JPH03228365A - Semiconductor resistor circuit - Google Patents

Semiconductor resistor circuit

Info

Publication number
JPH03228365A
JPH03228365A JP2395890A JP2395890A JPH03228365A JP H03228365 A JPH03228365 A JP H03228365A JP 2395890 A JP2395890 A JP 2395890A JP 2395890 A JP2395890 A JP 2395890A JP H03228365 A JPH03228365 A JP H03228365A
Authority
JP
Japan
Prior art keywords
resistor
diode
series
circuit
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2395890A
Other languages
Japanese (ja)
Inventor
Sadaji Kishibe
岸部 貞治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2395890A priority Critical patent/JPH03228365A/en
Publication of JPH03228365A publication Critical patent/JPH03228365A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively realize a semiconductor integrated circuit operating stably over a wide temperature range in high yield by providing a first resistor connected in series with a diode formed on a semiconductor substrate, and a second resistor connected in parallel with a series circuit of a diode and the first resistor, and imparting characteristics variable with temperature rise to the diode and the resistors. CONSTITUTION:A diode D and a first resistor R1 are connected in series, and this series circuit is connected in parallel with a second resistor R2. Here, the diode D is imparted with characteristic in which a rising voltage is lowered at a temperature rise. Accordingly, it operates as a resistor having equivalently negative resistance temperature coefficient TCR under a constant current condition. On the other hand, the resistors R1, R2 are formed to have positive TCR on a semiconductor substrate. Accordingly, a resistor circuit having low TCR is equivalently realized by combination of them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体抵抗回路に関するもので、半導体集積回
路(IC)の構成要素等として用いられる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor resistance circuit, which is used as a component of a semiconductor integrated circuit (IC).

〔従来の技術〕[Conventional technology]

半導体集積回路の構成要素である抵抗を半導体基板上に
形成する際、通常用いられるのはイオン注入による方法
である。これは、半導体基板中にnもしくはp型のドー
パントをイオンとして注入することにより実現される。
When forming a resistor, which is a component of a semiconductor integrated circuit, on a semiconductor substrate, ion implantation is usually used. This is achieved by implanting n- or p-type dopants as ions into the semiconductor substrate.

その製造工程は、トランジスタの活性層を形成する為の
イオン注入工程と兼ねることができる。
The manufacturing process can also serve as an ion implantation process for forming the active layer of the transistor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、広い温度範囲において安定な性能をもつ半導体装
置が求められており、構成要素の1つである抵抗も広い
温度範囲で安定であることが要求される。ところが、イ
オン注入によって形成される抵抗(イオン注入抵抗)の
場合、温度が高くなるにつれて抵抗値が上昇する。つま
り、正の抵抗温度係数T CR(Tcvperatuv
e Coefflclent orResistanc
e)を持つことが知られている。例えば、Ga As基
板にStイオンを加速電圧180ke■で注入すること
によって得られるシート抵抗として、500ΩcII+
−2の抵抗値のものの場合、およそ1670 ppm 
/degのTCRを持つことが実験によりわかっている
On the other hand, there is a demand for semiconductor devices that have stable performance over a wide temperature range, and a resistor, which is one of the components, is also required to be stable over a wide temperature range. However, in the case of a resistor formed by ion implantation (ion implanted resistor), the resistance value increases as the temperature increases. In other words, the positive temperature coefficient of resistance T CR (Tcvperatuv
eCoefflclent orResistance
e) is known to have. For example, the sheet resistance obtained by implanting St ions into a GaAs substrate at an accelerating voltage of 180ke is 500ΩcII+.
-2 resistance value approximately 1670 ppm
It has been found through experiments that it has a TCR of /deg.

このため、ニッケル・クロム等の合金ヲスパッタリング
等により金属薄膜抵抗として半導体基板上に形成し、T
CRが殆んどゼロである抵抗を形成する等の方法が従来
から知られ、例えば下記の文献 「“高安定化薄膜抵抗器の研究゛金親(日本電信電話公
社)他 電子通信学会 電子回路部品・材料研究会資料
 CPM68−18 (1968年8月)」 に示されている。しかし、金属薄膜を形成する上記方法
の場合には、半導体装置の製造工程に新たな工程を加え
なければならず、製造工程が複雑になる。このため、広
い温度範囲で安定的に動作する半導体集積回路を、歩留
りよく安価に実現するのが困難であった。
For this reason, alloys such as nickel and chromium are formed on semiconductor substrates as metal thin film resistors by sputtering, etc., and T
Methods such as forming a resistor with a CR of almost zero have been known for a long time. Parts and Materials Study Group Material CPM68-18 (August 1968). However, in the case of the above-mentioned method of forming a metal thin film, a new step must be added to the manufacturing process of the semiconductor device, which complicates the manufacturing process. For this reason, it has been difficult to realize a semiconductor integrated circuit that operates stably over a wide temperature range at a high yield and at low cost.

そこで本発明は、上記の欠点を解決した半導体抵抗回路
を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor resistance circuit that solves the above-mentioned drawbacks.

〔課題を解決するための手段〕 本発明に係る半導体抵抗回路は、半導体基板に形成され
たダイオードと、このダイオードに直列接続された第1
の抵抗と、ダイオードおよび第1の抵抗の直列回路に並
列接続された第2の抵抗とを備え、ダイオードは温度上
昇により立上がり電圧が低くなる特性を有し、第1およ
び第2の抵抗は温度上昇により抵抗値が高くなる特性を
有していることを特徴とする。ここで、ダイオードが複
数個直列に接続されているとしてもよい。
[Means for Solving the Problems] A semiconductor resistance circuit according to the present invention includes a diode formed on a semiconductor substrate, and a first diode connected in series to the diode.
and a second resistor connected in parallel to a series circuit of the diode and the first resistor. It is characterized by having a characteristic that the resistance value increases as the resistance increases. Here, a plurality of diodes may be connected in series.

〔作用〕[Effect]

本発明の半導体抵抗回路において、ダイオードは温度上
昇すると立ち上り電圧(電流が急に流れ出す電圧)は低
くなり、従って一定電流という条件下では、等価的に負
のTCRを持つ抵抗として働くことになる。一方、第1
および第2の抵抗は半導体基板に正のTCRを有して形
成されている。
In the semiconductor resistance circuit of the present invention, the rising voltage (voltage at which current suddenly flows) of the diode decreases as the temperature rises, and therefore, under the condition of constant current, the diode functions as a resistor with an equivalent negative TCR. On the other hand, the first
The second resistor is formed on the semiconductor substrate and has a positive TCR.

従って、これらを組み合せることで、TCHの小さい抵
抗回路が等価的に実現できる。
Therefore, by combining these, a resistance circuit with a small TCH can be equivalently realized.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は実施例に係る半導体抵抗回路の回路図である。FIG. 1 is a circuit diagram of a semiconductor resistance circuit according to an embodiment.

図示の通り、ダイオードDと第1の抵抗R1は直列に接
続され、この直列回路は第2の抵抗R2に並列接続され
る。ここで、ダイオードDは金属−半導体接合によるシ
ョットキー接合ダイオードでもよく、pn接合ダイオー
ドでもよい。
As shown, the diode D and the first resistor R1 are connected in series, and this series circuit is connected in parallel to the second resistor R2. Here, the diode D may be a Schottky junction diode formed by a metal-semiconductor junction, or a pn junction diode.

また、ダイオードDは1個に限らず、2個以上が直列接
続されたものでもよい。
Further, the number of diodes D is not limited to one, and two or more diodes D may be connected in series.

次に、上記実施例が等価的に抵抗として働く原理を説明
する。
Next, the principle in which the above embodiment functions equivalently as a resistor will be explained.

まず、イオン注入抵抗は正のTCRを有し、常温で3に
Ωの抵抗の0℃、30℃、85℃での電流−電圧(1−
V)特性は、例えば第2図のようになる。ここにおいて
、TCRの値は具体的には1670ppm /degで
ある。
First, the ion implantation resistor has a positive TCR, and the current-voltage (1-
V) Characteristics are as shown in FIG. 2, for example. Here, the TCR value is specifically 1670 ppm/deg.

次に、ショットキー接合ダイオードの順方向に流れる電
流J は、 J  = [A*T2exp (−qφ /kT)]n
                        B
n[exp(qV/kT)−11−(1)但し;  (
A*−4πqm*k” /h3)で与えられる。また、
pn接合ダイオードの順方で与えられる。ここで、Tは
温度、m*はキャリアの有効質量、kはボルツマン定数
、φBnはショットキーバリアポテンシャルである。な
お、上記(1)、(2)式はS、M、Szeによる下記
の文献 「Ph1sics of Sea+1conducto
r Devices(2nded1tion)’ J に示されている。
Next, the current J flowing in the forward direction of the Schottky junction diode is J = [A*T2exp (-qφ/kT)]n
B
n[exp(qV/kT)-11-(1) However; (
A*−4πqm*k”/h3). Also,
It is given in the order of pn junction diode. Here, T is the temperature, m* is the effective mass of the carrier, k is the Boltzmann constant, and φBn is the Schottky barrier potential. The above equations (1) and (2) are based on the following document by S, M, and Sze, “Ph1sics of Sea+1 conductor.
r Devices (2nded1tion)' J.

上記(1)、(2)式で表わされるショットキー接合ダ
イオードとpn接合ダイオードのI−V特性が、0℃、
30℃、85℃の温度条件下でどのように変化するかを
、第3図(a)、(b)に示す。図示の通り、順方向電
流が急増するアノード・カソード間電位(立ち上り電位
)が、温度上昇によって低くなっているのがわかる。つ
まり、一定電流を流した状態を考えると、見掛は上で負
のTCRを持つ抵抗となっていることがゎがる。
The IV characteristics of the Schottky junction diode and the pn junction diode expressed by the above equations (1) and (2) are 0°C,
Figures 3(a) and 3(b) show how it changes under temperature conditions of 30°C and 85°C. As shown in the figure, it can be seen that the anode-cathode potential (rise potential) at which the forward current increases rapidly becomes lower as the temperature rises. In other words, if we consider the state in which a constant current is flowing, it appears that the resistor has a negative TCR.

このため、この負のTCRを持つダイオードDと正のT
CRを持つ抵抗(第1の抵抗R、第2の抵抗R2)を組
み合せることにより、全体としてTCRの小さな半導体
抵抗回路を等価的に実現できる。
Therefore, the diode D with this negative TCR and the positive TCR
By combining resistors with CR (first resistor R, second resistor R2), it is possible to equivalently realize a semiconductor resistance circuit with a small TCR as a whole.

第1の抵抗R1および第2の抵抗R2として3にΩのイ
オン注入抵抗を用い、第4図のような回路を構成すると
、I−V特性は第5図のようになる。VA−IV前後に
至るまで、非常に小さなTCRとなる。ここで、半導体
抵抗回路によって実現される抵抗値は、上記の第1の抵
抗R1と第2の抵抗R2の値を適切なものとすることに
より、任意の値に設定できる。また、VAのより大きい
電位差において使用するときには、ダイオードDを複数
個直列接続すればよい。例えば、第4図の回路において
ダイオードDを2個にすれば、VA−2V程度の範囲ま
で小さなTCRとすることが可能になる。すなわち、上
記実施例の回路ではダイオードDの向きが一方向である
ため、ダイオードDに順方向電流が流れるような条件下
でしか抵抗回路として用いることができないが、印加し
得る電位差には論理上は制限がない。
If a circuit as shown in FIG. 4 is constructed using ion-implanted resistors of 3Ω as the first resistor R1 and the second resistor R2, the IV characteristic will be as shown in FIG. 5. The TCR becomes very small until around VA-IV. Here, the resistance value realized by the semiconductor resistance circuit can be set to an arbitrary value by appropriately setting the values of the first resistor R1 and the second resistor R2. Furthermore, when used at a larger potential difference in VA, a plurality of diodes D may be connected in series. For example, if the number of diodes D is reduced to two in the circuit shown in FIG. 4, the TCR can be reduced to a range of about VA-2V. That is, in the circuit of the above embodiment, since the diode D is unidirectional, it can only be used as a resistance circuit under conditions where a forward current flows through the diode D. However, there are theoretical differences in the potential difference that can be applied. is unlimited.

本発明の半導体抵抗回路は単独の抵抗回路として用い得
るものであるが、増幅回路等と組み合せて、あるいはそ
の構成要素としてIC中にも用いられる。このとき、例
えばICがGa AsによるMESFET (ショット
キーゲート電界効果トランジスタ)を用いたものである
ときは、ダイオードDとしてショットキー接合ダイオー
ドを用いることにより、一連のプロセスでICを製造で
きる。
The semiconductor resistance circuit of the present invention can be used as an independent resistance circuit, but it can also be used in combination with an amplifier circuit or the like, or in an IC as a component thereof. At this time, for example, when the IC uses a MESFET (Schottky gate field effect transistor) made of GaAs, by using a Schottky junction diode as the diode D, the IC can be manufactured by a series of processes.

また、バイポーラトランジスタを用いたICに組み合さ
れるときは、ダイオードDとしてpn接合ダイオードを
用いればよく、このときにも一連のプロセスでICを製
造できる。従って、いずれの場合にも製造工程を複雑に
することがなく、特性の優れた半導体装置が歩留りよく
安価に実現できる。
Further, when combined with an IC using a bipolar transistor, a pn junction diode may be used as the diode D, and the IC can also be manufactured in a series of processes in this case. Therefore, in either case, a semiconductor device with excellent characteristics can be realized at a high yield and at low cost without complicating the manufacturing process.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、広い温度範囲で安定な抵
抗値を実現できる半導体抵抗回路を、半導体基板におい
て得ることができる。
As described above, according to the present invention, a semiconductor resistance circuit that can realize a stable resistance value over a wide temperature range can be obtained on a semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る半導体抵抗回路の回路図
、第2図はイオン注入抵抗の電流−電圧特性図、第3図
はダイオードDの電流−電圧特性図、第4図は具体的な
半導体抵抗回路の回路図、第5図は第4図に示す半導体
抵抗回路の電流−電圧特性図である。 R・・・第1の抵抗、R2・・・第2の抵抗、D・・・
ダ■ イオード。
Fig. 1 is a circuit diagram of a semiconductor resistance circuit according to an embodiment of the present invention, Fig. 2 is a current-voltage characteristic diagram of an ion-implanted resistor, Fig. 3 is a current-voltage characteristic diagram of diode D, and Fig. 4 is a specific diagram. FIG. 5 is a current-voltage characteristic diagram of the semiconductor resistance circuit shown in FIG. 4. R...first resistance, R2...second resistance, D...
da ■ iode.

Claims (1)

【特許請求の範囲】 1、半導体基板に形成されたダイオードと、このダイオ
ードに直列接続された第1の抵抗と、前記ダイオードお
よび第1の抵抗の直列回路に並列接続された第2の抵抗
とを備え、前記ダイオードは温度上昇により立上がり電
圧が低くなる特性を有し、前記第1および第2の抵抗は
温度上昇により抵抗値が高くなる特性を有していること
を特徴とする半導体抵抗回路。 2、前記ダイオードが複数個直列に接続されている請求
項1記載の半導体抵抗回路。
[Claims] 1. A diode formed on a semiconductor substrate, a first resistor connected in series to the diode, and a second resistor connected in parallel to a series circuit of the diode and the first resistor. A semiconductor resistance circuit comprising: the diode having a characteristic that a rising voltage decreases as the temperature rises, and the first and second resistors having a characteristic that the resistance value increases as the temperature rises. . 2. The semiconductor resistance circuit according to claim 1, wherein a plurality of said diodes are connected in series.
JP2395890A 1990-02-02 1990-02-02 Semiconductor resistor circuit Pending JPH03228365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2395890A JPH03228365A (en) 1990-02-02 1990-02-02 Semiconductor resistor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2395890A JPH03228365A (en) 1990-02-02 1990-02-02 Semiconductor resistor circuit

Publications (1)

Publication Number Publication Date
JPH03228365A true JPH03228365A (en) 1991-10-09

Family

ID=12125058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2395890A Pending JPH03228365A (en) 1990-02-02 1990-02-02 Semiconductor resistor circuit

Country Status (1)

Country Link
JP (1) JPH03228365A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516402A (en) * 1996-08-16 2000-12-05 エービービー リサーチ リミテッド Bipolar semiconductor device having a semiconductor layer composed of SiC and a method of manufacturing a semiconductor device composed of SiC
JP2003533027A (en) * 2000-04-27 2003-11-05 モトローラ・インコーポレイテッド Temperature compensated single power supply HFET
JP2007263667A (en) * 2006-03-28 2007-10-11 Toyota Central Res & Dev Lab Inc Stress measuring apparatus
JP2010161343A (en) * 2009-01-12 2010-07-22 Honeywell Internatl Inc Circuit for adjusting temperature coefficient of resistor
JP2014160332A (en) * 2013-02-19 2014-09-04 Toshiba Corp Step-down regulator
JP2017526077A (en) * 2014-08-25 2017-09-07 マイクロン テクノロジー, インク. Temperature independent current generator
US10001793B2 (en) 2015-07-28 2018-06-19 Micron Technology, Inc. Apparatuses and methods for providing constant current
US10229973B2 (en) 2016-04-28 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, first electrode and second electrode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516402A (en) * 1996-08-16 2000-12-05 エービービー リサーチ リミテッド Bipolar semiconductor device having a semiconductor layer composed of SiC and a method of manufacturing a semiconductor device composed of SiC
JP2003533027A (en) * 2000-04-27 2003-11-05 モトローラ・インコーポレイテッド Temperature compensated single power supply HFET
JP2007263667A (en) * 2006-03-28 2007-10-11 Toyota Central Res & Dev Lab Inc Stress measuring apparatus
JP4578427B2 (en) * 2006-03-28 2010-11-10 株式会社豊田中央研究所 Stress temperature measuring device
JP2010161343A (en) * 2009-01-12 2010-07-22 Honeywell Internatl Inc Circuit for adjusting temperature coefficient of resistor
JP2014160332A (en) * 2013-02-19 2014-09-04 Toshiba Corp Step-down regulator
JP2017526077A (en) * 2014-08-25 2017-09-07 マイクロン テクノロジー, インク. Temperature independent current generator
US10073477B2 (en) 2014-08-25 2018-09-11 Micron Technology, Inc. Apparatuses and methods for temperature independent current generations
US10678284B2 (en) 2014-08-25 2020-06-09 Micron Technology, Inc. Apparatuses and methods for temperature independent current generations
US10001793B2 (en) 2015-07-28 2018-06-19 Micron Technology, Inc. Apparatuses and methods for providing constant current
US10459466B2 (en) 2015-07-28 2019-10-29 Micron Technology, Inc. Apparatuses and methods for providing constant current
US10229973B2 (en) 2016-04-28 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, first electrode and second electrode

Similar Documents

Publication Publication Date Title
Kuijk A precision reference voltage source
KR100284750B1 (en) Silicon carbide thyristor
US4263518A (en) Arrangement for correcting the voltage coefficient of resistance of resistors integral with a semiconductor body
US4066917A (en) Circuit combining bipolar transistor and JFET's to produce a constant voltage characteristic
US4948989A (en) Radiation-hardened temperature-compensated voltage reference
US4053915A (en) Temperature compensated constant current source device
JPH07161973A (en) Transistor circuit
JPH03228365A (en) Semiconductor resistor circuit
US3171042A (en) Device with combination of unipolar means and tunnel diode means
GB1023531A (en) Improvements in or relating to semiconductor devices
JPH0865063A (en) Semiconductor integrated circuit
JP2001168651A (en) Semiconductor device
JPH03228364A (en) Semiconductor resistor circuit
US10797137B2 (en) Method for reducing Schottky barrier height and semiconductor device with reduced Schottky barrier height
US5146297A (en) Precision voltage reference with lattice damage
US4801987A (en) Junction type field effect transistor with metallized oxide film
US11199565B1 (en) Undervoltage detection circuit
US6768139B2 (en) Transistor configuration for a bandgap circuit
Ryu Development of CMOS technology for smart power applications in silicon carbide
JP3432877B2 (en) Zener diode
Bardeen To a solid state
Mac Rae Device fabrication by ion implantation
JPH05235365A (en) Composite semiconductor device
JP3412851B2 (en) High breakdown voltage Schottky diode
JPS6240450Y2 (en)