JPH03230063A - Heat exchanger for heat pump type air conditioner - Google Patents

Heat exchanger for heat pump type air conditioner

Info

Publication number
JPH03230063A
JPH03230063A JP2652490A JP2652490A JPH03230063A JP H03230063 A JPH03230063 A JP H03230063A JP 2652490 A JP2652490 A JP 2652490A JP 2652490 A JP2652490 A JP 2652490A JP H03230063 A JPH03230063 A JP H03230063A
Authority
JP
Japan
Prior art keywords
coolant
refrigerant
pipe
during
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2652490A
Other languages
Japanese (ja)
Inventor
Osao Kido
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2652490A priority Critical patent/JPH03230063A/en
Publication of JPH03230063A publication Critical patent/JPH03230063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To keep the most appropriate number of passes during an evaporating operation and during a condensing operation and provide the most active application of a capability of a heat exchanger for a heat pump type air conditioner by a method wherein the number of passes in a coolant circuit during the condensing operation is lower than that in the coolant circuit during an evaporating operation through a changing-over of a four-way valve. CONSTITUTION:During an evaporating operation, a coolant is flowed from a coolant pipe 2'', passes through a coolant pipe 2c through a four-way valve 4, branched at a branch pipe 3a into two passes and then the coolant flows into a coolant pipe 2a constituting an upper heat exchanging core 1a and a coolant pipe 2b constituting a lower heat exchanging core 1b. During a condensing operation, in turn the coolant flows from a coolant pipe 2' and through a changing-over of the four-way valve 4, a circuit at the coolant pipe 2d is closed. The coolant passes through a branch pipe 3b and flows into the coolant pipe 2a constituting an upper heat exchanging core 1a. The coolant flows into the coolant pipe 2b constituting the lower heat exchanging core 1b through the branch pipe 3a. The coolant heat exchanges with air and the coolant is condensed, thereafter the coolant is flowed out of the coolant pipe 2''. A pressure loss of the coolant in the pipe is higher than that of the evaporating operation and the most appropriate number of passes is larger at the condensing operation than that at the evaporating operation. For example, the coolant circuit is changed over to two passes during an evaporating operation and in turn the coolant circuit changes over to one pass during a condensing operation so as to get a high capability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷房と暖房を兼用するヒートポンプエアコンに
用いられ、空気と冷媒との熱交換を行なう熱交換器に関
するもので、冷媒回路の切り替えにより蒸発器と凝縮器
を兼用するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger used in a heat pump air conditioner for both cooling and heating, which exchanges heat between air and a refrigerant. It also serves as a condenser.

従来の技術 近年、ヒートポンプエアコン用熱交換器は機器設計の面
からコンパクト化が要求されており、実開昭63−1.
04952号公報や実開昭63−104956号公報の
ように冷媒管の細径化に伴う冷媒回路の多バス化が最近
の傾向である。
BACKGROUND OF THE INVENTION In recent years, heat exchangers for heat pump air conditioners have been required to be more compact in terms of equipment design.
The recent trend is to increase the number of buses in refrigerant circuits as the diameter of refrigerant pipes decreases, as shown in Japanese Utility Model Application No. 04952 and Japanese Utility Model Application No. 63-104956.

以下、図面を参照しながら上述したような従来のヒート
ポンプエアコン用熱交換器について説明を行う。
Hereinafter, a conventional heat exchanger for a heat pump air conditioner as described above will be explained with reference to the drawings.

第4図は従来のヒートポンプエアコン用熱交換器の冷媒
回路を示す。第4図において、5は空気と冷媒との熱交
換を行なう熱交換コアで、冷媒管6から構成され、冷媒
管6a及び6bの2回路を備えている。7は分岐管で、
前期冷媒管6aと6bt−集合し、流出入側の冷媒管6
′及び6°゛に接続している。
FIG. 4 shows a refrigerant circuit of a conventional heat exchanger for a heat pump air conditioner. In FIG. 4, numeral 5 denotes a heat exchange core for exchanging heat between air and refrigerant, which is composed of refrigerant pipes 6 and has two circuits of refrigerant pipes 6a and 6b. 7 is a branch pipe,
Early refrigerant pipes 6a and 6bt-collected, refrigerant pipes 6 on the inflow and outflow side
' and 6°'.

以上のように構成されたヒートポンプエアコン用熱交換
器について、以下第5図を用いてその動作を説明する。
The operation of the heat exchanger for a heat pump air conditioner configured as described above will be explained below using FIG. 5.

まず蒸発運転時は冷媒管6′′から冷媒が流入し、分岐
管7aで冷媒は2バスに分流され、それぞれ上部熱交換
コア5aを構成する冷媒管6aと下部熱交換コア5bを
構成する冷媒管6bに流入する。
First, during evaporation operation, refrigerant flows in from the refrigerant pipe 6'', and the refrigerant is divided into two buses by the branch pipe 7a, and the refrigerant is used to form the upper heat exchange core 5a and the lower heat exchange core 5b, respectively. It flows into tube 6b.

更に冷媒は熱交換コア5a及び5bで空気と熱交換し蒸
発した後分岐管7bで再び合流し、冷媒管6′を経て流
出する。 また凝縮運転時は逆に冷媒管6′から冷媒が
流入し、分岐管7bで冷媒は蒸発運転時と同様に2バス
に分流され、それぞれ上部熱交換コア5aを構成する冷
媒管6aと下部熱交換コア5bを構成する冷媒管6bに
流入する。
Further, the refrigerant exchanges heat with air in the heat exchange cores 5a and 5b and evaporates, then joins again in the branch pipe 7b and flows out through the refrigerant pipe 6'. During condensing operation, the refrigerant flows in from the refrigerant pipe 6', and the refrigerant is divided into two buses at the branch pipe 7b, as in the case of evaporation operation. The refrigerant flows into the refrigerant pipe 6b that constitutes the exchange core 5b.

更に冷媒は熱交換コア5a及び5bで空気と熱交換し凝
縮した後分岐管7aで再び合流し、冷媒管6゛°を経て
流出する。
Further, the refrigerant exchanges heat with air in the heat exchange cores 5a and 5b, condenses, joins again in the branch pipe 7a, and flows out through the refrigerant pipe 6°.

この際、冷媒回路のパス数が小さいほど冷媒の流速が増
えるため管内側熱伝達率が向上するが同時に管内側圧力
損失も増大するためにサイクルとして最大能力を得る最
適なパス数が存在する。またこの最適パス数は蒸発運転
時、凝縮運転時にそれぞれ存在するが、通常、冷媒の管
内側圧力損失は凝縮運転時に比べて蒸発運転時のほうが
大きく、かつ管内側圧力損失の増大が能力低下に及ぼす
影響も蒸発運転時のほうが大きいため、最適パス数は凝
縮運転時よりも蒸発運転時のほうが大きい。
At this time, as the number of passes in the refrigerant circuit decreases, the flow rate of the refrigerant increases, which improves the heat transfer coefficient inside the tube, but at the same time, the pressure loss inside the tube also increases, so there is an optimal number of passes to obtain the maximum capacity as a cycle. In addition, this optimal number of passes exists during evaporation operation and condensing operation, but the pressure loss inside the refrigerant tube is usually larger during evaporation operation than during condensation operation, and an increase in the inside pressure loss causes a decrease in capacity. Since the influence is also greater during evaporation operation, the optimal number of passes is larger during evaporation operation than during condensation operation.

発明が解決しようとする課題 しかしながら上記のような構成では、蒸発運転時と凝縮
運転時の冷媒回路のパス数が同じであるため、蒸発運転
時と凝縮運転時の両方で最適パス数を構成することはで
きておらず、ヒートポンプエアコン用熱交換器の能力を
最大限活かしていないという課題を有していた。
Problem to be Solved by the Invention However, in the above configuration, the number of paths in the refrigerant circuit during evaporation operation and condensation operation is the same, so the optimal number of paths is configured for both evaporation operation and condensation operation. The problem was that the heat exchanger for heat pump air conditioners was not fully utilized.

本発明は上記課題に鑑み、蒸発運転時の冷媒回路のパス
数よりも凝縮運転時の冷媒回路のパス数を小さくし、蒸
発運転時、凝縮運転時共に最適パス数を維持してヒート
ポンプエアコン用熱交換器の能力を最大限活かすもので
ある。
In view of the above problems, the present invention makes the number of passes in the refrigerant circuit during condensing operation smaller than the number of passes in the refrigerant circuit during evaporative operation, and maintains the optimum number of passes during both evaporative operation and condensing operation, thereby providing a heat pump air conditioner. This maximizes the ability of the heat exchanger.

課題を解決するための手段 上記課題を解決するために本発明のヒートポンプエアコ
ン用熱交換器は、複数の冷媒管で構成された熱交換コア
と、前記冷媒管と共に冷媒回路を構成する分岐管及び四
方弁とからなり、四方弁の切り替えにより蒸発運転時の
冷媒′回路のパス数より凝縮運転時の冷媒回路のパス数
を小さくするという構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the heat exchanger for a heat pump air conditioner of the present invention includes a heat exchange core made up of a plurality of refrigerant pipes, a branch pipe that constitutes a refrigerant circuit together with the refrigerant pipes, and It is composed of a four-way valve, and has a configuration in which the number of passes in the refrigerant circuit during condensing operation is made smaller than the number of passes in the refrigerant circuit during evaporation operation by switching the four-way valve.

作用 本発明は上記した構成によって、四方弁の切り替えによ
り蒸発運転時の冷媒回路のパス数より凝縮運転時の冷媒
回路のパス数を小さくし、蒸発運転時、凝縮運転時共に
最適パス数を維持してヒートポンプエアコン用熱交換器
の能力を最大限活かすことができる。
Effect: With the above-described configuration, the present invention makes the number of passes in the refrigerant circuit during condensing operation smaller than the number of passes in the refrigerant circuit during evaporating operation by switching the four-way valve, and maintains the optimal number of passes during both evaporating and condensing operations. This allows you to make the most of the heat exchanger's capabilities for heat pump air conditioners.

実施例 以下本発明の実施例のヒートポンプエアコン用熱交換器
について図面を参照しながら説明する。
EXAMPLE Hereinafter, a heat exchanger for a heat pump air conditioner according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例におけるヒートポンプエアコン
用熱交換器の冷媒回路を示すもので、第2図は蒸発運転
時の冷媒流れ、第3図は凝縮運転時の冷媒流れを示す。
FIG. 1 shows a refrigerant circuit of a heat exchanger for a heat pump air conditioner according to an embodiment of the present invention, FIG. 2 shows a refrigerant flow during evaporation operation, and FIG. 3 shows a refrigerant flow during condensation operation.

第1図から第3図において、1は空気と冷媒との熱交換
を行なう熱交換コアで、冷媒管2から構成され、冷媒管
2&及び2bの2回路を備えている。3は分岐管、4は
四方弁で、分岐管3と四方弁4の組み合わせにより冷媒
管2a及び2bを集合して流出入側の冷媒管6′及び6
°°に接続している。
1 to 3, reference numeral 1 denotes a heat exchange core for exchanging heat between air and refrigerant, which is composed of refrigerant pipes 2 and has two circuits, refrigerant pipes 2& and 2b. 3 is a branch pipe, 4 is a four-way valve, and the combination of the branch pipe 3 and the four-way valve 4 collects the refrigerant pipes 2a and 2b, and connects the refrigerant pipes 6' and 6 on the inflow and outflow sides.
Connected to °°.

以上のように構成されたヒートポンプエアコン用熱交換
器ついて、以下第2図と第3図を用いてその動作につい
て説明する。
The operation of the heat exchanger for a heat pump air conditioner configured as described above will be described below with reference to FIGS. 2 and 3.

まず蒸発運転時は、冷媒管2゛′から冷媒が流入し、四
方弁4により冷媒管2Cを経て分岐管3aで2パスに分
流され、それぞれ上部熱交換コア1aを構成する冷媒管
2aと下部熱交換コア1bを構成する冷媒管2bに流入
する。更に冷媒は熱交換コア1a及び1bで空気と熱交
換し蒸発した後、冷媒管2a側の冷媒は分岐管3bへ、
冷媒管2b側の冷媒は四方弁4から冷媒管2dを経て分
岐管3bへ流入する。更に冷媒は分岐管3bで合流した
後冷媒管2′から流出する。
First, during evaporation operation, refrigerant flows in from the refrigerant pipe 2'', and is divided into two paths by the four-way valve 4 through the refrigerant pipe 2C and the branch pipe 3a. The refrigerant flows into the refrigerant pipes 2b that constitute the heat exchange core 1b. Furthermore, after the refrigerant exchanges heat with air in the heat exchange cores 1a and 1b and evaporates, the refrigerant on the refrigerant pipe 2a side flows into the branch pipe 3b.
The refrigerant on the refrigerant pipe 2b side flows from the four-way valve 4 into the branch pipe 3b via the refrigerant pipe 2d. Further, the refrigerant flows out from the refrigerant pipe 2' after merging at the branch pipe 3b.

また凝縮運転時は逆に冷媒管2′から冷媒が流入し、分
岐管3bに至るが、四方弁4の切り替えにより四方弁4
へ流入する冷媒管2d側の回路が閉じられるため、冷媒
は分岐管3bを経て上部熱交換コア1aを構成する冷媒
管2aだけに流入する。ここで冷媒は空気と熱交換し凝
縮した後、分岐管8aに流入するが、四方弁4の切り替
えにより冷媒管2Cも閉じられているため、冷媒は統い
て下部熱交換コア1bを構成する冷媒管2bに流入する
。ここで冷媒は空気と熱交換し更に凝縮した後、四方弁
4を経て冷媒管2゛へ流出する。
Also, during condensing operation, refrigerant flows from the refrigerant pipe 2' and reaches the branch pipe 3b.
Since the circuit on the side of the refrigerant pipe 2d flowing into the refrigerant pipe 2d is closed, the refrigerant flows only into the refrigerant pipe 2a forming the upper heat exchange core 1a via the branch pipe 3b. Here, the refrigerant exchanges heat with the air and condenses, then flows into the branch pipe 8a, but since the refrigerant pipe 2C is also closed by switching the four-way valve 4, the refrigerant is combined with the refrigerant constituting the lower heat exchange core 1b. It flows into tube 2b. Here, the refrigerant exchanges heat with the air and is further condensed, after which it flows out through the four-way valve 4 into the refrigerant pipe 2'.

この際、冷媒回路のパス数が小さいほど冷媒の流速が増
えるため管内側熱伝達率が向上するが同時に管内側圧力
損失も増大するためにサイクルとして最大能力を得る最
適なパス数が存在する。またこの最適バス数は蒸発運転
時、凝縮運転時にそれぞれ存在するが、通常、冷媒の管
内側圧力損失は凝縮運転時に比べて蒸発運転時のほうが
大きく、かつ管内側圧力損失の増大が能力低下に及ぼす
影響も蒸発運転時のほうが大きいため、最適バス数は凝
縮運転時よりも蒸発運転時のほうが大きい。
At this time, as the number of passes in the refrigerant circuit decreases, the flow rate of the refrigerant increases, which improves the heat transfer coefficient inside the tubes, but at the same time, the pressure loss inside the tubes also increases, so there is an optimal number of passes to obtain the maximum capacity as a cycle. In addition, this optimal number of buses exists during evaporation operation and condensing operation, but the pressure loss inside the refrigerant tube is usually larger during evaporation operation than during condensing operation, and an increase in the inside pressure loss causes a decrease in capacity. Since the influence is also greater during evaporative operation, the optimal number of buses is larger during evaporative operation than during condensing operation.

これに対応し実施例で示したヒートポンプエアコン用熱
交換器の冷媒回路は、蒸発運転時は2バスに凝縮運転時
は1バスに切り替えることができ、蒸発運転時、凝縮運
転時共に従来のヒートポンプエアコン用熱交換器よりも
高い能力を得ることができる。
Corresponding to this, the refrigerant circuit of the heat exchanger for a heat pump air conditioner shown in the example can be switched to 2 buses during evaporative operation and 1 bus during condensing operation. Higher capacity than air conditioner heat exchangers can be obtained.

以上のように本実施例によれば、複数の冷媒管2で構成
された熱交換コア1と、前記冷媒管2と共に冷媒回路を
構成する分岐管3及び四方弁4とからなり、四方弁4の
切り替えにより蒸発運転時は2バスに凝縮運転時は1バ
スに設定するととがができ、蒸発運転時の冷媒回路のパ
ス数より凝縮運転時の冷媒回路のパス数を小さくするこ
とにより、蒸発運転時、凝縮運転時共にほぼ最適なパス
数を設定し、従来のヒートポンプエアコン用熱交換器よ
りも高い熱交換能力を得ることができる。
As described above, according to this embodiment, the heat exchange core 1 is composed of a plurality of refrigerant pipes 2, the branch pipes 3 and the four-way valve 4, which together with the refrigerant pipes 2 constitute a refrigerant circuit, the four-way valve 4 By switching between 2 buses during evaporation operation and 1 bus during condensing operation, the number of passes in the refrigerant circuit during condensing operation is smaller than the number of passes in the refrigerant circuit during evaporation operation. By setting an almost optimal number of passes both during operation and condensing operation, it is possible to obtain higher heat exchange capacity than conventional heat exchangers for heat pump air conditioners.

尚、本実施例では蒸発運転時は2バスに凝縮運転時は1
バスに設定したが、熱交換器の大きさによってはパス数
の増大が必要であり、同様の冷媒回路を複数用いること
により、蒸発運転時は6パスに凝縮運転時は3バスに設
定する等の応用も容易に可能である。
In this example, 2 buses are used during evaporation operation and 1 bus is used during condensation operation.
However, depending on the size of the heat exchanger, the number of passes may need to be increased, so by using multiple similar refrigerant circuits, it can be set to 6 passes during evaporative operation and 3 buses during condensing operation. It is also possible to easily apply this method.

発明の効果 以上のように本発明は、複数の冷媒管で構成された熱交
換コアと、前記冷媒管と共に冷媒回路を構成する分岐管
及び四方弁とからなり、四方弁の切り替えにより蒸発運
転時の冷媒回路のパス数より凝縮運転時の冷媒回路のパ
ス数を小さくすることにより、蒸発運転時、凝縮運転時
共にほぼ最適なパス数を設定し、従来のヒートポンプエ
アコン用熱交換器よりも高い熱交換能力を得ることがで
きる。
Effects of the Invention As described above, the present invention consists of a heat exchange core composed of a plurality of refrigerant pipes, a branch pipe and a four-way valve that together with the refrigerant pipes constitute a refrigerant circuit, and the four-way valve can be switched during evaporation operation. By making the number of passes in the refrigerant circuit during condensing operation smaller than the number of passes in the refrigerant circuit in Heat exchange ability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるヒートポンプエアコン
用熱交換器の形状を示す冷媒回路図、第2図は第1図の
蒸発運転時の冷媒流れを示す冷媒回路図、第3図は第1
図の凝縮運転時の冷媒流れを示す冷媒回路図、第4図は
従来のヒートポンプエアコン用熱交換器の形状を示す冷
媒回路図、第5図は第4図の蒸発運転時及び凝縮運転時
の冷媒流れを示す冷媒回路図である。 1・・・熱交換コア、2・・・冷媒管、3・・・分岐管
、4・・・四方弁。
Fig. 1 is a refrigerant circuit diagram showing the shape of a heat exchanger for a heat pump air conditioner in an embodiment of the present invention, Fig. 2 is a refrigerant circuit diagram showing the refrigerant flow during evaporation operation in Fig.
Figure 4 is a refrigerant circuit diagram showing the refrigerant flow during condensing operation, Figure 4 is a refrigerant circuit diagram showing the shape of a conventional heat exchanger for a heat pump air conditioner, and Figure 5 is during evaporation operation and condensing operation as shown in Figure 4. It is a refrigerant circuit diagram showing refrigerant flow. 1... Heat exchange core, 2... Refrigerant pipe, 3... Branch pipe, 4... Four-way valve.

Claims (1)

【特許請求の範囲】[Claims] 複数の冷媒管で構成された熱交換コアと、前記冷媒管と
共に冷媒回路を構成する分岐管及び四方弁とからなり、
四方弁の切り替えにより蒸発運転時の冷媒回路のパス数
より凝縮運転時の冷媒回路のパス数を小さくしたことを
特徴とするヒートポンプエアコン用熱交換器。
Consisting of a heat exchange core composed of a plurality of refrigerant pipes, and a branch pipe and a four-way valve that constitute a refrigerant circuit together with the refrigerant pipes,
A heat exchanger for a heat pump air conditioner, characterized in that the number of passes in the refrigerant circuit during condensing operation is smaller than the number of passes in the refrigerant circuit during evaporation operation by switching a four-way valve.
JP2652490A 1990-02-06 1990-02-06 Heat exchanger for heat pump type air conditioner Pending JPH03230063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2652490A JPH03230063A (en) 1990-02-06 1990-02-06 Heat exchanger for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2652490A JPH03230063A (en) 1990-02-06 1990-02-06 Heat exchanger for heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH03230063A true JPH03230063A (en) 1991-10-14

Family

ID=12195865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2652490A Pending JPH03230063A (en) 1990-02-06 1990-02-06 Heat exchanger for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH03230063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261683A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider and refrigerating device
JP2010261684A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261683A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider and refrigerating device
JP2010261684A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider

Similar Documents

Publication Publication Date Title
CN105008850B (en) Combined condenser and evaporator
CN107949762B (en) Distributor, laminated type collector, heat exchanger and conditioner
WO2020143539A1 (en) Heat exchanger and air conditioner
JP4411986B2 (en) Dehumidifier
JP2021508024A (en) Air conditioner system
KR20040086294A (en) Heat pump type air conditioner
JP4521855B2 (en) Absorption refrigerator
JPH03230063A (en) Heat exchanger for heat pump type air conditioner
JPH0914698A (en) Outdoor machine of air conditioner
JP2528541B2 (en) Absorption heat pump
CN108731307A (en) A kind of stacked condenser
CN209445519U (en) A kind of fresh air dehumidifying system
JP2014098502A (en) Air conditioner
JPH0623806U (en) Heat exchanger for heat pump type air conditioner
JP2719408B2 (en) Absorption refrigerator
JP2731608B2 (en) Air conditioner
JP3742852B2 (en) Air conditioner
JPH0473592A (en) Heat exchanger
JP4266601B2 (en) Air conditioner
JP4267096B2 (en) Air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
CN210135646U (en) Air conditioner outdoor unit and air conditioner
JP2875565B2 (en) Heat exchange equipment
JPS6039724Y2 (en) air conditioner
JPS5815819Y2 (en) air conditioner