JPH03229626A - Air-tight-type liquid mixing apparatus - Google Patents

Air-tight-type liquid mixing apparatus

Info

Publication number
JPH03229626A
JPH03229626A JP2505890A JP2505890A JPH03229626A JP H03229626 A JPH03229626 A JP H03229626A JP 2505890 A JP2505890 A JP 2505890A JP 2505890 A JP2505890 A JP 2505890A JP H03229626 A JPH03229626 A JP H03229626A
Authority
JP
Japan
Prior art keywords
piston
liquid
container
mixed
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2505890A
Other languages
Japanese (ja)
Other versions
JP2850914B2 (en
Inventor
Takafumi Hataya
隆文 端谷
Kotaro Oka
浩太郎 岡
Shozo Fujita
省三 藤田
Takaharu Asano
高治 浅野
Fumio Takei
文雄 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2505890A priority Critical patent/JP2850914B2/en
Publication of JPH03229626A publication Critical patent/JPH03229626A/en
Application granted granted Critical
Publication of JP2850914B2 publication Critical patent/JP2850914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Accessories For Mixers (AREA)

Abstract

PURPOSE:To obtain a mixed liquid by setting cylindrical containers having a piston to communicate each other through a joint tube and reciprocally moving each piston in reverse direction synchronously. CONSTITUTION:Containers 3, 4 having pistons 1, 2, respectively are cylinders and set to communicate each other through a joint tube 5 and a concentration measuring window 6 is formed in the tube and the concentration of a liquid in the tube is measured by absorptiometer. The pistons 1, 2 are moved reciprocally and synchronously in reverse direction and the liquids in the container 3, 4 are mixed each other while moving back and forth through the joint tube 5. In this way, polluting substance are not mixed and loss of the samples is prevented.

Description

【発明の詳細な説明】 こ概 要二 宇宙空間において利用できる液体混合装置に関し、 気相および攪拌媒体の存在なしに、混合液を得ることを
目的とし、 それぞれピストンを有する2つのシリンダ容器が、濃度
測定用窓を有する連結管を介して連通し、各容器および
連結管が気体を排出しながら混合すべき液体を充填でき
るように設けられており、かつ各ピストンが、相互に反
対方向に同期往復運動するように構成する。
DETAILED DESCRIPTION OF THE INVENTION This overview relates to a liquid mixing device available in two outer spaces, intended to obtain a mixed liquid without the presence of a gas phase and a stirring medium, comprising two cylindrical vessels each having a piston. The containers and the connecting tubes are connected through a connecting tube having a window for concentration measurement, and each container and the connecting tube are provided so that they can be filled with the liquid to be mixed while discharging gas, and each piston is synchronized in opposite directions. Constructed to reciprocate.

5従来の技術〕 一般に、液体の混合は回転力を利用して行う。5 Conventional technology] Generally, liquids are mixed using rotational force.

たとえば■撹拌棒を手で回す、■マグネットスタ−ラを
外部磁界で回す、■回転翼を動力で回す、■溶液の入っ
た円筒容器をローラ上で回す。
For example, ■ Rotating a stirring rod by hand, ■ Rotating a magnetic stirrer using an external magnetic field, ■ Rotating rotary blades using power, and ■ Rotating a cylindrical container containing a solution on a roller.

■〜■の方法は、溶液濃度の調節が容易であるが、攪拌
媒体を必要とするので、液体に汚染物質を混入したり、
かつ媒体の取出しには溶液の損失を伴う。■の方法は、
重力の存在においてのみ有効であり、かつ溶液濃度の調
節が困難である。
Methods ① to ③ allow easy adjustment of solution concentration, but since they require a stirring medium, they may cause contaminants to be mixed into the liquid.
And removal of the medium involves loss of solution. ■The method is
Effective only in the presence of gravity and difficult to control solution concentration.

これらの方法;よ、通常気相の存在下で行なわれるが、
無重力空間における混合では、気相が存在すると攪拌媒
体に液体がまつわりつくことが想像される。
These methods are usually carried out in the presence of a gas phase,
In mixing in a zero-gravity space, if a gas phase exists, it can be imagined that liquid will surround the stirring medium.

〔発明が解決しようとする課題二 本発明は、気相および攪拌媒体の存在なしに、混合液を
得ることを目的とする。
[Problem to be Solved by the Invention 2] The object of the present invention is to obtain a mixed liquid without the presence of a gas phase and a stirring medium.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、それぞれピストンを有する2つのンリング
容器が、濃度測定用窓を有する連結管を介して連通し、
各容器および連結管が気体を排出しながら、混合すべき
液体を充填できるように設けちれており、かつ各ピスト
ンが相互に反対方向に同期往復運動することを特徴とす
る気密型液体混合装置によって解決することができる。
The above problem is achieved by connecting two ring containers each having a piston through a connecting pipe having a concentration measurement window.
An airtight liquid mixing device characterized in that each container and connecting pipe are arranged so that they can be filled with liquid to be mixed while discharging gas, and each piston moves synchronously and reciprocally in mutually opposite directions. It can be solved by

グ作 川口 第1図は、本発明の気密型液体混合装置の原理説胡図で
ある。それぞれピストン1.2有する容器3,4はンリ
ンダてあり、連結管5を介して連通し、この管口濃度測
定用窓6を設(す、図示しない吸光光度計によって管内
の液体の濃度を測定する。ピストン1.2は相互に反対
方向に同期往復運動するので、容器3,4内の液体iよ
連結管5を通って移動するうちに、相互に混合される。
By Mr. Kawaguchi Figure 1 is a diagram illustrating the principle of the airtight liquid mixing device of the present invention. Containers 3 and 4, each having a piston 1.2, are connected via a connecting pipe 5, and a window 6 for measuring the concentration at the mouth of the pipe is provided.The concentration of the liquid in the pipe is measured by an absorption photometer (not shown). Since the pistons 1.2 synchronously reciprocate in opposite directions, the liquids i in the containers 3, 4 mix with each other as they move through the connecting pipe 5.

混合された液体は濃度計によってその濃度を測定できる
。後の実施例に示すように、濃度の変化を表す吸光度(
y)  はピストンを押し込むのに要する時間tをある
定数にとり、ピストンの往復回数nを変数とする減衰曲
線で表される。なお、1回ピストンを押し込む時間tが
小さい程、すなわち流速が大きい程、所定濃度にまで混
合するまでの時間が短縮される。流速を大きくするには
、動作速度による池、ピストンの断面積を大きくしても
よく、また連結管の流径を絞っても達成するすることが
できる。
The concentration of the mixed liquid can be measured using a densitometer. As shown in later examples, the absorbance (
y) is expressed by a damping curve in which the time t required to push the piston is taken as a constant and the number of reciprocations n of the piston is taken as a variable. Note that the shorter the time t for pushing the piston once, that is, the higher the flow rate, the shorter the time until the mixture reaches a predetermined concentration. Increasing the flow rate can be achieved by increasing the cross-sectional area of the pond or piston depending on the operating speed, or by reducing the flow diameter of the connecting pipe.

また混合中に所定濃度に達しないときは、補給液を容器
11から補給することができる。この容器は上記2つの
ンリンダ容器3・4と同様である。
Furthermore, if the predetermined concentration is not reached during mixing, replenishment liquid can be replenished from the container 11. This container is similar to the two Ninda containers 3 and 4 mentioned above.

また所定濃度に達した混合液jよベロー型受器13に移
す二とができる。これらの容器はそれぞれ自動弁7.8
を介して、上記2つの容器3.4を含む系に連結してい
る。
Further, the mixed liquid j that has reached a predetermined concentration can be transferred to the bellows type receiver 13. Each of these containers has an automatic valve 7.8
via which it is connected to the system containing the two vessels 3.4 mentioned above.

なお、原液または混合液を充填するときに、気、岨を排
出できるように設けられていることは、上記の系も、ま
た補給液容器および混合液受器についても同様である。
Note that the above-mentioned system, as well as the replenishment liquid container and the mixed liquid receiver, are provided so that air and air can be discharged when filling the undiluted liquid or mixed liquid.

二実施例: 第3図は、本発明の装置の1つの実施態様を示す。Two examples: FIG. 3 shows one embodiment of the device of the invention.

容器3・4 ft 200μβの気密ンリンジ(ハミル
トン社製)を使用し、連結管5は内径Q、5mm、長さ
180mmのテフロンチューブに、濃度測定装置として
30μlのフローセル(アート■、吸光光度計A C−
5200型)を設;す、さらに流速調節手段1として、
直径3.2574mm、 4.6066mmの2種類の
ピストンを用意した。ピストン2は駆動ピストン、ピス
トン1は遊動ピストンである。各容器3.4はそれぞれ
自動弁7,8および連結管12.14を介して補給液容
器11および混合液受器13に連通している。
A 3.4 ft. 200 μβ airtight ring (manufactured by Hamilton) was used, and the connecting tube 5 was a Teflon tube with an inner diameter of Q, 5 mm, and a length of 180 mm, and a 30 μl flow cell (Art ■, spectrophotometer A) was used as the concentration measuring device. C-
5200 type); furthermore, as the flow rate adjustment means 1,
Two types of pistons with diameters of 3.2574 mm and 4.6066 mm were prepared. Piston 2 is a driving piston, and piston 1 is a floating piston. Each container 3.4 communicates with a replenishment liquid container 11 and a mixed liquid receiver 13 via an automatic valve 7, 8 and a connecting pipe 12.14, respectively.

容器3に原液aを予め充填し、他方混合させたい原液す
を容器4および補給液容器11に充填する。
Container 3 is filled with stock solution a in advance, and stock solution A to be mixed is filled into container 4 and replenishment solution container 11.

このとき各連結管5.12にも充填され、容器および連
結管内に気体が残らないように排出する。ピストン2を
駆動すると、ピストンlは遊動して、原液すが原液aと
混合する。混合液の濃度を窓6を通して吸光光度計によ
って測定し、所定の濃度に達しない場合は、自動弁7を
開き、ピストン10を駆動して補給液容器11から連結
管12を通して原液すに追加する。さらにピストン2を
駆動して混合を反復する。混合速度を速めるには、流径
調節装置9で口径を絞ってもよいが、この実施例では断
面積の異なるピストンを使用し、かつピストンの往復動
作を速めた。そして、駆動ピストン2を押し込むのjご
要する時間tをある定数jごとり、ピストンの往復回数
nを変数とし、吸光度yを関数とするグラフを描し)だ
At this time, each connecting pipe 5.12 is also filled and discharged so that no gas remains in the container and the connecting pipe. When the piston 2 is driven, the piston l moves freely and the stock solution mixes with the stock solution a. The concentration of the mixed liquid is measured by an absorption photometer through the window 6, and if the predetermined concentration is not reached, the automatic valve 7 is opened, the piston 10 is driven, and the liquid is added to the stock liquid through the connecting pipe 12 from the replenishment liquid container 11. . Further, the piston 2 is driven to repeat mixing. In order to increase the mixing speed, the diameter may be reduced using the flow diameter adjustment device 9, but in this example, pistons with different cross-sectional areas were used to speed up the reciprocating motion of the pistons. Then, draw a graph in which the time t required for pushing the driving piston 2 is set as a constant j, the number of reciprocations of the piston is set as a variable, and the absorbance y is a function.

第2図に示すグラフは y=A−exp (−r ・ (n−1))(式中、y
は吸光度、rは減衰定数、nはピストンの往復回数、A
はn=1のときの振幅の頂点の高さを示す)で表される
減衰曲線を示す。
The graph shown in Figure 2 is y=A-exp (-r ・ (n-1)) (where y
is the absorbance, r is the attenuation constant, n is the number of reciprocations of the piston, A
indicates the height of the apex of the amplitude when n=1).

第1表  減衰定数 ピストン押し込み時間(秒)、3.5 0 さらに、第1表に示すように、ピストンの断面積が大き
い程、またピストンの動作が速い程、減衰定数が大きく
なり、所定の濃度に混合するまでのピストンの往復回数
が少なくてすむことがわかった。
Table 1 Damping constant Piston push time (seconds), 3.5 0 Furthermore, as shown in Table 1, the larger the cross-sectional area of the piston and the faster the piston movement, the larger the damping constant becomes. It was found that the number of reciprocations of the piston required to mix the mixture to a concentrated concentration was reduced.

所定濃度に達した後、自動弁8を開き、連結管14通し
てベロー型受器13に混合液を送る。なお、容器3,4
と同様に補給液容器11および混合液受器13も液受入
れ時に排気できるように設定しておくので、気相を遮断
して混合液を得ることができる。
After reaching a predetermined concentration, the automatic valve 8 is opened and the mixed liquid is sent to the bellows type receiver 13 through the connecting pipe 14. In addition, containers 3 and 4
Similarly, the replenishment liquid container 11 and the mixed liquid receiver 13 are also set so as to be evacuated when receiving the liquid, so that the mixed liquid can be obtained by blocking the gas phase.

〔発明の効果〕〔Effect of the invention〕

■攪拌媒体を溶液に接触させることがないので、汚染物
質を混入させる恐れがない。
■Since the stirring medium does not come into contact with the solution, there is no risk of contamination.

■攪拌媒体を混合の後に取り出す際に、試料の損失を招
くことがない。
■ No sample loss occurs when the stirring medium is removed after mixing.

■気相を混入させることが無いので、宇宙のような無重
力環境においても、気泡の混入しない溶液を調製可能で
ある。
■Since there is no gas phase mixed in, it is possible to prepare a solution free of air bubbles even in a weightless environment such as space.

■濃度測定装置で所定の濃度が正確に得られる。■Predetermined concentration can be obtained accurately using a concentration measuring device.

■流径を狭めることによって速く混合できる。■Mixing can be done quickly by narrowing the flow diameter.

■ピストンの動作速度を速めることによって速く混合で
きる。
■Mixing can be done quickly by increasing the operating speed of the piston.

■ピストンの断面積を大きくすることによって速く混合
できる。
■Mixing can be done quickly by increasing the cross-sectional area of the piston.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図であり、 第2図は本発明の装置において、ピストンを押し込む時
間を変数とする濃度変化の減衰定数を示すグラフであり
、 第3図は、本発明の装置の実施態様を示す説明図である
。 1・ 2,10・・・ピストン、3.4・・・シリンダ
容器、5=12,14・・・連結管、 6・・・濃度測
定用窓、7・8・・・自動弁、   9・・・流径調節
装置、11・・・補給液容器、   12・・・混合液
受器。 本発明の原理説明図 第 図 6・・・濃度測定用窓 濃度変化のグラフ 第2図
FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is a graph showing the attenuation constant of concentration change with the time for pushing the piston as a variable in the apparatus of the present invention, and FIG. FIG. 2 is an explanatory diagram showing an embodiment of the device. 1. 2, 10...Piston, 3.4...Cylinder container, 5=12,14...Connecting pipe, 6...Concentration measurement window, 7.8...Automatic valve, 9. ...Flow diameter adjustment device, 11... Replenishment liquid container, 12... Mixed liquid receiver. Diagram for explaining the principle of the present invention: Fig. 6: Window for density measurement: graph of density changes: Fig. 2

Claims (1)

【特許請求の範囲】 1、それぞれピストンを有する2つのシリンダ容器が、
濃度測定用窓を有する連結管を介して相互に連通し、各
容器および連結管は気体を排出しながら、混合すべき液
体を充填できるように設けられており、かつ各ピストン
が、相互に反対方向に同期往復運動することを特徴とす
る気密型液体混合装置。 2、1つのピストンが駆動ピストンであり、かつ他のピ
ストンが遊動ピストンである、請求項1記載の装置。 3、流速調節手段を有する、請求項1または2記載の装
置。 4、1つの容器に、気体を排出しながら補給液を充填で
きる、ピストンを有するシリンダ容器が自動弁を介して
連結されている請求項1〜3のいずれかに記載の装置。 5、他の容器に、気体を排出しながら混合液を充填でき
るベロー型容器が、自動弁を介して連結されている、請
求項1〜4のいずれかに記載の装置。
[Claims] 1. Two cylinder containers each having a piston,
They communicate with each other via connecting tubes having concentration measurement windows, and each container and connecting tube are provided so that they can be filled with the liquid to be mixed while discharging gas, and each piston is arranged opposite to each other. An airtight liquid mixing device characterized by synchronous reciprocating motion in the directions. 2. The apparatus of claim 1, wherein one piston is a driving piston and the other piston is an idler piston. 3. The device according to claim 1 or 2, comprising flow rate adjusting means. 4. The device according to any one of claims 1 to 3, wherein cylinder containers each having a piston are connected via an automatic valve so that one container can be filled with replenishing liquid while discharging gas. 5. The device according to any one of claims 1 to 4, wherein a bellows-type container capable of filling the mixed liquid into another container while discharging gas is connected via an automatic valve.
JP2505890A 1990-02-06 1990-02-06 Airtight liquid mixing device Expired - Lifetime JP2850914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2505890A JP2850914B2 (en) 1990-02-06 1990-02-06 Airtight liquid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2505890A JP2850914B2 (en) 1990-02-06 1990-02-06 Airtight liquid mixing device

Publications (2)

Publication Number Publication Date
JPH03229626A true JPH03229626A (en) 1991-10-11
JP2850914B2 JP2850914B2 (en) 1999-01-27

Family

ID=12155327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2505890A Expired - Lifetime JP2850914B2 (en) 1990-02-06 1990-02-06 Airtight liquid mixing device

Country Status (1)

Country Link
JP (1) JP2850914B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509731A (en) * 2003-08-21 2007-04-19 ミックスパック システムズ アーゲー Device and method for storing, mixing and administering ingredients
CN114713118A (en) * 2021-01-07 2022-07-08 本田技研工业株式会社 Mixing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509731A (en) * 2003-08-21 2007-04-19 ミックスパック システムズ アーゲー Device and method for storing, mixing and administering ingredients
CN114713118A (en) * 2021-01-07 2022-07-08 本田技研工业株式会社 Mixing device

Also Published As

Publication number Publication date
JP2850914B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
Krieger et al. Direct determination of the flow curves of non‐Newtonian fluids
US4424279A (en) Rapid plunger immunoassay method and apparatus
EP1381451B1 (en) Method and apparatus for mixing liquid samples in a container using rotating magnetic fields
AU2004202662B2 (en) Reducing working fluid dilution in liquid systems
EP0349264A2 (en) Multi-mode differential fluid displacement pump
Withjack et al. An experimental study of Couette instability of stratified fluids
JPH03229626A (en) Air-tight-type liquid mixing apparatus
AU760491B2 (en) Sample dilution module with offset mixing chamber
CN107036870A (en) A kind of mixing sampling needle for sample analysis
US4865993A (en) Minimum carryover container, and analysis system incorporating the same
WO2004065544A2 (en) Cell suspension rotating fluidic pump
CN111889002A (en) Test specimen pretreatment device and use method thereof
US4634679A (en) Method of determining adhesion of a liquid sample
US5088335A (en) Periodically activated constant pressure maintaining pistoned chamber liquid sampler
CN208591824U (en) A kind of senior chemistry test tube stirring reaction experiment device
CN206756559U (en) A kind of mixing sampling needle for sample analysis
CN206756496U (en) For sampling the clutch apparatus of mixing mechanism
CN214669126U (en) Micro-droplet biological analysis reagent card and analysis system
US3094234A (en) Container
EP0490592A1 (en) Stirring means
Choules A linear-gradient mixing device for viscous solutions
SU1376020A1 (en) Apparatus for investigating phase equilibrium
JPS5913942A (en) Method for measuring density of fluid by weighing
SU1744511A1 (en) Automatic two-wave photometric concentration meter
CN112986595A (en) Micro-droplet biological analysis reagent card and analysis system