JPH03228872A - Silicon nitride-based sintered body for cutting tool - Google Patents

Silicon nitride-based sintered body for cutting tool

Info

Publication number
JPH03228872A
JPH03228872A JP2025450A JP2545090A JPH03228872A JP H03228872 A JPH03228872 A JP H03228872A JP 2025450 A JP2025450 A JP 2025450A JP 2545090 A JP2545090 A JP 2545090A JP H03228872 A JPH03228872 A JP H03228872A
Authority
JP
Japan
Prior art keywords
silicon nitride
si3n4
sintered body
type silicon
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2025450A
Other languages
Japanese (ja)
Inventor
Kenichi Mizuno
賢一 水野
Hiroshi Tajima
多島 容
Shoichi Watanabe
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2025450A priority Critical patent/JPH03228872A/en
Publication of JPH03228872A publication Critical patent/JPH03228872A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve wear resistance and hardness by incorporating a prescribed amt. of alpha-Si3N4. CONSTITUTION:Si3N4 powder is mixed with a sintering aid consisting of MgO, ZrO2, Al2O3, Y2O3 and CeO2, an org. binder and an org. solvent. The mixture is molded, primarily sintered at 1,500-1,750 deg.C in an atmosphere of gaseous N2 and subjected to hot isostatic pressing to obtain an Si3N4-based sintered body for a cutting tool consisting of alpha-Si3N4, beta-Si3N4 or beta-sialon and a grain boundary phase and having >=1,600kg/mm<2> Vickers hardness and >=3.5MPam<1/2> fracture toughness. This sintered body contains alpha-Si3N4 by 30-90% of the total amt. of all the components except the grain boundary phase and <=15wt.% metals other than Si.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は耐摩耗性が要求される切削工具部材に好適に利
用される。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is suitably used in cutting tool members that require wear resistance.

「従来の技術」 近年、セラミックスは高硬度・耐摩耗性に優れ、しかも
比重が小さいことからその特性を利用して各種の機械部
品への応用が行なわれている。機械部品として用いる場
合は特に優れた機械的特性、例えば強度・靭性が要求さ
れることから、従来の窒化珪素焼結体は原料のα型窒化
珪素の大部分を焼結中にβ化させ、高密度で高強度・高
靭性の焼結体を得る製法であった。
``Prior Art'' In recent years, ceramics have high hardness, excellent wear resistance, and low specific gravity, so these characteristics have been utilized to be applied to various mechanical parts. When used as mechanical parts, particularly excellent mechanical properties such as strength and toughness are required, so in conventional silicon nitride sintered bodies, most of the raw material α-type silicon nitride is converted to β during sintering. This was a manufacturing method that produced a sintered body with high density, high strength, and high toughness.

(例えば特公昭62−18810 ) 「発明が解決しようとする問題点」 しかしながら切削工具においては、上記強度・靭性の向
上に加え、近年切削寿命となる摩耗量のなお一層の低減
が必要となってきた。そこで本発明は耐摩耗性が優れた
切削工具部材を開発することを目的とし、耐摩耗性を向
上させるにはα型窒化珪素を所定量含有させることによ
り硬度が向上することから、優れた耐摩耗性が得られる
ことを見い出した。
(For example, Japanese Patent Publication No. 62-18810) ``Problems to be solved by the invention'' However, in cutting tools, in addition to improving the strength and toughness mentioned above, in recent years it has become necessary to further reduce the amount of wear that affects the cutting life. Ta. Therefore, the purpose of the present invention is to develop a cutting tool member with excellent wear resistance.In order to improve the wear resistance, hardness is improved by containing a predetermined amount of α-type silicon nitride. It has been found that wear resistance can be obtained.

「実施例」 平均粒径0.7μm、α率98L%、比表面積フイ/l
の5isNi粉末に、比表面積4d/lのMgo、同1
4772’/S’のZr0z、同10m/rのA 12
0g、同7ゴ/2のY2O3、同8m/fのCe0zの
各粉末を表に示す割合で助剤成分として配合した。配合
粉末に適量の有機質バインダーを添加し、有機溶剤で混
合し、乾燥することによって製造した。乾燥した造粒粉
末を2ton/dの圧力で金型プレスし、表の温度で一
次焼成(N2常圧中2時間保持)を行なった後、HIP
処理を行ない焼結体を作製した。
"Example" Average particle diameter 0.7 μm, α rate 98L%, specific surface area F/l
5isNi powder, Mgo with a specific surface area of 4 d/l,
Zr0z of 4772'/S', A 12 of the same 10m/r
Powders of 0 g, 7 m/2 of Y2O3, and 8 m/f of Ce0z were blended as auxiliary components in the proportions shown in the table. It was manufactured by adding an appropriate amount of organic binder to the blended powder, mixing with an organic solvent, and drying. The dried granulated powder was pressed into a mold at a pressure of 2 tons/d, and after primary firing (maintained in N2 normal pressure for 2 hours) at the temperature shown in the table, HIP was performed.
A sintered body was produced by processing.

得られた焼結体について、α型窒化珪素含有率(a率)
、ビッカース硬度、破壊靭性値、切削特性として耐摩耗
性及び耐欠損性、金属成分含有量を測定した結果を表に
示す。
Regarding the obtained sintered body, α-type silicon nitride content (a rate)
, Vickers hardness, fracture toughness value, wear resistance and chipping resistance as cutting characteristics, and metal component content are measured and the results are shown in the table.

以下に焼成条件及び各特性の測定方法を示す。The firing conditions and methods for measuring each characteristic are shown below.

焼成条件 一次焼成: Nzlatm−1500〜1750°C−
2h二次焼成: N2101000at 1500℃−
2h(HIP)測定方法 (1)a窒化珪素含有率:X線回折によυ下式よシ算出 ここで ■α(oil) ’ α−81sN4(102)のピー
ク高さIα(21゜):α−8i sNa (210)
のピーク高さ工β(+ot) ’β−8ia′N4(1
01)のピーク高さIβ(pro) ”β−81sNi
 (210)のピーク高さ(2)ビッカース硬度Hv:
印加荷恵80kgf(8)破壊靭性値Kc: IM法、印、加荷重80 kgf Kc=0.018(
E/H)’/”・P/C5/8より算出(4)耐摩耗性
: 5NGN4B2、ナヤンファ−0,15のチップを用い
、被削材としてFe12の鋳砂残留品240φX100
Lを選び、切削速度800m/min、切込み1.5 
ws送し速度0.25■/ rev、切削長さ400m
mの条件でフランク摩耗中VBを測定。
Firing conditions Primary firing: Nzlatm-1500~1750°C-
2h secondary firing: N2101000at 1500℃-
2h (HIP) measurement method (1)a Silicon nitride content: Calculated by X-ray diffraction using the formula below: ■ α (oil) ' α-81sN4 (102) peak height Iα (21°): α-8i sNa (210)
Peak height of β(+ot) 'β-8ia'N4(1
01) peak height Iβ(pro) ”β-81sNi
(210) peak height (2) Vickers hardness Hv:
Applied load 80 kgf (8) Fracture toughness value Kc: IM method, applied load 80 kgf Kc = 0.018 (
Calculated from E/H)'/''・P/C5/8 (4) Wear resistance: Using 5NGN4B2, Nayanfa-0,15 tips, Fe12 casting sand residue as work material 240φX100
Select L, cutting speed 800m/min, depth of cut 1.5
ws feed speed 0.25■/rev, cutting length 400m
Measure VB during flank wear under conditions of m.

(5)耐欠損性: 5NGN482 、ナヤンファ−0,07のチップを月
い、被削材としてFC28’fir選び、切削度0.8
 van / revの条件で、外形200闘、厚さ1
1mmの円板の外側面を軸方向に切削し、欠損が生じる
までの円板の枚数を測定(6)金属成分含有量: 焼結体を粉末状に粉砕した後、ICP発光法により定量
分析 「問題点を解決するための手段」 上述したようにα型窒化珪素の含有率に着目し、種々の
検討を重ねた結果、α型窒化珪素と、β型窒化珪素又は
βサイアロンと、粒界相とからなり、粒界相を除く全成
分総量に対するα型窒化珪素含有率(a率)が80〜9
0%でありビッカース硬度が1600Kf/−以上、破
壊靭性値が8.5 MP am”72以上である耐摩耗
性の優れた切削工具用窒化珪素質焼結体を得ることがで
きた。
(5) Fracture resistance: 5NGN482, Nayanfa-0.07 chips were used, FC28'fir was selected as the work material, cutting degree was 0.8.
Under van/rev conditions, external size 200mm, thickness 1
Cut the outer surface of a 1 mm disk in the axial direction and measure the number of disks until a defect occurs (6) Metal component content: After pulverizing the sintered body into powder, quantitative analysis was performed using ICP emission method. ``Means for solving the problem'' As mentioned above, we focused on the content of α-type silicon nitride and, as a result of various studies, we found that α-type silicon nitride, β-type silicon nitride or β-sialon, and grain boundaries The α-type silicon nitride content (a ratio) with respect to the total amount of all components excluding the grain boundary phase is 80 to 9.
0%, a Vickers hardness of 1600 Kf/- or more, and a fracture toughness value of 8.5 MP am''72 or more, making it possible to obtain a silicon nitride sintered body for cutting tools with excellent wear resistance.

「作用」 一般に窒化珪素は焼結中にα型からβ型(助4」種によ
りβサイアロンとなる)に相転移し、焼結体中の窒化珪
素粒子の形状も粒状から柱状に変化する。α型窒化珪素
の含有率が高いほど硬度は高く、β型窒化珪素(又はβ
サイアロン)の含有率が高いほどアスペクト比の高い柱
状粒子が増加するため破壊靭性値が高くなる傾向がある
"Function" In general, silicon nitride undergoes a phase transition from α type to β type (beta sialon due to auxiliary 4 species) during sintering, and the shape of silicon nitride particles in the sintered body also changes from granular to columnar. The higher the content of α-type silicon nitride, the higher the hardness.
As the content of SiAlON increases, the number of columnar particles with a high aspect ratio increases, so the fracture toughness value tends to increase.

焼結温度が高いほど相転移が起こり易いことから、焼結
温度を変化させることによυα型窒化珪素含有量を制御
することが可能であり、焼結助剤の種類、量、焼結時間
等の条件によってもα型窒化珪素含有量は異なる。以上
の条件を組み合わせることにより、所望のα型窒化珪素
含有量を有する窒化珪素質焼結体を得ることができる。
Since the higher the sintering temperature, the more likely phase transition will occur, it is possible to control the υα-type silicon nitride content by changing the sintering temperature, and by changing the type, amount, and sintering time of the sintering aid. The α-type silicon nitride content also differs depending on the conditions. By combining the above conditions, a silicon nitride sintered body having a desired α-type silicon nitride content can be obtained.

本発明の窒化珪素質焼結体において、α型窒化珪素の含
有率は30〜90%、好ましくは40〜80%である。
In the silicon nitride sintered body of the present invention, the content of α-type silicon nitride is 30 to 90%, preferably 40 to 80%.

α型窒化珪素の含有率が30%未満であるとビッカース
硬度が1600Kf/−未満となって■1摩耗性の優れ
た高硬度焼結体が得られなくなり、90%を超えると焼
結体中にβ型窒化珪素又はβサイアロンの柱状粒子がな
くなるため靭性値が低下し8.5 Mp amk”よシ
小さくなる。さらに本発明の窒化珪素質焼結体はビッカ
ース硬度が1600Kt/nnf1以上、好ましくは1
700Kf/−以上の値を有し、破壊靭性値は8.5 
MP am3”以上、好ましくは4.OMPamP”以
上の値を有する。ビッカース硬度が1600Kg/mm
2未満であると切削工具として優れた耐摩耗性が得られ
ず、靭性値が8.5 MPamS”よりも小さいと切削
工具として必要な耐欠損性が得られない。
If the content of α-type silicon nitride is less than 30%, the Vickers hardness will be less than 1600 Kf/-, making it impossible to obtain a high-hardness sintered body with excellent wear resistance. Since the columnar particles of β-type silicon nitride or β-sialon disappear, the toughness value decreases and becomes smaller than 8.5 Mpa amk.Furthermore, the silicon nitride sintered body of the present invention preferably has a Vickers hardness of 1600 Kt/nnf1 or more. is 1
It has a value of 700Kf/- or more, and the fracture toughness value is 8.5
MPam3" or more, preferably 4.OMPamP" or more. Vickers hardness is 1600Kg/mm
When the toughness value is less than 2, excellent wear resistance as a cutting tool cannot be obtained, and when the toughness value is less than 8.5 MPamS'', the fracture resistance required as a cutting tool cannot be obtained.

また、焼結体中のSiを除く金属成分含有量は15wt
%以下であることが好ましく、芒らに好ましくは10w
t%以下である。Stを除く金属成分含有量が15wt
%を超えると粒界の結晶相及びガラス相の量が過剰とな
るため、耐摩耗性、耐欠損性が著しく劣化する。
In addition, the content of metal components excluding Si in the sintered body is 15wt.
% or less, preferably 10w for awns
t% or less. Metal component content excluding St is 15wt
If it exceeds %, the amount of crystal phase and glass phase at grain boundaries becomes excessive, resulting in marked deterioration of wear resistance and fracture resistance.

表の結果から実施例の焼結体は、耐摩耗性についてはV
Bが0.2 mm以下、耐欠損性については欠損が生じ
るまでの円板枚数が6枚以上と切削特性に優れたもので
ある。これに対して翫8はα型窒化珪素含有率が90チ
を超え、靭性値が8.2 MP ams/”と低い為、
耐欠損性が劣る。また島9,10はα型窒化珪素含有率
が80%未満であるため十分な硬度(1600Kt/−
以上)が得られず、耐摩耗性に劣る。さらにff1ll
、12は金属成分含有量が15wt%を超えるため、α
型窒化珪素含有率が高くても所望の硬度(160011
/−以上)が得られず、耐摩耗性が劣る。
From the results in the table, the sintered body of the example has a wear resistance of V
B is 0.2 mm or less, and the number of discs before chipping occurs is 6 or more, so the cutting properties are excellent. On the other hand, the α-type silicon nitride content of Kan 8 exceeds 90 cm, and the toughness value is as low as 8.2 MP ams/''.
Poor fracture resistance. In addition, islands 9 and 10 have sufficient hardness (1600Kt/-) since the α-type silicon nitride content is less than 80%.
(above) cannot be obtained, and the wear resistance is poor. More ff1ll
, 12 has a metal component content exceeding 15 wt%, so α
The desired hardness (160011
/- or more) and the wear resistance is poor.

「発明の効果」 窒化珪素質焼結体においてα型窒化珪素を所定量含有さ
せることにより、耐摩耗性が優れた切削工具部材を製造
することができる。
"Effects of the Invention" By containing a predetermined amount of α-type silicon nitride in the silicon nitride sintered body, a cutting tool member with excellent wear resistance can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] (1)a型窒化珪素Si_3N_4番と、β型窒化珪素
Si_3N_4又はβサイアロンと、粒界相とからなり
、粒界相を除く全成分総量に対するα型窒化珪素の含有
率(a率)が80〜90であり、 ピッカース硬度が1600Kg/mm^2以上、破壊靭
性値が8.5MPam^1^/^2以上である切削工具
用窒化珪素質焼結体。
(1) Consisting of a-type silicon nitride Si_3N_4, β-type silicon nitride Si_3N_4 or β-sialon, and a grain boundary phase, the content rate (a ratio) of α-type silicon nitride with respect to the total amount of all components excluding the grain boundary phase is 80 90, a pickers hardness of 1600 Kg/mm^2 or more, and a fracture toughness value of 8.5 MPam^1^/^2 or more.
(2)Siを除く金属成分含有量が15wt%以下であ
る請求項(1)記載の切削工具 用窒化珪素質焼結体。
(2) The silicon nitride sintered body for a cutting tool according to claim (1), wherein the content of metal components other than Si is 15 wt% or less.
JP2025450A 1990-02-05 1990-02-05 Silicon nitride-based sintered body for cutting tool Pending JPH03228872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025450A JPH03228872A (en) 1990-02-05 1990-02-05 Silicon nitride-based sintered body for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025450A JPH03228872A (en) 1990-02-05 1990-02-05 Silicon nitride-based sintered body for cutting tool

Publications (1)

Publication Number Publication Date
JPH03228872A true JPH03228872A (en) 1991-10-09

Family

ID=12166355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025450A Pending JPH03228872A (en) 1990-02-05 1990-02-05 Silicon nitride-based sintered body for cutting tool

Country Status (1)

Country Link
JP (1) JPH03228872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677357A (en) * 2022-11-10 2023-02-03 中国科学院上海硅酸盐研究所 High-wear-resistance silicon nitride ceramic and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677357A (en) * 2022-11-10 2023-02-03 中国科学院上海硅酸盐研究所 High-wear-resistance silicon nitride ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
US4304576A (en) Silicon nitride ceramic tools and a process for their production
US4331048A (en) Cutting tip for metal-removing processing
US4711644A (en) Ceramic material and method of manufacture
JPH0116792B2 (en)
JPH06239660A (en) Ceramic cutting tool material
JP4850007B2 (en) Silicon nitride sintered body
US4433979A (en) Abrasion resistant silicon nitride based articles
JPH06298573A (en) Ceramic cutting tool material
JPH03228872A (en) Silicon nitride-based sintered body for cutting tool
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
EP0963962A1 (en) Alumina-base ceramic sinter and process for producing the same
EP0142771A2 (en) Novel compositions for oxide ceramics
US5023211A (en) Super-hard ceramics
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JPS59232971A (en) Abrasion resistant sialon base ceramics
JPS6259568A (en) Ceramic material excellent in precise processability
JP2851721B2 (en) Silicon nitride sintered body for cutting tools
JP2000354901A (en) Cutting tool and its manufacture
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JPH11240765A (en) Silicon nitride sintered product and its production
JPS58213678A (en) Sialon base sintering material for cutting tool and abrasion-resistant tool
JPH0812443A (en) Superplastic silicon nitride sintered compact
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JP2001322009A (en) Alumina ceramic cutting tool and manufacturing method therefor