JPH03228740A - Gradient magnetic field power source for nuclear magnetic resonance imaging system - Google Patents

Gradient magnetic field power source for nuclear magnetic resonance imaging system

Info

Publication number
JPH03228740A
JPH03228740A JP2025646A JP2564690A JPH03228740A JP H03228740 A JPH03228740 A JP H03228740A JP 2025646 A JP2025646 A JP 2025646A JP 2564690 A JP2564690 A JP 2564690A JP H03228740 A JPH03228740 A JP H03228740A
Authority
JP
Japan
Prior art keywords
magnetic field
gradient magnetic
data
frequency component
power amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2025646A
Other languages
Japanese (ja)
Inventor
Hiromi Kawaguchi
川口 博巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2025646A priority Critical patent/JPH03228740A/en
Publication of JPH03228740A publication Critical patent/JPH03228740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To carry out the compensation with high precision without generating a phase strain over the whole frequency component region by compensating the strain of the gradient magnetic field wave shape due to the frequency responsiveness of a gradient magnetic field coil by correcting the input wave shape signal of an electric power amplifier. CONSTITUTION:The data obtained in an attenuation quantity detecting part 31 is proportional to the quantity including the variation portion due to the attenuation of the electric current pulse Ig due to the frequency response characteristic of an electric power amplifier 15 and a gradient magnetic field coil 3C and the attenuation portion due to the eddy current loss of the gradient magnetic field. The output data of a conversion part is sent into a calculation memory part 41, and converted to the correction data for reversely compensating the attenuation portion, and memorized in a memory part 39. A gradient magnetic field power source part 20 converts the rectangular-shaped wave pulses generated by a pulse sequencer 12 to the frequency component data by a Fourier transformation part 22, and multiplied by the correction data supplied from the memory part 39 in a correction part 23, and reversely converted to the analogue signal corrected in the reverse Fourier transformation part 24. The signal is electric-power-amplified in an electric power amplifying part 15, and the corrected electric current pulses Ig are supplied as the excitation current for the gradient magnetic field coil 3C, and a corrected gradient magnetic field is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、核磁気共鳴イメージングシステム(以下M
Rニジステムとよぶ)のマグネット内に配された勾配磁
場コイルに方形波パルス状の励磁電流パルスを供給する
勾配磁場電源、ことに勾配磁場の変歪補償機能を有する
勾配磁場電源に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear magnetic resonance imaging system (hereinafter referred to as M
The present invention relates to a gradient magnetic field power source that supplies square-wave excitation current pulses to a gradient magnetic field coil disposed in a magnet (referred to as a Rni system), and particularly to a gradient magnetic field power source that has a gradient magnetic field distortion compensation function.

〔従来の技術〕[Conventional technology]

第6図はMRニジステムの全体宿成を簡略化して示すブ
ロック図であシ、マグネット部1の静磁場コイル2CK
靜磁場電源2から直流励磁電流を供給してその中空部1
0内に高度に均一な靜磁場BOを発生させ、勾配磁場コ
イル3Cに勾配磁場1源6から所定のタイミングで方形
波の′直流パルス全供給して静磁場BOに勾配磁界を重
畳して発生させ、高周波コイル4Cに送信部4から送受
切換器4Aを介して高周波パルスを供給する。このとき
1静磁場Bo中に収容された被検体には勾配磁界によっ
て選択されたスライス面中に高周波パルスによって核ス
ピンが励起され、静磁場空間10に1銭磁気共鳴信号〔
以下NMR信号とよぶ〕が電磁波として放射きれる。放
射されたNMR信号は高周波コイル4C全アンテナコイ
ルとして検出され、送受切換器4Aを介して受信部5で
増幅、検波され、A/D変換器6を介して主制御装置と
してのコンピュータ7で画像信号への再構成が行われる
コトにより、デイスプレィ8に被検体の断層像全表示す
ることができる。なお、システムの各部は主制御部7が
インターフェイス9等を介して送るパルスシーケンスに
よって所定のタイミングで連携制御される。
FIG. 6 is a simplified block diagram showing the entire structure of the MR system.
A DC excitation current is supplied from a quiet magnetic field power supply 2 to the hollow part 1.
A highly uniform quiet magnetic field BO is generated within 0, and the gradient magnetic field is generated by superimposing the gradient magnetic field on the static magnetic field BO by supplying all square wave direct current pulses from the gradient magnetic field 1 source 6 at a predetermined timing to the gradient magnetic field coil 3C. Then, a high-frequency pulse is supplied from the transmitter 4 to the high-frequency coil 4C via the transmitter/receiver switch 4A. At this time, in the subject housed in the static magnetic field Bo, nuclear spins are excited by the high-frequency pulse in the slice plane selected by the gradient magnetic field, and the static magnetic field space 10 generates a magnetic resonance signal [
(hereinafter referred to as NMR signal) can be radiated as electromagnetic waves. The radiated NMR signal is detected by the high-frequency coil 4C and all antenna coils, is amplified and detected by the receiver 5 via the transmitter/receiver switch 4A, and is converted into an image by the computer 7 as the main controller via the A/D converter 6. By performing the reconstruction into signals, the entire tomographic image of the subject can be displayed on the display 8. Note that each part of the system is cooperatively controlled at a predetermined timing by a pulse sequence sent by the main control unit 7 via the interface 9 or the like.

第7図は従来の勾配磁場電源を簡略化して示すブロック
図であり、主制御部7からの信号を受けて所定のパルス
シーケンスに基づいて方形波パルス列を出力するパルス
シーケンサ12と、その出力信号を増幅する前置増幅器
13と、前置増賜器13の出力信号を勾配磁場コイル3
Cの周波数応答性に基づいて補正する周波数補正回路1
4と、補正された出力信号を増幅しその出力電流パルス
エ9に勾配磁場コイル3Cに同けて出力する電力増幅器
15と、電流パルスエLjk電流センサ1716とで構
成し念ものが知られている。フィードバック回路16は
勾配磁場コイル3Cに流れる電流バルスエ9全電力増幅
器15の入力信号と同質に保つよう機能するが、勾配コ
イル3Cが発生する勾配磁界は周辺金属物体に生ずるう
ず電流損によって変歪するので、勾配磁界と電力増幅器
15の入力信号との対応までは補償し得ない。周波数成
分の補正回路14は勾配磁場の変歪を補償するために設
けられたもので、その構成は互いに中心周波数が異なる
複数のアナログフィルタと、それぞれの中心周波数近傍
で電力増幅器150人力信号全勾配磁界のtc状時特性
応じて逆補償するアナログ増=6とで構成され、アナロ
グフィルタの中心周波数はパルス電流工9が変歪するこ
とによって変化する周波数成分範囲内で飛び飛びに数点
が選択される。
FIG. 7 is a simplified block diagram of a conventional gradient magnetic field power supply, which includes a pulse sequencer 12 that receives signals from the main controller 7 and outputs a square wave pulse train based on a predetermined pulse sequence, and its output signal. A preamplifier 13 amplifies the output signal of the preamplifier 13, and a gradient magnetic field coil 3
Frequency correction circuit 1 that corrects based on the frequency response of C
4, a power amplifier 15 which amplifies the corrected output signal and outputs the same to the output current pulse E 9 to the gradient magnetic field coil 3C, and a current pulse Ljk current sensor 1716. The feedback circuit 16 functions to keep the current flowing through the gradient magnetic field coil 3C equal to the input signal of the total power amplifier 15, but the gradient magnetic field generated by the gradient coil 3C is distorted by eddy current loss occurring in surrounding metal objects. Therefore, it is not possible to compensate for the correspondence between the gradient magnetic field and the input signal of the power amplifier 15. The frequency component correction circuit 14 is provided to compensate for the distortion of the gradient magnetic field, and consists of a plurality of analog filters with different center frequencies, and a power amplifier 150 that adjusts the total gradient of the human input signal near each center frequency. The center frequency of the analog filter is selected at several points intermittently within the frequency component range that changes as the pulse current generator 9 changes distortion. Ru.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の静磁場電源は前述のように1勾配磁界によって金
属物体にうず電流が流れ、これによって変化する勾配磁
場コイル3Cの周波数応答特性を、周波数成分帯域のう
ちの飛び飛びの数点について補償しているなめに、変化
する全周波数成分帯域にわ念って均一に補償することが
できないという問題がある。その上、アナログ回路によ
シリアルタイムに方形波パルス電流波形の補償を行って
いるために、補償に位相歪みが発生し、精度の高い補償
をなし得ないという問題が生ずる。
As mentioned above, in the conventional static magnetic field power supply, an eddy current flows through a metal object due to one gradient magnetic field, and the frequency response characteristics of the gradient magnetic field coil 3C, which change due to this, are compensated for at several discrete points in the frequency component band. Therefore, there is a problem in that it is not possible to uniformly compensate for the entire changing frequency component band. Furthermore, since the square wave pulse current waveform is compensated in real time by the analog circuit, phase distortion occurs in the compensation, resulting in the problem that highly accurate compensation cannot be achieved.

この発明の目的は、全周波数成分帯域にわ念って位相歪
みを生ずることなく精度の高い補償を行うことにある。
An object of the present invention is to perform highly accurate compensation in all frequency component bands without causing phase distortion.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、静磁場
コイル、勾配磁場コイル、および高周波コイルを含むマ
グネットの勾配磁場コイルに方形波パルス状の電流パル
スを電力増幅器を介して供給し、静磁場空間内に勾配磁
場を発生させるものにおいて、前記静磁場空間に配され
た勾配磁界波形の検出センサと、この検出センサの検出
波形信号および前記電力増幅器の入力波形信号をそれぞ
れ周波数成分データに変換し両周波数成分データの差を
算出する減衰量検出部と、この減衰量検出部の出力デー
タに基づき減衰量を逆補償する補正データを算出し算出
データを撮像に先立って記憶する補正データの演算記憶
部と、パルスシーケンサが所定のタイミングで出力する
前記電流ノ(ルスの原波形信号をその周波数成分データ
に変換し前記演算記憶部が記憶する補正データにより補
正して出力する周波数成分の補正部と、この補正された
周波数成分データ全波形信号に変換して前記電力増・4
器に同けて出力する逆変換部とを備え、前記勾配磁場コ
イルの周波数応答性による勾配磁界波形の変歪全前記電
力増幅器の入力波形信号を補正することにより補償する
よう形成してなるものとす゛る。
In order to solve the above problems, according to the present invention, a current pulse in the form of a square wave pulse is supplied via a power amplifier to a gradient magnetic field coil of a magnet including a static magnetic field coil, a gradient magnetic field coil, and a high frequency coil. In a device that generates a gradient magnetic field in a magnetic field space, a gradient magnetic field waveform detection sensor arranged in the static magnetic field space, and a detection waveform signal of this detection sensor and an input waveform signal of the power amplifier are each converted into frequency component data. an attenuation detection unit that calculates the difference between both frequency component data; and a correction data calculation that calculates correction data that inversely compensates for the attenuation based on the output data of this attenuation detection unit and stores the calculated data prior to imaging. a storage unit, and a frequency component correction unit that converts the original waveform signal of the current pulse output by the pulse sequencer at a predetermined timing into its frequency component data, corrects it using correction data stored in the calculation storage unit, and outputs the corrected signal. Then, this corrected frequency component data is converted into a full waveform signal and the power increase
and an inverse conversion unit that outputs the same output as the gradient magnetic field coil, and is configured to compensate for distortion of the gradient magnetic field waveform due to the frequency response of the gradient magnetic field coil by correcting the input waveform signal of the power amplifier. I'm sobbing.

〔作用〕[Effect]

この発明の構成によれば、静磁場空間の要所に配された
勾配磁界の検出センサで検出した検出波形信号およびそ
の時の電力増幅器の入力信号をそれぞれ周波数成分デー
タに変換して両者の周波数成分の差を求め、補正データ
の演算記憶部に勾配磁界の減衰量を逆補償する乏めの補
正データとしてあらかじめ記憶させるよう構成したこと
くより、電力増幅器および勾配磁場コイルの周波数応答
特性と、うず電流発生による勾配磁界の歪みとを含めた
補正データを精度よく把握してあらかじめ記憶すること
ができる。そこでパルスシーケンサが発する電流パルス
の原波形としての方形波パルス金−旦その周波数成分デ
ータに変換し、周波数成分の補正部であらかじめ記憶さ
れた補正データと掛は合わせ、再びアナログ信号に変換
して電力増幅器の人力信号として出力するよう構成した
ことにより、電力増幅器の出力電流パルスは主にその立
ち上り、立ち下がり部分に補正データが付加されたパル
ス波形となり、これを受けて勾配磁場コイルが発する勾
配磁場パルス波形を原波形に忠実な方形波パルス状に補
償することができる。
According to the configuration of the present invention, the detection waveform signal detected by the gradient magnetic field detection sensor arranged at key points in the static magnetic field space and the input signal of the power amplifier at that time are respectively converted into frequency component data, and the frequency components of both are converted into frequency component data. The difference between the frequency response characteristics of the power amplifier and the gradient magnetic field coil, and the eddy Correction data including distortion of the gradient magnetic field due to current generation can be accurately grasped and stored in advance. Therefore, the square wave pulse signal as the original waveform of the current pulse emitted by the pulse sequencer is first converted into its frequency component data, multiplied by the correction data stored in advance in the frequency component correction section, and then converted back into an analog signal. By configuring the power amplifier to output it as a human input signal, the output current pulse of the power amplifier becomes a pulse waveform with correction data added mainly to the rising and falling parts, and in response to this, the gradient generated by the gradient magnetic field coil The magnetic field pulse waveform can be compensated into a square wave pulse shape that is faithful to the original waveform.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例になる核磁気共鳴イメージン
グシステムの勾配磁場電源を示すブロック図であり、従
来の装置と同じ部分には同一参照符号を付すことKより
詳細な説明を省略する。図において、勾配磁場電源は勾
配磁場電源部20と補正回路部30とだ大別される。補
正回路部50は、マグネット部1の静磁場空間10の要
所に配された勾配磁界波形の検出コイル32の検出信号
を電流積分器33を介してA / D変換器34でディ
ジタル信号に変換し、7一リエ変換部35で周波数成分
データを得る。一方電力増幅器150入力信号全図示し
ないA / D変換器を介してフーリエ変換部36で周
波数成分データに変換する。そして両周波数成分データ
の差を減算回路37で求める。ここまでの回路で減衰量
検出部31が構成され、減衰量検出部31で得られたデ
ータは電力増幅器15および勾配磁場コイル3Cの周波
数応答特性による電流バルスエ9の減衰による変化分と
、勾配磁界のうず電流損による減衰量を含め走置に比例
する。変換部の出力データは演算部38および記憶部3
9からなる演算記憶部41に送られ、減衰量を逆補償す
るための補正データに変換され記憶部39に補正データ
として記憶される。
FIG. 1 is a block diagram showing a gradient magnetic field power source of a nuclear magnetic resonance imaging system according to an embodiment of the present invention, and the same parts as in the conventional apparatus are given the same reference numerals, and a detailed explanation will be omitted. In the figure, the gradient magnetic field power source is roughly divided into a gradient magnetic field power source section 20 and a correction circuit section 30. The correction circuit section 50 converts the detection signal of the gradient magnetic field waveform detection coil 32 arranged at important points in the static magnetic field space 10 of the magnet section 1 into a digital signal by the A/D converter 34 via the current integrator 33. Then, frequency component data is obtained by a 7-channel transformer 35. On the other hand, all of the input signals of the power amplifier 150 are converted into frequency component data by the Fourier transform unit 36 via an A/D converter (not shown). Then, the subtraction circuit 37 calculates the difference between both frequency component data. The circuit up to this point constitutes the attenuation amount detection section 31, and the data obtained by the attenuation amount detection section 31 includes the change due to the attenuation of the current pulse 9 due to the frequency response characteristics of the power amplifier 15 and the gradient magnetic field coil 3C, and the gradient magnetic field It is proportional to the travel, including the amount of attenuation due to eddy current loss. The output data of the conversion section is stored in the calculation section 38 and the storage section 3.
The data is sent to the arithmetic storage unit 41 consisting of 9, is converted into correction data for inversely compensating the amount of attenuation, and is stored in the storage unit 39 as correction data.

勾配磁場電源部20Fiパルスシーケンサ12が所定の
パルスシーケンスに基づいて発する方形波パルスを、図
では省略したA / D変換器を介してフーリエ変換部
22で周波数成分データに変換し、掛算器からなる補正
部25で記憶部39からの補正データと掛は合わせ、逆
フーリエ変換部24で補正されたアナログ信号に逆変換
し、この信号を電力増幅部15で電力増幅し、補正され
た電流パルス19t−Q配磁場コイル3Cの励磁電流と
して供給して補正された勾配磁界を発生させるよう構成
される。
The gradient magnetic field power supply unit 20Fi converts square wave pulses emitted by the pulse sequencer 12 based on a predetermined pulse sequence into frequency component data in the Fourier transform unit 22 via an A/D converter (not shown in the figure), The correcting unit 25 combines the correction data from the storage unit 39 and inversely converts it into a corrected analog signal in the inverse Fourier transform unit 24, and the power amplifying unit 15 amplifies the power of this signal to generate the corrected current pulse 19t. -Q It is configured to be supplied as an excitation current to the magnetic field coil 3C to generate a corrected gradient magnetic field.

以下第2図から第5図に示す模式化・した特性線図を用
いて実施例になる勾配磁場電源の作用を説明する。第2
図は補正前の勾配磁界の波形を模式化して示しており、
方形波である理想波形51に対して実際の勾配磁界波形
52は、その周波数応答性やうず電流の影響を受けて図
のように変歪する。第3図はフーリエ変換部35で変換
された周波数成分データの分布波形図であり、補正しよ
うとする周波数帯域の下限周波数f1.上限周波数f、
近傍で周波数成分の強度が減衰し念波形53となる。第
4図は記憶部39に保持された補正データの周波数成分
の強度を無補正レベルを1として示す強度比であう、補
正周波数帯域の下限f1゜上限f、近傍にピーク値を有
する強度比分布曲線54を示す。第5図は補正された電
流パルスエ9の波形と、この電流によって発生する勾配
磁界の波形を示す模式化した特性線図であり、電流パル
スエ9の波形がその立ち上り、立ち下り部分にピーク値
金有する波形55に補正されることにより、発生する勾
配磁界の波形56を第2図に示す理想波形51に近い波
形に補償することができる。したがって、周波数帯域の
下限および上限周波数をNMR信号に盛り込むスライス
面の位置情報の精度を保持するに必要な周波数にあらか
じめ決めておけば、周波数帯域全体について周波数成分
の補償を精度よく行うことができることになり、スライ
ス面の断層像を精度よく可視化することが可能になる。
The operation of the gradient magnetic field power supply according to the embodiment will be explained below using the schematic characteristic diagrams shown in FIGS. 2 to 5. Second
The figure schematically shows the waveform of the gradient magnetic field before correction.
In contrast to the ideal waveform 51 which is a square wave, the actual gradient magnetic field waveform 52 is affected by its frequency response and eddy current and is distorted as shown in the figure. FIG. 3 is a distribution waveform diagram of the frequency component data transformed by the Fourier transform unit 35, and shows the lower limit frequency f1 of the frequency band to be corrected. upper limit frequency f,
The intensity of the frequency component is attenuated in the vicinity, resulting in a psychic waveform 53. FIG. 4 shows an intensity ratio distribution curve with peak values near the lower limit f1 and upper limit f of the correction frequency band, which is an intensity ratio showing the intensity of the frequency component of the correction data held in the storage unit 39, with the uncorrected level being 1. 54 is shown. FIG. 5 is a schematic characteristic diagram showing the waveform of the corrected current pulse 9 and the waveform of the gradient magnetic field generated by this current. By correcting the waveform 55 to the waveform 55, it is possible to compensate the waveform 56 of the generated gradient magnetic field to a waveform close to the ideal waveform 51 shown in FIG. Therefore, if the lower and upper limits of the frequency band are determined in advance to be the frequencies necessary to maintain the accuracy of the positional information of the slice plane that is included in the NMR signal, it is possible to accurately compensate the frequency components for the entire frequency band. This makes it possible to visualize tomographic images of slice planes with high accuracy.

なお、補正回路部30による補正データの収集は、実際
の撮像操作に先立って検出コイル32の位#を変えて複
数回行い、その平均的なデータを記憶部39に記憶させ
る。そして実際の撮像に際してはパルスシーケンサ12
が発する読み出し信号によって記憶データ全補正部23
に読み出して原波形を補正することにより、移相歪みを
生ずること々〈補償を行うことができる。
Note that the collection of correction data by the correction circuit section 30 is performed a plurality of times by changing the position of the detection coil 32 prior to the actual imaging operation, and the average data is stored in the storage section 39. Then, during actual imaging, the pulse sequencer 12
The stored data total correction unit 23
By reading out the original waveform and correcting it, it is possible to compensate for phase shift distortion.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、検出部で勾配磁界と電力増幅
器入力側の原波形との周波数成分の差金検出し、演算記
憶@ヤ周波数成分の差を逆補償する補正データに変換し
て記憶し、撮像時にパルスシーケンサが発する方形波パ
ルスの周波数成分全補正部で補正データによって補正し
、補正された周波数成分をアナログパルスに逆変換して
電力増幅器により電力増幅し、勾配磁場コイルに電流パ
ルスとして供給して補正された勾配磁場を発生するよう
構成した。その結果、電力増幅器および勾配磁場コイル
の周波数応答性およびうず電流によって生ずる勾配磁界
の周波数成分減衰量を検出部で全周波数範囲にわたって
検出でき、これに基づいて補正データを演算記憶させる
ことができるので、撮僧時に静磁場電源部の出力電流パ
ルス波形を必要とする全周波数成分帯域にわたって補正
することができ、したがって、周波数成分帯域をとびと
びに補償する従来の勾配磁場電源の補正回路では得られ
ない忠実度の高い補償が可能になり、勾配磁界を方形波
パルス状の理想波形に近づける機りgを有する勾配磁場
電源が得られるとともに、NMR信号に盛り込まれるス
ライス面の位置情報の質が向上することにより精度の高
い断層像を可視化できるMRニジステムを提供すること
ができる。
As described above, this invention detects the difference in frequency components between the gradient magnetic field and the original waveform on the input side of the power amplifier in the detection section, converts it into correction data that inversely compensates for the difference in frequency components, and stores it. , all frequency components of the square wave pulses emitted by the pulse sequencer during imaging are corrected by the correction data in the correction section, the corrected frequency components are inversely converted to analog pulses, the power is amplified by the power amplifier, and the current pulses are sent to the gradient magnetic field coil. and configured to generate a corrected gradient magnetic field. As a result, the detection unit can detect the frequency component attenuation of the gradient magnetic field caused by the frequency response of the power amplifier and the gradient magnetic field coil and the eddy current over the entire frequency range, and based on this, the correction data can be calculated and stored. , it is possible to correct the output current pulse waveform of the static magnetic field power supply unit over the entire required frequency component band during imaging, which cannot be achieved with the conventional gradient magnetic field power supply correction circuit that compensates for individual frequency component bands. High-fidelity compensation becomes possible, and a gradient magnetic field power supply having the ability to bring the gradient magnetic field close to the ideal waveform of a square wave pulse is obtained, and the quality of the positional information of the slice plane included in the NMR signal is improved. This makes it possible to provide an MR system that can visualize tomographic images with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例になる核磁気共鳴イメージン
グシステムの勾配磁場電源の構成を示すブロック図、第
2図、第5図、第4図、および第5図は実施例になる勾
配磁場電源の互いに異なる部分の特性データの状態金そ
れぞれ模式化して下す特性線図、第6図は核磁気共鳴イ
メージングシステムの全体構成を簡略化して示すブロッ
ク図、第7図は従来の勾配磁場電源の構成を簡略化して
示すブロック図である。 1・・・マグネット部、2C・・・静磁場コイル、3C
・・・勾配磁場コイル、4C・・・高周波コイル、2・
・・静磁場電源、3・・・勾配磁場電源、7・・・主制
御装置、10・・・静磁場空間、12・・・パルスシー
ケンサ、14・・・周波数補正回路、15・・・電力増
幅器、17・・・電流セ/す、20・・・勾配磁場電源
部、22.5536・・・7一リエ変換部、23・・・
補正部(掛算器)24・・・逆フーリエ変換部、30・
・・補正回路部、31・・・減衰量検出部、32・・・
検出コイル、53・・・電流積分器、37・・・減算器
、41・・・演算記憶部、38・・・演算部、39・・
・記憶部。 −2り 第2図 vJ3図 1 同浪収テ 2 vJ4図 ¥J5121 第6図
FIG. 1 is a block diagram showing the configuration of a gradient magnetic field power source of a nuclear magnetic resonance imaging system which is an embodiment of the present invention, and FIGS. 2, 5, 4, and 5 are gradient magnetic field Characteristic diagrams are shown schematically showing the state of characteristic data of different parts of the power supply. Figure 6 is a block diagram showing a simplified overall configuration of a nuclear magnetic resonance imaging system. Figure 7 is a diagram of a conventional gradient magnetic field power supply. FIG. 2 is a block diagram showing a simplified configuration. 1... Magnet part, 2C... Static magnetic field coil, 3C
...Gradient magnetic field coil, 4C...High frequency coil, 2.
... Static magnetic field power supply, 3 ... Gradient magnetic field power supply, 7 ... Main controller, 10 ... Static magnetic field space, 12 ... Pulse sequencer, 14 ... Frequency correction circuit, 15 ... Electric power Amplifier, 17... Current sensor/su, 20... Gradient magnetic field power supply section, 22.5536...
Correction unit (multiplier) 24... inverse Fourier transform unit, 30.
...Correction circuit section, 31...Attenuation amount detection section, 32...
Detection coil, 53...Current integrator, 37...Subtractor, 41...Calculation storage unit, 38...Calculation unit, 39...
・Memory section. -2ri figure 2 vJ3 figure 1 same waste te 2 vJ4 figure ¥J5121 figure 6

Claims (1)

【特許請求の範囲】[Claims] 1)静磁場コイル、勾配磁場コイル、および高周波コイ
ルを含むマグネットの勾配磁場コイルに方形波パルス状
の電流パルスを電力増幅器を介して供給し、静磁場空間
内に勾配磁場を発生させるものにおいて、前記静磁場空
間に配された勾配磁界波形の検出センサと、この検出セ
ンサの検出波形信号および前記電力増幅器の入力波形信
号をそれぞれ周波数成分データに変換し両周波数成分デ
ータの差を算出する減衰量検出部と、この減衰量検出部
の出力データに基づき減衰量を逆補償する補正データを
算出し算出データを撮像に先立って記憶する補正データ
の演算記憶部と、パルスシーケンサが所定のタイミング
で出力する前記電流パルスの原波形信号をその周波数成
分データに変換し前記演算記憶部が記憶する補正データ
により補正して出力する周波数成分の補正部と、この補
正された周波数成分データを波形信号に変換して前記電
力増幅器に同けて出力する逆変換部とを備え、前記勾配
磁場コイルの周波数応答性による勾配磁界波形の変歪を
前記電力増幅器の入力波形信号を補正することにより補
償するよう形成してなることを特徴とする核磁気共鳴イ
メージングシステムの勾配磁場電源。
1) In a device that generates a gradient magnetic field in a static magnetic field space by supplying a square wave pulse-like current pulse to a gradient magnetic field coil of a magnet including a static magnetic field coil, a gradient magnetic field coil, and a high-frequency coil through a power amplifier, a gradient magnetic field waveform detection sensor arranged in the static magnetic field space; and an attenuation amount for converting the detection waveform signal of the detection sensor and the input waveform signal of the power amplifier into frequency component data and calculating the difference between both frequency component data. A detection unit, a correction data calculation storage unit that calculates correction data for inversely compensating the attenuation amount based on the output data of the attenuation amount detection unit and stores the calculated data prior to imaging, and a pulse sequencer that outputs the data at a predetermined timing. a frequency component correction section that converts the original waveform signal of the current pulse into its frequency component data, corrects it using correction data stored in the calculation storage section, and outputs the corrected frequency component data; and converts the corrected frequency component data into a waveform signal. and an inverse converter that outputs the same signal as the power amplifier, and is configured to compensate for distortion of the gradient magnetic field waveform due to the frequency response of the gradient magnetic field coil by correcting the input waveform signal of the power amplifier. A gradient magnetic field power source for a nuclear magnetic resonance imaging system, characterized in that:
JP2025646A 1990-02-05 1990-02-05 Gradient magnetic field power source for nuclear magnetic resonance imaging system Pending JPH03228740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025646A JPH03228740A (en) 1990-02-05 1990-02-05 Gradient magnetic field power source for nuclear magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025646A JPH03228740A (en) 1990-02-05 1990-02-05 Gradient magnetic field power source for nuclear magnetic resonance imaging system

Publications (1)

Publication Number Publication Date
JPH03228740A true JPH03228740A (en) 1991-10-09

Family

ID=12171594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025646A Pending JPH03228740A (en) 1990-02-05 1990-02-05 Gradient magnetic field power source for nuclear magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JPH03228740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202104A (en) * 2012-03-27 2013-10-07 Toshiba Corp Magnetic resonance imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202104A (en) * 2012-03-27 2013-10-07 Toshiba Corp Magnetic resonance imaging apparatus

Similar Documents

Publication Publication Date Title
US9664765B2 (en) Magnetic resonance imaging apparatus and gradient magnetic field waveform estimation method
JP4106053B2 (en) Magnetic resonance imaging apparatus and eddy current compensation derivation method
JPH0638943A (en) Magnetic resonance imaging system and method
US6154030A (en) Digital eddy current compensation
EP0497402B1 (en) Magnetic resonance imaging method and device for reducing image errors in a magnetic resonance image
JPH1189817A (en) Magnetic resonance imaging equipment
JPS62189056A (en) Method for improving homogeneity of magnetic field
JP2003514642A (en) MRI apparatus having feed-forward loop inserted in gradient loop
JPH03228740A (en) Gradient magnetic field power source for nuclear magnetic resonance imaging system
JPH03292934A (en) Inspection using nuclear magnetic resonance
JPH02211124A (en) Magnetic resonance imaging device
EP0361574A1 (en) Method of and device for eddy current compensation in MR apparatus
JP3163423B2 (en) Magnetic resonance imaging apparatus and static magnetic field strength measurement display method
JP5064685B2 (en) Magnetic resonance imaging system
JP3337712B2 (en) Magnetic resonance imaging equipment
JP3576658B2 (en) Driving waveform generation device for gradient magnetic field, eddy current estimation device, and MRI device
JPH0626542B2 (en) Magnetic resonance imaging equipment
JPH09192116A (en) Nuclear magnetic resonance inspection device
JP4820063B2 (en) Magnetic resonance imaging system
JPH0622928A (en) Very high speed mr imaging method
JPH0670912A (en) Magnetic resonance imaging device
JPH0670903A (en) Mri device
EP0280930A2 (en) Magnetic resonance imaging method and apparatus
JP2001087243A (en) Magnetic resonance diagnostic system
JPH04327834A (en) Magnetic resonance imaging device