JPH03228437A - Optical submarine repeater - Google Patents

Optical submarine repeater

Info

Publication number
JPH03228437A
JPH03228437A JP2022217A JP2221790A JPH03228437A JP H03228437 A JPH03228437 A JP H03228437A JP 2022217 A JP2022217 A JP 2022217A JP 2221790 A JP2221790 A JP 2221790A JP H03228437 A JPH03228437 A JP H03228437A
Authority
JP
Japan
Prior art keywords
voltage
repeater
main signal
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022217A
Other languages
Japanese (ja)
Inventor
Muneaki Yatsuda
矢津田 宗明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2022217A priority Critical patent/JPH03228437A/en
Publication of JPH03228437A publication Critical patent/JPH03228437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To exactly derive a distance between a repeater in the vicinity of a fault part and the fault part by measuring a voltage between a feeder and a housing by a voltage measuring circuit, providing its output to an input of a modulator, and modulating and transmitting a turn-back main signal. CONSTITUTION:This repeater is provided with a voltage measuring circuit 21 for measuring a voltage between feeders 7, 8 and a housing 11, a signal converter 22 for converting its output to a data signal being suitable for modulation of a main signal, a switch 23 interposed between its output and an input of reproducing repeaters RRP 1, 2, and a control circuit 24 for twisting back the main signal in accordance with a control signal superposed on the main signal, and also, connecting the output of the voltage measuring circuit 21 to an input of a modulator by controlling the switch 23. In such a way, in accordance with generation of a fault of an optical submarine cable, the main signal is turned back and transmitted to the repeater of the side of the fault part by transmitting a control signal, and also, the output of the voltage measuring circuit 21 is fetched by demodulating the main signal, and from a feeder voltage of the repeater, the fault part is derived exactly, based on an installation point of the repeater as a reference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光海底ケーブルの中間へ介挿され、光信号の
再生中継を行なうと共に、光海底ケーブル中の給電線を
介し動作電源の直列給電を受ける光海底中継器に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used to connect an operating power supply in series through a power supply line in an optical submarine cable, and to perform regenerative relay of optical signals by being inserted in the middle of an optical submarine cable. This relates to an optical submarine repeater that receives power.

〔従来の技術〕[Conventional technology]

第3図に要部のブロック図を示すとお夛、往路および復
路の3R機能ならびに変調器を有する再生中継器(以下
、RRP)1および2を備え、RRPlにより、往路の
光ケーブル3からの光信号を同様の光ケーブル4へ再生
中継して送信すると共に、RRP2によシ、復路の光ケ
ーブル5からの光信号を同様の光ケーブル6へ再生中継
して送信するものとなっておJ、RRPlおよび2の電
源は、給電側の給電線7よシ直列に給電され、この給電
電流は、更に終端側の給電線8を介しつぎの中継器へ送
出されるもの、となっている。
FIG. 3 shows a block diagram of the main parts. The regenerative repeaters (hereinafter referred to as RRPs) 1 and 2 each have a 3R function and a modulator for outgoing and incoming paths. is regeneratively relayed to the same optical cable 4 and transmitted, and the optical signal from the optical cable 5 on the return route is regeneratively relayed and transmitted to the similar optical cable 6 by the RRP2. The power source is supplied in series through a power supply line 7 on the power supply side, and this power supply current is further sent to the next repeater via a power supply line 8 on the termination side.

また、光ケーブル3および5中の主信号には、制御信号
の重畳が自在となっておシ、これに応じて折返し路9ま
たは1Gが形成され、光ケーブル3からの信号を光ケー
ブル6へ、または、光ケーブル5からの信号を光ケーブ
ル4へ折返して送信することが自在となっている。
Further, a control signal can be freely superimposed on the main signals in the optical cables 3 and 5, and a return path 9 or 1G is formed accordingly to transfer the signal from the optical cable 3 to the optical cable 6, or The signal from the optical cable 5 can be returned to the optical cable 4 and transmitted.

なお、RRPl、2を含む全回路は、水密性と共に耐圧
性を有する筺体11中へ収容されている。
Note that all the circuits including RRP1 and 2 are housed in a watertight and pressure resistant casing 11.

したがって、光海底ケーブルに切断等の障害を生じた場
合、主信号の折返しKより障害部位両側方の中継器を求
めると共に1一般忙海水を介して給電路が形成されるた
め、給電線の直流抵抗測定法によシ陸上端局と障害部位
との間の距離を求め、これにしたがって障害部位の探索
を行なうものとなっている。
Therefore, in the event of a failure such as a break in the optical submarine cable, repeaters on both sides of the failure site are determined from the return K of the main signal, and a power supply path is formed via the general seawater, so the direct current of the power supply line is The distance between the land terminal station and the faulty part is determined by the resistance measurement method, and the faulty part is searched for based on this distance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、給電線の単位長当り抵抗値は、光海底中継器の
内部抵抗値に比し約1/100 と少なく、障害部位の
標定娯差が大きくなると共に、光信号の波長が近来は長
波長帯へ移行し、これに応じて中継器の挿入間隔が大と
表っており、これらの原因により障害部位の探索が益々
困難となる欠点を生じている。
However, the resistance value per unit length of the power supply line is only about 1/100 of the internal resistance value of the optical submarine repeater, and as the difference in locating the fault site increases, the wavelength of the optical signal has recently become longer. The interval between repeater insertions has increased accordingly, and due to these factors, it has become increasingly difficult to search for faulty locations.

〔課題を解決するだめの手段〕[Failure to solve the problem]

前述の課題を解決するため、本発明はっぎの手段によシ
構成するものとなっている。
In order to solve the above-mentioned problems, the present invention is constructed by the following means.

すなわち、上述の光海底中継器において、給電線と筺体
との間の電圧を計測する電圧計測回路と、これの出力と
変調器の入力との間に介在する切替器と、主信号へ重畳
した制御信号に応じ主信号折返しを行なうと共に、切替
器を制御して電圧計測回路の出力を変調器の入力へ接続
する制御回路とを設は丸ものである。
In other words, in the above-mentioned optical submarine repeater, there is a voltage measurement circuit that measures the voltage between the feeder line and the housing, a switch that is interposed between the output of this circuit and the input of the modulator, and a A control circuit is provided which loops back the main signal according to the control signal, controls the switch and connects the output of the voltage measurement circuit to the input of the modulator.

〔作用〕[Effect]

したがって、光海底ケーブルの障害発生に応じ、制御信
号の送信によシ障害部位側方の中継器へ主信号の折返し
送信を行なわせると共に、電圧計測回路の出力を主信号
の復調により取出し、これにより轟該中継器の給電線電
圧を知れば、この電圧は轟該中継器と障害部位との間の
距離に応じて定まるため、轟該中継器の設置点を基準と
して障害部位を正確に求めることができる。
Therefore, in response to the occurrence of a fault in the optical submarine cable, the main signal is sent back to the repeater on the side of the fault site by sending a control signal, and the output of the voltage measurement circuit is extracted by demodulating the main signal. If you know the feed line voltage of the Todoroki repeater, this voltage is determined according to the distance between the Todoroki repeater and the fault location, so you can accurately determine the fault location based on the installation point of the Todoroki repeater. be able to.

〔実施例〕〔Example〕

以下、実施例を示す第1図および第2図に裏って本発明
の詳細な説明する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 and 2 showing embodiments.

第1図は要部のブロック図であシ、第3図に示す構成の
ほか、給電線8と筺体11との開の電圧を計数信号とし
て送出する電圧計測回路(以下、vMC)21、これの
出力を主信号の変調に適するデータ信号へ変換する信号
変換器(以下、5Cv)22、および、これの出力とR
RPl、2中の変調器(以下、MOD)入力との間に介
在する切替器(以下、5W)23が設けであると共に、
光ケーブル3または5からの主信号へ重畳して送られて
来る制御信号に応動する制御回路(以下、CCT)24
が設けてあり、制御信号に応じてCCT24は、折返し
路9または10を形成すると共に、5W23を制御し、
5Cv22を介するMMC21の出力をRRPl、2中
に設けたMODの入力へ接続するものとなっている。
FIG. 1 is a block diagram of the main parts. In addition to the configuration shown in FIG. A signal converter (hereinafter referred to as 5Cv) 22 that converts the output of
A switch (hereinafter referred to as 5W) 23 is provided between the modulator (hereinafter referred to as MOD) input in RPl, 2, and
A control circuit (hereinafter referred to as CCT) 24 that responds to a control signal sent superimposed on the main signal from the optical cable 3 or 5
is provided, and according to the control signal, the CCT 24 forms the return path 9 or 10 and controls the 5W 23,
The output of MMC21 via 5Cv22 is connected to the input of MOD provided in RRP1,2.

したがって、光ケーブル4,5側の光海底ケーブルに障
害を生じた場合には、給電側の陸上端局より制御信号を
送出し、折返し路10を形成すると共に、5CV22を
介するvMc21の出力をRRP2中のMODへ与え、
MMC21の出力によシ折返し主信号を変調して送信さ
せ、これを陸上端局において復調することによシ、給電
線8と筺体11との間の電圧を知ることができる。
Therefore, when a failure occurs in the optical submarine cables on the optical cables 4 and 5 side, a control signal is sent from the land terminal station on the power feeding side to form a return route 10, and the output of vMc21 via 5CV22 is transferred to RRP2. Give it to the MOD of
By modulating and transmitting the return main signal using the output of the MMC 21 and demodulating it at the land terminal station, the voltage between the power supply line 8 and the housing 11 can be determined.

第2図は、以上により計測した電圧に基づき、障害部位
との距離を求める状況の説明図であシ、給電系統図(、
)のとおシ、給電側の陸上端局(以下、GTS)31と
、終端側のGTS32との間には、光海底中継器(以下
、LRP)33〜35を介する光海底ケーブル(以下、
ケーブル)36によシ伝送路が構成されておシ、正常時
には、電圧分布図(b)のとおシ、GTS31において
大地を帰路とする電圧Vs Kよシ直列給電がなされ、
GT832 においては給電電圧が零Vになるものとな
っている。
Figure 2 is an explanatory diagram of the situation in which the distance to the fault location is determined based on the voltage measured as described above.
), an optical submarine cable (hereinafter referred to as "GTS") is connected between the land terminal station (hereinafter referred to as "GTS") 31 on the power feeding side and the GTS 32 on the termination side via optical submarine repeaters (hereinafter referred to as "LRP") 33 to 35.
A transmission line is formed by the cable) 36, and under normal conditions, as shown in the voltage distribution diagram (b), series power is supplied to the voltage VsK with the return path to the ground at the GTS 31,
In GT832, the power supply voltage is zero V.

これに対し、LRP34と35との間においてX印によ
シ示す障害が生じたものとすれば、障害部位から海水を
介する帰路が形成されるため、電圧分布図(c)のとお
jD、LRP34の電圧がV、へ低下すると共に、これ
に応じて給電電圧v1がv3へ低下する一方、LRP3
5の電圧は負電圧v4となシ、かつ、GTS32の電圧
も負電圧v5となり、各電圧v2およびv4は、LRP
34および35から障害部位までの距離t1および1.
に応じて定まるものとなる。
On the other hand, if a fault occurs between LRPs 34 and 35, as indicated by As the voltage of LRP3 decreases to V, the supply voltage v1 correspondingly decreases to v3, while LRP3
5 is negative voltage v4, and the voltage of GTS32 is also negative voltage v5, and each voltage v2 and v4 is LRP
Distances t1 and 1.34 and 35 to the fault site.
It will be determined accordingly.

すなわち、距離t!は、ケーブル36中の給電線7.8
が示すb当シの抵抗値をRoとしたとき、次式により与
えられる。
That is, the distance t! is the feed line 7.8 in the cable 36
When the resistance value of b shown by is Ro, it is given by the following equation.

2 Ll−(km)         ・・・(1)R。2 Ll-(km)       ...(1) R.

また、t!は、電圧v4中にLRP35内の電圧降下分
が含まれているため、これをvrとしたとき、次式によ
り示される。
Also, t! Since the voltage v4 includes the voltage drop within the LRP 35, when this is set as vr, it is expressed by the following equation.

し九がって、障害部位に最も接近したLRP34または
35のVMC21により計測した電圧v2またはv4を
用い、LRP34または35を基準とした障害部位まで
の距離が正確に求められ、障害部位の探索が容易となる
Therefore, using the voltage v2 or v4 measured by the VMC 21 of the LRP 34 or 35 closest to the faulty part, the distance to the faulty part based on the LRP 34 or 35 can be accurately determined, and the faulty part can be searched. It becomes easier.

〔発明の効果〕〔Effect of the invention〕

以上の説明によシ明らかなとおり本発明によれば、給電
線と筺体との間の電圧を電圧計測回路により計測し、こ
れの出力を変調器の入力へ与え、折返し主信号を変調し
て送信するものとしたことKよシ、障害部位近傍の中継
器と障害部位との距離が正確に求められ、特に中継器の
設置間隔が大きい場合に効果的であ如、海底伝送路用の
光海底中継器において顕著な効果が得られる。
As is clear from the above description, according to the present invention, the voltage between the power supply line and the housing is measured by a voltage measuring circuit, the output of this is applied to the input of the modulator, and the folded main signal is modulated. The distance between the repeater near the faulty part and the faulty part can be accurately determined, and it is especially effective when repeaters are installed at long intervals. Remarkable effects can be obtained in submarine repeaters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例を示し、第1図は
要部のブロック図、第2図は障害部位との距離を求める
状況の説明図、第3図は従来例を示す要部のブロック図
である。 1.2・・・・再生中継器、3〜6・・・・光ケーブル
、7,8・・・・給電線、9.10・・・・折返し路、
11・・・・筺体、21・・・・電圧計測回路、23・
・・・切替器、24・・・・制御回路。
Fig. 1 and Fig. 2 show an embodiment of the present invention, Fig. 1 is a block diagram of the main part, Fig. 2 is an explanatory diagram of the situation in which the distance to the faulty part is calculated, and Fig. 3 shows a conventional example. FIG. 2 is a block diagram of main parts. 1.2...Regenerative repeater, 3-6...Optical cable, 7,8...Power line, 9.10...Return path,
11... Housing, 21... Voltage measurement circuit, 23...
...Switcher, 24...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 3R機能と主信号折返し機能とを備えると共に、主信号
を変調する変調器を備える光海底中継器において、給電
線と筺体との間の電圧を計測する電圧計測回路と、該計
測回路の出力と前記変調器の入力との間に介在する切替
器と、前記主信号へ重畳した制御信号に応じ前記主信号
折返しを行なうと共に前記切替器を制御して電圧計測回
路の出力を変調器の入力へ接続する制御回路とを設けた
ことを特徴とする光海底中継器。
In an optical submarine repeater that is equipped with a 3R function and a main signal loopback function, as well as a modulator that modulates the main signal, there is provided a voltage measurement circuit that measures the voltage between the feeder line and the housing, and an output of the measurement circuit. a switch interposed between the input of the modulator and a control signal superimposed on the main signal to loop back the main signal and control the switch to send the output of the voltage measurement circuit to the input of the modulator; An optical submarine repeater characterized in that it is provided with a control circuit for connection.
JP2022217A 1990-02-02 1990-02-02 Optical submarine repeater Pending JPH03228437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022217A JPH03228437A (en) 1990-02-02 1990-02-02 Optical submarine repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022217A JPH03228437A (en) 1990-02-02 1990-02-02 Optical submarine repeater

Publications (1)

Publication Number Publication Date
JPH03228437A true JPH03228437A (en) 1991-10-09

Family

ID=12076637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022217A Pending JPH03228437A (en) 1990-02-02 1990-02-02 Optical submarine repeater

Country Status (1)

Country Link
JP (1) JPH03228437A (en)

Similar Documents

Publication Publication Date Title
US4300239A (en) Optical repeater monitoring system
EP0580316B1 (en) Performance monitoring and fault location for optical equipment, systems and networks
US5719693A (en) Power feeding system for an optical transmission system
AU756808B2 (en) Electric power feeding line switching method, electric power feeding line switching apparatus and electric power feeding line switching system
CA2069665C (en) Apparatus for detecting short-circuit for use in bi-polar d.c. transmission system
JPH03228437A (en) Optical submarine repeater
JPH021631A (en) Optical cable communication system
JP2570988B2 (en) Optical submarine repeater
US20240097438A1 (en) Branching device, optical submarine cable system, and power supply method
JPS62141918A (en) Active indicating line device for electromechanical differential current relay
JPS6223157Y2 (en)
JP2632905B2 (en) Transmission line feeder switching circuit
JPH01132232A (en) Optical submarine repeater
JPH0243832A (en) Submarine repeating system
JPH01289323A (en) Feeding switching system for submarine relay transmission line
JPS6212217A (en) Optical communication system
JPH04291529A (en) Optical submarine repeater
JPH08249077A (en) Dc constant current supply device
JPH03258036A (en) Monitor system for optical transmission line
JPH0548501A (en) Feeding system for submarine transmission system
JPS60139033A (en) Submarine repeater with displacement sensor
JPS60180395A (en) Method for detecting fault position
JPS63305634A (en) Submarine transmission network supervising system
JPS59163923A (en) Route changeover system
Beale Remarks on standard fibre‐optic LANs