられる。
In fine movement control, the main controller 30 switches the electromagnetic switch 39 to the a terminal side, receives the electrical signal s2, determines the position of the reflecting mirror 13, and generates a fine movement drive signal CA according to the deviation between this position and the target position. Send out. This fine movement drive signal CA is sent to the very fine movement control circuit 32 through the laser controller 27, and further this fine movement control circuit 3
2 is applied to the piezoelectric element 12 through an amplifier 33.

これにより、圧電素子12は印加された電圧値に応じて
変位し、反射ミラー13は目標位置に対してレーザ測長
システムの測定精度に応じた精度で位置決めされる。
Thereby, the piezoelectric element 12 is displaced according to the applied voltage value, and the reflection mirror 13 is positioned with respect to the target position with an accuracy according to the measurement accuracy of the laser length measurement system.

なお、上記動作では粗動制御の後に微動制御を実行した
が、粗動制御と微動制御とを交互に実行して反射ミラー
13を位置決めしても良い。この場合、主制御装置30
は、先ず微動駆動信号CAを極微動用制御回路32に印
加する。すると、第4図に示すように圧電素子12には
ステップ的に高くなる電圧が印加される。その結果、圧
電素子12は第5図のA、B状態に示すように矢印a1
方向に変位する。そして、圧電素子12がC状態に示す
最大変位Fに達すると、主制御装置30は圧電素子12
への印加電圧を零とすると同時に摩擦駆動機構3に粗動
駆動信号CBを印加する。これにより、D状態に示すよ
うに圧電素子12は矢印a2方向に変位してその変位が
零の位置まで退縮するとともに、摩擦駆動機構3は駆動
ロッド5を矢印a1方向に変位Fだけ移動させる。この
結果、反射ミラー10はD状態に示すように変位Fだけ
移動する。次に再び主制御装置30から極微動用制御回
路32に印加された微動駆動信号CAにより圧電素子1
2にステップ的に高くなる電圧が印加されて圧電素子1
2はE状態に示すように矢印a1方向に変位する。そし
て、圧電素子12が最大変位Fに達すると、主制御装置
30は再び圧電素子12への印加電圧を零とするととも
に粗動駆動信号CBを摩擦駆動機構3に印加し、F状態
に示すように駆動ロッド5を変位Fだけ移動させる。こ
の結果、第4図及びF状態に示すように反射ミラー10
は変位2Fだけ移動する。以下、同様にして粗動と微動
とを交互に繰り返すことにより、反射ミラー10は目標
位置に対してレーザ測長システムの分解能に応じた精度
で位置決めされる。
Note that in the above operation, the coarse movement control is followed by the fine movement control, but the reflecting mirror 13 may be positioned by performing the coarse movement control and the fine movement control alternately. In this case, the main controller 30
First, the fine movement drive signal CA is applied to the very fine movement control circuit 32. Then, as shown in FIG. 4, a voltage that increases stepwise is applied to the piezoelectric element 12. As a result, the piezoelectric element 12 moves as shown by the arrow a1 in states A and B in FIG.
displacement in the direction. Then, when the piezoelectric element 12 reaches the maximum displacement F shown in state C, the main controller 30 moves the piezoelectric element 12
At the same time, the coarse movement drive signal CB is applied to the friction drive mechanism 3. As a result, as shown in state D, the piezoelectric element 12 is displaced in the direction of arrow a2 and retracted to a position where the displacement is zero, and the friction drive mechanism 3 moves the drive rod 5 by a displacement F in the direction of arrow a1. As a result, the reflecting mirror 10 moves by a displacement F as shown in state D. Next, the piezoelectric element 1 is activated by the fine movement drive signal CA applied again from the main controller 30 to the control circuit 32 for fine movement.
A stepwise increasing voltage is applied to the piezoelectric element 1.
2 is displaced in the direction of arrow a1 as shown in E state. Then, when the piezoelectric element 12 reaches the maximum displacement F, the main controller 30 again reduces the applied voltage to the piezoelectric element 12 to zero and applies the coarse movement drive signal CB to the friction drive mechanism 3, as shown in the F state. The drive rod 5 is moved by a displacement F. As a result, as shown in FIG. 4 and state F, the reflecting mirror 10
moves by a displacement of 2F. Thereafter, by repeating coarse movement and fine movement alternately in the same manner, the reflecting mirror 10 is positioned with respect to the target position with an accuracy corresponding to the resolution of the laser length measurement system.

なお、圧電素子12への印加電圧を第4図に示すように
ステップ的に高くして最大変位Fに達したときに零とし
、そして再び印加電圧を第4図に示すようにステップ的
に高くするが、このとき圧電素子12への印加電圧をた
だ単に低下させてからステップ的に高くすると、第6図
の点線に示すように反射ミラー13は振動する。そこで
、圧電素子12への印加電圧は同図に示すように電圧値
零以下に低下させてから再びステップ的に高くし、この
電圧値が零となった期間i内に摩擦駆動機構3への粗動
駆動信号CBを変位F相当の値にする。
Note that the voltage applied to the piezoelectric element 12 is increased in steps as shown in FIG. 4, and is made zero when the maximum displacement F is reached, and then the voltage applied to the piezoelectric element 12 is increased in steps as shown in FIG. However, if the voltage applied to the piezoelectric element 12 is simply lowered and then increased stepwise at this time, the reflecting mirror 13 vibrates as shown by the dotted line in FIG. Therefore, as shown in the figure, the voltage applied to the piezoelectric element 12 is lowered to a voltage value of zero or less and then increased stepwise again, and the voltage applied to the friction drive mechanism 3 is The coarse movement drive signal CB is set to a value equivalent to the displacement F.

これにより、変位時における反射ミラー13の振動は抑
えられる。
This suppresses vibration of the reflection mirror 13 during displacement.

次に主制御装置30は極微動制御を実行する。Next, the main controller 30 executes micro-movement control.

この場合、主制御装置30は電磁スイッチ39をb端子
側に切換える。又、主制御装置30は微動制御において
圧電素子12に印加した電圧値を記憶している。そして
、主制御装置30は圧電素子12の電圧変位特性を記憶
している。
In this case, the main controller 30 switches the electromagnetic switch 39 to the b terminal side. The main controller 30 also stores the voltage value applied to the piezoelectric element 12 during fine movement control. The main controller 30 stores the voltage displacement characteristics of the piezoelectric element 12.

ここで、例えば圧電素子12の電圧変位特性が0.1(
n■/1v)であり・、微動制御により位置決めされた
ときの圧電素子12への印加電圧値が100(V)とな
っている。この場合に反射ミラー13をX方向に0.5
nmだけ移動させるには、主制御装置30は極微動の電
圧5(v)のディジタル値をボード33を通して極微動
用制御回路32に送出する。この極微動用制御回路32
ではラッチ回路36において微動制御により位置決めさ
れたときの圧電素子12への印加電圧値100 (V 
)がディジタル値でラッチされ加算回路37に送出され
ている。従って、加算回路37は圧電素子12への印加
電圧値100 (V )と極微動の電圧5(V)とを加
算しテ105 (V) トしテD/A変換回路38に出
力する。かくして、この加算電圧105(V)がアナロ
グ変換され、増幅器33を通って圧電素子12に印加さ
れる。この結果、圧電素子12は極僅かに変位(0,5
n−)し、反射ミラー13は目標位置に対してレーザ測
長システムの測定精度よりも高い精度で位置決めされる
。なお、反射ミラー13をθ、25n■だけ移動させる
には、主制御装置30は極微動の電圧2.5(V)のデ
ィジタル値を送出すればよく、さらに反射ミラー13を
Xの負方向に0.5rvだけ移動させるには、主制御装
置30は極微動の電圧−5(v)のディジタル値を送出
すれば良い。
Here, for example, the voltage displacement characteristic of the piezoelectric element 12 is 0.1 (
n■/1v), and the voltage value applied to the piezoelectric element 12 when it is positioned by fine movement control is 100 (V). In this case, the reflection mirror 13 is moved by 0.5 in the X direction.
To move by nm, the main controller 30 sends a digital value of the micro-movement voltage 5 (V) through the board 33 to the micro-movement control circuit 32 . This ultra-fine movement control circuit 32
Now, the voltage value 100 (V
) is latched as a digital value and sent to the adder circuit 37. Therefore, the adder circuit 37 adds the voltage value 100 (V) applied to the piezoelectric element 12 and the ultra-fine voltage 5 (V), and outputs the sum to 105 (V) to the D/A conversion circuit 38. Thus, this added voltage 105 (V) is converted into analog and applied to the piezoelectric element 12 through the amplifier 33. As a result, the piezoelectric element 12 is slightly displaced (0,5
n-), and the reflecting mirror 13 is positioned with respect to the target position with higher accuracy than the measurement accuracy of the laser length measurement system. In order to move the reflecting mirror 13 by θ, 25n■, the main controller 30 only has to send out a digital value of a voltage of 2.5 (V) for minute movement, and further move the reflecting mirror 13 in the negative direction of X. In order to move by 0.5 rv, the main controller 30 only has to send out a digital value of minus 5 (v) of voltage of micro-movement.

このように上記一実施例においては、レーザ測長システ
ムにより測定された反射ミラー13の検出位置と目標位
置との差に応じて摩擦駆動機構3又は圧電素子12のう
ちいずれか一方又は両方を作動させて反射ミラー13を
位置決めし、かつ圧電素子12に対して変位電圧特性に
従った変位に応じた電圧を印加して目標位置に位置決め
するようにしたので、粗動及び微動による大ストローク
及び高速度の位置決めに加えてレーザ測長システムの精
度に制限されずにレーザ測長システムよりも高い精度で
反射ミラー13を位置決めできる。
In this way, in the above embodiment, one or both of the friction drive mechanism 3 and the piezoelectric element 12 is operated depending on the difference between the detected position of the reflection mirror 13 measured by the laser length measurement system and the target position. Since the reflection mirror 13 is positioned by moving the reflection mirror 13, and a voltage corresponding to the displacement according to the displacement voltage characteristics is applied to the piezoelectric element 12 to position the target position, large strokes and high strokes due to coarse and fine movements can be avoided. In addition to speed positioning, the reflective mirror 13 can be positioned with higher accuracy than a laser length measurement system without being limited by the accuracy of the laser length measurement system.

そして、極微動制御では圧電素子12に対して変位電圧
特性に従った電圧を印加するので、変位量がいかなる値
であっても精度高く位置決めできる。
In micro-movement control, a voltage according to the displacement voltage characteristics is applied to the piezoelectric element 12, so that highly accurate positioning is possible no matter what the displacement amount is.

なお、圧電素子12には素子特有のヒステリシスがある
が、極微動制御における印加電圧範囲は極狭いので、こ
の範囲では圧電素子12の変位を直線に近似できる。従
って、位置決め精度を低下させることはない。例えば、
従来のデュアル制御での位置決め精度は1.25〜2,
5n−を越えることがないが、本装置ではO,lna以
下の高精度で位置決めができる。
Note that although the piezoelectric element 12 has a hysteresis peculiar to the element, since the applied voltage range in micro-movement control is extremely narrow, the displacement of the piezoelectric element 12 can be approximated to a straight line within this range. Therefore, positioning accuracy is not reduced. for example,
The positioning accuracy with conventional dual control is 1.25~2,
Although it does not exceed 5n-, this device can perform positioning with high accuracy of less than O.lna.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形しても良い。例えば、摩
擦駆動機構3に代ってリニアモータを用いた機構やボー
ルネジ送りを用いた機構としてもよいし、又レーザ測定
システムに代ってリニアエンコーダ、歪みゲージとして
もよい。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. For example, a mechanism using a linear motor or a ball screw feed may be used instead of the friction drive mechanism 3, or a linear encoder or a strain gauge may be used instead of the laser measurement system.

[発明の効果] 以上詳記したように本発明によれば、粗動及び微動によ
る大ストローク及び高速度の位置決めに加えて位置検出
センサの精度よりも高い精度で位置決めができる位置決
め装置を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide a positioning device that can perform large stroke and high-speed positioning by coarse and fine movements, as well as positioning with higher accuracy than the accuracy of a position detection sensor. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明に係わる位置決め装置の一実
施例を説明するための図であって、第1図は構成図、第
2図は圧電素子の拡大図、第3図は極微動用制御回路の
構成図、第4図は粗動及び微動を交互に作動させる場合
の変位を示す図、第5図は粗動及び微動を交互に作動さ
せた場合の動きを示す図、第6図は粗動及び微動を交互
に作動させたときの振動\の抑えを説明するための図で
ある。 1・・・支持台、2・・・スライダ、3・・・摩擦駆動
機構、5・・・駆動ロッド、9・・・案内体、10.1
3・・・反射ミラー 12・・・圧電素子、20・・・
レーザ発振器、21・・・ビームスプリッタ、22.2
4・・・光干渉計、23・・・ベンダ、25.26・・
・レシーバ、27・・・レーザコントローラ、30・・
・主制御装置、31.33・・・増幅器、32・・・極
微動用制御回路、34・・・ボード。
1 to 6 are diagrams for explaining one embodiment of the positioning device according to the present invention, in which FIG. 1 is a configuration diagram, FIG. 2 is an enlarged view of a piezoelectric element, and FIG. 3 is a microscopic diagram. 4 is a diagram showing the displacement when coarse movement and fine movement are operated alternately. FIG. 5 is a diagram showing the movement when coarse movement and fine movement are operated alternately. The figure is a diagram for explaining suppression of vibration when coarse movement and fine movement are operated alternately. DESCRIPTION OF SYMBOLS 1... Support stand, 2... Slider, 3... Friction drive mechanism, 5... Drive rod, 9... Guide body, 10.1
3...Reflection mirror 12...Piezoelectric element, 20...
Laser oscillator, 21...beam splitter, 22.2
4... Optical interferometer, 23... Vendor, 25.26...
・Receiver, 27... Laser controller, 30...
- Main control device, 31. 33... Amplifier, 32... Control circuit for ultra-fine movement, 34... Board.

Claims (1)

【特許請求の範囲】[Claims] 被位置決め体を粗動移動させる粗動駆動機構と、前記被
位置決め体を微動させる微動素子と、前記位置決め体の
位置を検出する位置検出センサと、この位置検出センサ
による検出位置と目標位置との差に基づいて前記粗動駆
動機構と前記微動素子とを選択的及び同時的に作動させ
又は前記粗動駆動機構と前記微動素子のうち少なくとも
前記微動素子を選択的に作動させる粗動微動制御手段と
、前記微動素子の変位電圧特性に従って変位に応じた電
圧を前記微動素子に既印加電圧に対して加減算的に印加
して前記被位置決め体を前記目標位置に位置決めする極
微動手段とを具備したことを特徴とする位置決め装置。
A coarse movement drive mechanism for coarsely moving the positioning object, a fine movement element for finely moving the positioning object, a position detection sensor for detecting the position of the positioning object, and a difference between the position detected by the position detection sensor and the target position. Coarse and fine movement control means for selectively and simultaneously operating the coarse movement drive mechanism and the fine movement element based on the difference, or selectively operating at least the fine movement element among the coarse movement drive mechanism and the fine movement element. and a very fine movement means for positioning the object to be positioned at the target position by applying a voltage corresponding to the displacement to the fine movement element in an additive or subtractive manner with respect to the already applied voltage according to the displacement voltage characteristic of the fine movement element. A positioning device characterized by:
JP2613190A 1989-03-07 1990-02-07 Positioning device Pending JPH03231314A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2613190A JPH03231314A (en) 1990-02-07 1990-02-07 Positioning device
EP90104272A EP0386702B1 (en) 1989-03-07 1990-03-06 Coarse/fine movement aligning apparatus
US07/488,890 US5062712A (en) 1989-03-07 1990-03-06 Aligning apparatus with a coarse/fine movement controller and an ultrafine movement controller
DE69007833T DE69007833T2 (en) 1989-03-07 1990-03-06 Coarse / fine alignment device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2613190A JPH03231314A (en) 1990-02-07 1990-02-07 Positioning device

Publications (1)

Publication Number Publication Date
JPH03231314A true JPH03231314A (en) 1991-10-15

Family

ID=12185008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2613190A Pending JPH03231314A (en) 1989-03-07 1990-02-07 Positioning device

Country Status (1)

Country Link
JP (1) JPH03231314A (en)

Similar Documents

Publication Publication Date Title
JP2601698B2 (en) Laser scanner rotation detection mechanism
Csencsics et al. Integration of control design and system operation of a high performance piezo-actuated fast steering mirror
JPH03231314A (en) Positioning device
US5062712A (en) Aligning apparatus with a coarse/fine movement controller and an ultrafine movement controller
JP4467527B2 (en) Table positioning device
JP4167031B2 (en) Driving mechanism control device and surface texture measuring device
JP3379773B2 (en) Scanning laser microscope
CN107797271B (en) A kind of inclined mirror system
JPH08136552A (en) Interatomic force microscope and similar scanning probe microscope
JPH07244058A (en) Surface shape measuring device
JP3256556B2 (en) Positioning device
JPH03202907A (en) Positioner
JP3267314B2 (en) Positioning control method
JPH0643939A (en) Precise xy stage
JP2592162B2 (en) Drive control method for positioning table
GB2219669A (en) Press brake with a displacement sensor
JPH03288214A (en) Fuzzy positioning device
JPH04160508A (en) Positioning device and its control mechanism
CN116339390A (en) Positioning control device and method for returning to original point and limiting movement mechanism
JP3542182B2 (en) Microscope focus adjustment mechanism
JP2714219B2 (en) Positioning device
JP3488842B2 (en) Shape measuring device
JPH045322B2 (en)
JPH05303426A (en) Position controller
SU1473060A1 (en) Two-channel electric drive