JPH03228007A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH03228007A
JPH03228007A JP2336590A JP2336590A JPH03228007A JP H03228007 A JPH03228007 A JP H03228007A JP 2336590 A JP2336590 A JP 2336590A JP 2336590 A JP2336590 A JP 2336590A JP H03228007 A JPH03228007 A JP H03228007A
Authority
JP
Japan
Prior art keywords
lens
group
object side
positive
surface facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2336590A
Other languages
Japanese (ja)
Inventor
Hiroshi Endo
宏志 遠藤
Sadatoshi Takahashi
貞利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2336590A priority Critical patent/JPH03228007A/en
Priority to US07/647,226 priority patent/US5144488A/en
Publication of JPH03228007A publication Critical patent/JPH03228007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To easily make the power variation high while reducing the size of a lens system on the whole by employing lens constitution where a 1st, a 2nd, and a 3rd group are put in partial discharge of power varying operation. CONSTITUTION:This zoom lens is equipped with four lens groups, i.e. a 1st group I with positive refracting power, a 2nd group II with negative refracting power, a 3rd group III with positive refracting power, and a 4th group IV in order from the object side, and when the power is varied from the wide-angle end to the telephoto end, the 1st group and 3rd group are moved to the object side so that the air gap between the 1st and 2nd groups increases, the air gap between the 2nd and 3rd groups decreases and the air gap between the 3rd and 4th groups increases. Consequently, the small-sized zoom lens has a 62 deg. view angle of photography, an about 3.7 power variation ratio, and high optical performance over the entire power variation range of the high power variation ratio while shortened in overall length.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はズームレンズに関し、特に広角端の撮影画角が
62度程度、変イ8比3.7稈度の広画角で高変倍比の
全変倍範囲にわたり高い光学性能を有した写真用カメラ
(スチルカメラ)やビデオカメラ等に好適な小型のズー
ムレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a zoom lens, and in particular, a zoom lens with a wide angle of view of about 62 degrees at the wide-angle end, a variable A8 ratio of 3.7 degrees, and a high zoom ratio. The present invention relates to a compact zoom lens suitable for photographic cameras (still cameras), video cameras, etc., which has high optical performance over the entire zoom ratio range.

(従来の技術) 最近のスチルカメラ、ビデオカメラ等のズームレンズに
は広画角てしかも高f倍のものか要求されている。一般
にズームレンズの広画角化を図ろうとすると高次の収差
か多く発生し、これを良好に補正するのが難しくなって
くる。又高変倍化な図るには各レンズ群の屈折力を強め
たり、レンズ移動量を増大させたりしなければならず、
一般にはこれに伴い前玉レンズ径か増大し、レンズ全長
も長くなり、レンズ系全体が大型化してくる。
(Prior Art) Zoom lenses for recent still cameras, video cameras, etc. are required to have a wide angle of view and a high f-power. Generally, when trying to widen the angle of view of a zoom lens, many high-order aberrations occur, and it becomes difficult to properly correct them. In addition, in order to achieve a high zoom ratio, it is necessary to strengthen the refractive power of each lens group and increase the amount of lens movement.
Generally, along with this, the diameter of the front lens increases, the overall length of the lens also increases, and the entire lens system becomes larger.

本出願人は先に特開昭61−69016号公報により広
角端の撮影画角が約62度、変倍比3.7程度の広画角
でしかも高変倍比の比較的レンズ全長の短いコンパクト
なズームレンズを提案している。
The present applicant previously disclosed in Japanese Unexamined Patent Publication No. 61-69016 that the angle of view at the wide-angle end is about 62 degrees, the zoom ratio is about 3.7, and the lens has a relatively short overall length with a high zoom ratio. We are proposing a compact zoom lens.

同公報のズームレンズは物体側より順に正の屈折力の第
1群、負の屈折力の第2n、正の屈折力の第3群、干し
て正又は負の屈折力の第4群の4つのレンズ群を有し、
広角端から望遠端への変倍に際し前記第1群と前記第3
群を一体的に物体側へ移動させ、前記第2群を第1.第
3群の移動に対し非線型に移動させ、これにより第2群
と第3群に変倍作用を分担させることによりレンズ全長
の短縮化を図りつつ高変倍化を達成している。
The zoom lens disclosed in this publication consists of four groups, in order from the object side: the first group with positive refractive power, the second nth group with negative refractive power, the third group with positive refractive power, and the fourth group with positive or negative refractive power. It has two lens groups,
When changing the magnification from the wide-angle end to the telephoto end, the first group and the third group
The groups are integrally moved toward the object side, and the second group is moved to the first group. By moving the lens non-linearly with respect to the movement of the third group, and thereby having the second and third groups share the variable power function, it is possible to shorten the overall length of the lens and achieve high variable power.

(発明か解決しようとする問題点) 本発明は本出願人の先の特開昭61−69016号公報
で提案したズームレンズの屈折力配置を利用し、各レン
ズ群のレンズ構成を更に改良し、特にレンズ全長の短縮
化を図りつつ広角端の撮影画角が62号程度、変倍比3
.7程度の広画角でしかも高変倍比の全変倍範囲にわた
り高い光学性能を有したズームレンズの提供を目的とす
る。
(Problems to be Solved by the Invention) The present invention utilizes the refractive power arrangement of the zoom lens proposed in Japanese Patent Application Laid-Open No. 61-69016, which the applicant previously proposed, and further improves the lens configuration of each lens group. In particular, the overall length of the lens has been shortened, and the angle of view at the wide-angle end is approximately 62mm, and the zoom ratio is 3.
.. The purpose of the present invention is to provide a zoom lens having a wide angle of view of about 7.7 mm and high optical performance over the entire zoom range with a high zoom ratio.

(問題点を解決するための手段) 本発明のズームレンズは、物体側より順に正の屈折力の
第1群、負の屈折力の第2群、正の屈折力の第3群、そ
して第4群の4つのレンズ群を有し、広角端から望遠端
への変倍に際して該第1群と第2群との空気間隔が増大
、該第2群と第3群との空気間隔か減少、該第3群と第
4群との空気間隔か増大するように該第1群と第3群を
物体側へ移動させ、該第1群の焦点距離をfi、全系の
望遠端の焦点距離をfT、無限遠物体における第2群の
望遠端ての結像倍率をβ2Tとするとき 0、 85<   β2T   <−0,65・・・・
・・(1) 0.45<    fl/fT   <   0.65
・・・・・・(2) 0.1  <|f2/fT|<  0.15・・・・・
・(3) 0.12<   f3/fT   <   0.3・・
・・・・(4) なる条件を満足することを特徴としている。
(Means for Solving the Problems) The zoom lens of the present invention includes, in order from the object side, a first group with positive refractive power, a second group with negative refractive power, a third group with positive refractive power, and a third group with positive refractive power. It has four lens groups, and when changing power from the wide-angle end to the telephoto end, the air distance between the first and second groups increases, and the air distance between the second and third groups decreases. , move the first group and the third group toward the object side so that the air gap between the third group and the fourth group increases, set the focal length of the first group to fi, and set the focal length of the entire system at the telephoto end. When the distance is fT and the imaging magnification at the telephoto end of the second group for an object at infinity is β2T, then 0, 85< β2T <-0,65...
...(1) 0.45<fl/fT<0.65
......(2) 0.1 <|f2/fT|< 0.15...
・(3) 0.12< f3/fT < 0.3...
...(4) It is characterized by satisfying the following conditions.

(実施例) 第1図は本発明のズームレンズの近軸屈折力配置を示す
説明図、第2〜第4図は後述する本発明の数値実施例1
〜3の広角端におけるレンズ断面図である。
(Example) Fig. 1 is an explanatory diagram showing the paraxial refractive power arrangement of the zoom lens of the present invention, and Figs. 2 to 4 are numerical example 1 of the present invention to be described later.
3 is a cross-sectional view of the lens at the wide-angle end.

図中、■は正の屈折力の第1群、IIは負の屈折力の第
2群、■は正の屈折力の第3群、■は正又は負の屈折力
の第4群である。矢印は広角端から望遠端への変倍に際
する各レンズ群の移動軌跡を示している。
In the figure, ■ is the first group with positive refractive power, II is the second group with negative refractive power, ■ is the third group with positive refractive power, and ■ is the fourth group with positive or negative refractive power. . The arrows indicate the locus of movement of each lens group during zooming from the wide-angle end to the telephoto end.

本実施例では前述の各条件式を満足するように各レンズ
群を構成すると共に広角端から望遠端への変倍に際して
第1群と第2群との空気間隔か増大、第2群と第3群と
の空気間隔が減少、第3群と第4群との空気間隔が増大
するように第1群と第3群を物体flPIへ移動させて
いる。又第2群を必要に応してJ+−曲線に移動させて
いる。本実施例においては第1〜第3群を変倍に伴い異
った速度で移動させている。
In this example, each lens group is configured to satisfy each of the above-mentioned conditional expressions, and when changing the magnification from the wide-angle end to the telephoto end, the air gap between the first group and the second group increases, and the distance between the second group and the second group increases. The first group and the third group are moved toward the object flPI so that the air distance between the third group and the third group decreases, and the air distance between the third group and the fourth group increases. Further, the second group is moved to the J+- curve as necessary. In this embodiment, the first to third groups are moved at different speeds as the magnification is changed.

本実施例では広角端から望遠端への変(6に際して第1
群を物体側へ移動させて第2群との空気間隔を増大させ
ることにより第1群による変倍と共に第2群の変イ;)
0川を助長し、広角端におけるレンズ全長の短縮化を図
りつ−’ 1:’:+変イj(化を8鴇にしている。又
第3群も同様に物体0−1へ移動させて第2群と共に第
3訂にも変イ8作用を分担させている。
In this example, when changing from the wide-angle end to the telephoto end (at step 6, the first
By moving the group toward the object side and increasing the air distance between the second group and the second group, the second group can change the magnification of the first group;)
In order to promote the 0 river and shorten the total lens length at the wide-angle end, -'1:': + variable aj (the ratio is set to 8. Also, the third lens group is similarly moved to the object 0-1. Along with the 2nd group, the 3rd edition also shares the 8th effect.

このように転実施例では第1、第2.第3群に各々変1
8負川を分担させるしンズ構成を採用することにより、
レンズ系全体の小型化を図りつつ高変倍化を容易に達成
している。
In this embodiment, the first, second, . 1 each in the 3rd group
By adopting a structure that shares eight negative rivers,
This makes it easy to achieve high variable power while reducing the size of the entire lens system.

次に前述の谷条イ′1式の技術的意味について説明する
Next, the technical meaning of the above-mentioned Tanijo I'1 formula will be explained.

条件式(1)は第2群の望遠端における結像倍率範囲を
適切に設定し、レンズ系全体の小型化と第2群による焦
点合わせを可能とする為のものである。
Conditional expression (1) is for appropriately setting the imaging magnification range at the telephoto end of the second group, thereby making it possible to miniaturize the entire lens system and to perform focusing by the second group.

条件式(])のト限値を越えると所定の変倍比を得るl
)に広角(IIの結像倍率を小さくしなければならす、
それに伴い屈折力を強くする必要かあり、諸収差の発生
が多くなってくる。条ff式(1)の下限値を越えると
レンズ駆動用のカムの傾きか急となり、又等倍(−1)
を越えると第2群による焦点合わせか出来なくなってく
るので良くない。
When the limit value of conditional expression (]) is exceeded, the specified magnification ratio is obtained.
) to wide-angle (II imaging magnification must be reduced,
Along with this, it is necessary to increase the refractive power, which increases the occurrence of various aberrations. If the lower limit of formula (1) is exceeded, the slope of the lens driving cam will become steeper, and the same magnification (-1)
Exceeding this is not a good idea because focusing will only be possible with the second group.

条件式(2)は第1群の屈折力に関し、1.に変倍に伴
う収差変動を少なくし、かつ第2群ζこ所定の変倍作用
を効果的に付与する為のものである。
Conditional expression (2) relates to the refractive power of the first group.1. This is to reduce aberration fluctuations accompanying zooming, and to effectively impart a predetermined zooming action to the second group ζ.

条件式(2)の上限値を越えると変倍の際の第1群の移
動−いを増大させねばならず、この結果第1群のレンズ
径か増大してくる。又広角端において第2群と第3群の
間隔をpめ広くとっておかねばならすレンズ全長か増大
してくる。条イ′[式(2)の下限値を越えると変倍に
伴う収差変動か増大し、又第1訂の光軸方向のズレに対
する像面変動の比である敏感度か増大し、製造粒度か厳
しくなりでくるので良くない。
If the upper limit of conditional expression (2) is exceeded, the movement of the first group during zooming must be increased, and as a result, the lens diameter of the first group increases. Furthermore, at the wide-angle end, the distance between the second and third groups must be increased by p, which increases the overall length of the lens. If the lower limit of equation (2) is exceeded, the aberration variation due to zooming will increase, and the sensitivity, which is the ratio of the image plane variation to the deviation in the optical axis direction of the first edition, will increase, and the manufacturing grain size will increase. It's not good because it can become difficult.

条件式(3)は第2群の屈折力に関し、主にレンズ系全
体の小型化を図りつつ光学性能を良好に維71する為の
ものである。
Conditional expression (3) relates to the refractive power of the second group and is mainly intended to maintain good optical performance while reducing the size of the entire lens system.

条件式(3)の上限値を越えると第2群の変倍効果か減
少するノ)、所定の変倍比を確保する為に第1群と第3
群の移動量を増大させねばならす、このとき所定の移動
空間の予めレンズ系中に確保しておかねばならすレンズ
全長か増大してくる。
If the upper limit of conditional expression (3) is exceeded, the magnification effect of the second lens group will decrease).
When the amount of movement of the group must be increased, the total length of the lens, which must be secured in advance in the lens system in a predetermined movement space, increases.

条件式(3)の下限値を越えると望遠側の球面収差か補
正過剰となり、又変倍に伴いコマ収差や非点収差の′φ
動か大きくなり、これらの諸収差をバランス良く補iE
するのか難しくなってくる。
If the lower limit of conditional expression (3) is exceeded, spherical aberration on the telephoto side will be over-corrected, and coma and astigmatism 'φ' will increase with zooming.
iE increases the movement and compensates for these various aberrations in a well-balanced manner.
It becomes difficult to do so.

条件式(4)は第3群の屈折力に関し、主に所定の変倍
比を確保しつつ諸収差を良好に補正する為のものである
Conditional expression (4) relates to the refractive power of the third group, and is mainly intended to satisfactorily correct various aberrations while ensuring a predetermined variable power ratio.

条件式(4)の上限値を越えるとハックフォーカスか必
要以上に長くなり、レンズ全長か増大してくる。条件式
(4)の下限値を越えると変倍に伴う収差変動か増大し
、特に望遠側での球面収差を良好に補正するのか難しく
なってくる。
If the upper limit of conditional expression (4) is exceeded, the hack focus becomes longer than necessary, and the total length of the lens increases. If the lower limit of conditional expression (4) is exceeded, aberration fluctuations due to zooming will increase, making it difficult to satisfactorily correct spherical aberration, especially on the telephoto side.

尚、本実施例において第4nはレンズ構成上、屈折力か
比較的弱くなる為、変倍の際移動させても変倍効果か少
ない為、変倍中固定にしておくのかレンズ鏡筒か簡素化
されるので良い。
In addition, in this example, the refractive power of the 4nth lens is relatively weak due to the lens configuration, so even if it is moved during zooming, the effect of zooming will be small. Therefore, it is difficult to decide whether to keep it fixed during zooming or to decide whether the lens barrel is simple. It's good because it becomes

又、第4群を負の屈折力より構成するのかレンズ系全体
としてテレタイプの傾向を強くすることか出来、レンズ
全長の短縮化が容易となるので好ましい。
Also, it is preferable to configure the fourth group with negative refractive power because the lens system as a whole can have a stronger teletype tendency, and the overall length of the lens can be easily shortened.

本発明の目的とするズームレンズは以上の諸条件を満足
させることにより達成されるか更にレンズ系全体の小型
化を図りつつ、変倍に伴う収差変動を良好に補正し、全
変倍範囲にわたり高い光学性能を得るには各レンズ群を
次の如く構成するのが良い。
The zoom lens that is the object of the present invention can be achieved by satisfying the above conditions.Furthermore, it is possible to reduce the size of the entire lens system while satisfactorily correcting aberration fluctuations associated with zooming, and to cover the entire zooming range. In order to obtain high optical performance, each lens group is preferably configured as follows.

物体側より順に前記第1群はメニスカス状の負の第11
レンズ面が凸面の第12レンズとを接合した接合レンズ
、そしてメニスカス状の正の第13レンズを有し、前記
第2群は物体側に凸面を向けたメニスカス状の負の第2
1レンズ、物体側に強い屈折面を向けた両レンズ面が凹
面の第22レンズ、両レンズと両レンズ面が凸面の第2
3レンズ、そして像面側に凸面を向けたメニスカス状の
負の第24レンズを有し、前記第3群は物体側に強い屈
折面を向けた2つの正のTS3ルンズと第32レンズ、
物体側に強い屈折面を向けた正の第33レンズ、像面側
に強い屈折面を向けた負の第34レンズ、両レンズと両
レンズ面が凸面の正の第35レンズをイ1し、前記第4
群は物体側に強い屈折面を向けた負の第41レンズと像
面側に強い屈折面を向けた正の第42レンズを43する
ように構成することである。
In order from the object side, the first group includes a meniscus-shaped negative eleventh group.
It has a cemented lens with a twelfth lens having a convex lens surface, and a meniscus-shaped positive thirteenth lens, and the second group includes a meniscus-shaped negative second lens with a convex surface facing the object side.
1 lens, a 22nd lens with both lens surfaces concave with a strong refractive surface facing the object side, and a 2nd lens with both lens surfaces convex.
3 lenses, and a meniscus-shaped negative 24th lens with a convex surface facing the image side, and the third group includes two positive TS3 lenses with a strong refractive surface facing the object side, and a 32nd lens,
A positive 33rd lens with a strong refractive surface facing the object side, a negative 34th lens with a strong refractive surface facing the image side, and a positive 35th lens with both lenses and both lens surfaces convex, Said fourth
The group is composed of a negative 41st lens with a strong refractive surface facing the object side and a positive 42nd lens with a strong refractive surface facing the image plane side.

尚、物体側に強い屈折面とは像面側に比へての意味であ
る。像面側に強い屈折面も同様である。
Note that a refractive surface that is strong on the object side means compared to the image surface side. The same applies to a refractive surface that is strong on the image plane side.

本実施例に係るズームレンズにおいては第1群からは変
倍に伴い球面収差と軸上色収差が大きく発生してくる。
In the zoom lens according to this embodiment, large spherical aberrations and axial chromatic aberrations occur from the first group due to zooming.

この為前述の如く第1群を構成し、レンズ厚を出来るだ
け薄くしてこれらの諸収差を良好に補正している。特に
第1ルンズと第12レンズを接合し、軸上色収差の発生
を少なくし、又接合レンズと両レンズ面がら発生する球
面収差で第1群全体から発生する球面収差を補正してい
る。そして正の第13レンズに第1群の屈折力を分担さ
せ、各レンズ面の曲率を弱くして諸収差をバランス良く
補正している。
For this reason, the first lens group is constructed as described above, and the lens thickness is made as thin as possible to satisfactorily correct these various aberrations. In particular, the first lens and the twelfth lens are cemented to reduce the occurrence of axial chromatic aberration, and the spherical aberration produced by the cemented lens and both lens surfaces is used to correct the spherical aberration produced by the entire first group. The refractive power of the first group is shared by the positive thirteenth lens, and the curvature of each lens surface is weakened to correct various aberrations in a well-balanced manner.

第2群のレンズ構成のうち第21レンズにより主に歪曲
収差を良好に補正している。第22レンズの各発散レン
ズ面で発生する正の球面収差を第23レンズの物体側の
収斂レンズ面の屈折力を強くして補正している。そして
この第23レンズの物体側のレンズ面の正の屈折力を強
くしたときに発生する高次収差を負の屈折力を強くして
も球面収差か発生しにくいレンズである物体側の屈折力
を強くした両レンズ面が凹面の第22レンズの物体側の
レンズ面で補正している。
Distortion aberration is mainly corrected favorably by the 21st lens in the lens configuration of the second group. Positive spherical aberration occurring at each diverging lens surface of the 22nd lens is corrected by increasing the refractive power of the object-side converging lens surface of the 23rd lens. The higher-order aberrations that occur when the positive refractive power of the object-side lens surface of this 23rd lens is increased are replaced by spherical aberrations, which are difficult to generate even if the negative refractive power is increased. This is corrected by the object-side lens surface of the 22nd lens, both of which have strong concave lens surfaces.

又、第23レンズと第24レンズより形成される空気レ
ンズにより変イ8に伴い発生する諸収差なバランス良く
補正している。尚、このときの空気レンズは像面側に凸
形状となるように構成するのか収差補正に好ましい。
Furthermore, the air lens formed by the 23rd lens and the 24th lens corrects various aberrations that occur due to the aberration in a well-balanced manner. Note that it is preferable for aberration correction to configure the air lens at this time to have a convex shape toward the image plane side.

本実施例において第22レンズの物体側と像面fllの
レンズ面の曲率半径を各々R8,R9、第23レンズの
物体側のレンズ面の曲率半径をRIOとしたとき lR101<1R81<lR91 とするのか収差補正上好ましい。
In this example, when the radius of curvature of the object side lens surface of the 22nd lens and the lens surface of the image plane fll are respectively R8 and R9, and the radius of curvature of the object side lens surface of the 23rd lens is RIO, lR101<1R81<lR91. This is preferable for correcting aberrations.

又、第21レンズと第22レンズの材質の屈折率を各々
N4.N5としたとき 1.7<N4 1.7〈N5 と高屈折率の材質を用いるのかレンズ面の曲率半径を大
きくし、高次収差の発生を少なくし、かつ歪曲を少なく
することか出来るので良い。
Further, the refractive index of the material of the 21st lens and the 22nd lens is set to N4. If N5, then 1.7<N4 1.7<N5 It is possible to use a material with a high refractive index to increase the radius of curvature of the lens surface, to reduce the occurrence of higher-order aberrations, and to reduce distortion. good.

尚、第2群で発生する色収差の補正が可能であれば 1、 8<N4 1、 8<N5 とするのが良い。Furthermore, if it is possible to correct the chromatic aberration that occurs in the second group, 1, 8<N4 1, 8<N5 It is better to

第3群は比較的強い正の屈折力を有しており、本実施例
では第3群に入射する光束は強い発散性の光束となって
いる。
The third group has a relatively strong positive refractive power, and in this embodiment, the light beam incident on the third group is a strongly divergent light beam.

この為、第3群の物体側に所定形状の3つの正レンズを
配置し、該3つの正レンズで発散光束を順次収斂させる
ことによりレンズ外径の小型化を図りつつ高次収差の発
生量を少なくしている。又第34レンズを負レンズとし
、第3群の前側主点を物体側へ変位させレンズ全長の短
縮化を図っている。
For this reason, three positive lenses of a predetermined shape are arranged on the object side of the third group, and by sequentially converging the diverging light beam with the three positive lenses, the outer diameter of the lens can be made smaller while generating higher-order aberrations. is decreasing. Furthermore, the 34th lens is a negative lens, and the front principal point of the third group is displaced toward the object side, thereby shortening the overall length of the lens.

特に第34レンズの像面側のレンズ面の屈折力を強い凹
面とし、第3群で発生する諸収差を打ち消すようにし、
第3群全体として発生する諸収差をバランス良く補正し
ている。又本実施例では第35レンズを両レンズ面が凸
面の両凸レンズより構成し、即ち第3群の最も像面側の
レンズ面が収斂レンズ面となるようにして諸収差を良好
に補正している。
In particular, the refractive power of the lens surface on the image side of the 34th lens is made into a strong concave surface to cancel out various aberrations occurring in the 3rd group.
Various aberrations occurring in the third group as a whole are corrected in a well-balanced manner. Further, in this embodiment, the 35th lens is constructed of a biconvex lens with both lens surfaces being convex, that is, the lens surface closest to the image plane of the third group is a convergent lens surface, so that various aberrations are well corrected. There is.

第4群は前述の如く2つのレンズより構成し、主に色収
差と軸外収差をバランス良く補正している。特に変倍に
伴う非点収差の変動を良好に補正している。
As mentioned above, the fourth group is composed of two lenses, and mainly corrects chromatic aberration and off-axis aberration in a well-balanced manner. In particular, fluctuations in astigmatism due to zooming are effectively corrected.

即ち、本実施例においては絞りを第3群と一体又は第3
群に近接配置し変倍に伴い移動させている。これにより
第4nを通過する軸外光束の入射位置か変イ8に伴い変
化するようにして非点収差を良好に補正している。
That is, in this embodiment, the aperture is integrated with the third group or
It is placed close to the group and moved as the magnification changes. As a result, the incident position of the off-axis light beam passing through the 4nth lens changes as a result of the change in angle A8, thereby satisfactorily correcting astigmatism.

尚、本実施例においては第3群の最も像面011の第3
5レンズの少なくとも1つのレンズ面を非球面とするの
か球面収差の絶対1a及びズーム変動成分の除去とコマ
収差のズーム変動成分及び非点収差の絶対(J」を小さ
くするのに好ましい。
In addition, in this embodiment, the third lens of the third lens group is
It is preferable to make at least one lens surface of the five lenses aspherical in order to eliminate the absolute 1a of spherical aberration and the zoom variation component, and to reduce the zoom variation component of coma aberration and the absolute (J') of astigmatism.

又、本実施例においては第3群と第4群との間に変倍に
イtい光軸上を移動する所謂フレアー絞りを設けるのが
画角の中間部で発生するフレアーを良好に除去すること
かできるので好ましい。
In addition, in this embodiment, a so-called flare diaphragm that moves on the optical axis for variable magnification is provided between the third and fourth groups to effectively eliminate flare that occurs in the middle of the angle of view. This is preferable because it allows you to do many things.

次に本発明の数値実施例を示す。数値実施例においてR
iは物体側1より順に第1番目のレンズ面の曲率T−径
、Diは物体側より第1番[]のレンズ厚及び空気間隔
、Niとνiは各々物体側より順に第1番目のレンズの
カラスの屈折率とアラへ数である。
Next, numerical examples of the present invention will be shown. In numerical examples R
i is the curvature T-diameter of the first lens surface from the object side 1, Di is the thickness and air gap of the first lens from the object side, and Ni and νi are the curvature T-diameter of the first lens surface from the object side, respectively. This is the refractive index of crow and the number.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、
光の進行方向を正としRを近軸曲率半径、A、B、C,
Dを各々非球面係数としたとき なる式で表わしている。
The aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis,
The traveling direction of the light is positive, R is the paraxial radius of curvature, A, B, C,
It is expressed by the formula when D is each an aspherical coefficient.

又、前述の各条件式と数値実施例における諸数値との関
係を表−1に示す。
Further, Table 1 shows the relationship between each of the above-mentioned conditional expressions and various numerical values in the numerical examples.

数値実施例I F−36,:] 〜+31 R1・+91.67 R2−58,88 R3−177,75 R4−37,51 R5−101,06 R6−77,15 87−14,70 R8−−41,39 R9−54,44 RIo・  2805 R11−−46,42 R12−−22,56 R13−103,61 8I4〜(F2つ) RI5−  28.24 RJ5−325.[10 R17−21,64 R18・ 102.65 R1!!−31,71 FNo−1:4    2ω−61,6゜7     
  〜5.6        〜18.7゜D 1・ 
2.40   N  +−1,80518ν l−25
,402−7,00N  2−1.60311  ν 
2−60.7D  3− 0.12 D  4− 4.40   N  3・1.60311
  ν 3−60.7D5・可変 D 6−1.25  N 4−1.77250 ν 4
−49.6D7・5.15 D 8−1.00  N 5−1.80400 ν 5
−46.609−0.50 DIo・4.00 86−1.80518 ν 6−2
5.4DI+−1,10 Di2−1.00  N 7−1.77250 ν 7
−49.6D13・可変 014− 1.00 015− :1.60 88−1.55962 v  
8−6]、2D15−0.15 D]7・3.30  N 9−1.51633 ν 9
−64.1D18−0.40 D19・5.31  N10−1.51633 シ10
−64.1R20−58,70 R21−2154,79 822−14,72 R23−19,40 824−−62,00 (非球面) R25・フレアー絞り R26−−23,73 R27−624,35 R28−−20,14 020−0,80 021−2,00 D22− 1.25 023− 4.00 024−可変 D25−可変 D26− 1.10 027− 4.6G 1l−1 4686 N12・1.64759 N13−1.7859O N1イ・1.53256 シ11−23.9 b12・33.8 シ13−44 ν 14−45 非球面係数 − 8−2,29113xlO−’ C−1,08793xlO−8 数値実施例2 F−:I6.3 〜131.7 RI−193,70 82−58,99 R3・−171,07 R4・  3728 R5−97,60 86・  79.10 87噴  14.76 R8−−41,70 R9−54,82 RIO−28,08 R11−−46,74 R12−−22,61 R13−−10510 RI4・ (絞り) R]5−  28.33 818・−303,83 817−22,38 R18−96,75 819−30,66 FNo・!:4     2ω・ 61.6’〜5.6
        〜18.7゜D  I−2,40N 
 1・1.80518  ν l−25,4D  2−
 7.00    N  2−1.50311  ν 
2−60.7D 3・ 012 D  4・ 4.40   N  3□1.80311
  v  3−50.7D5・可変 D 6−1.25  N 4・1.77250 ν 4
−49.6D7・5.15 D 8−1.00  N 5−1.80400 ν 5
・46.6D 9−0.50 010−4.00 86・1.805+8 ν 6−2
5.4Dll−1,10 DI2・1.00  N 7−1.77250 ν 7
−49.6013・可変 DI4−1.00 015−3.60  N 8・1.55962 ν 8
−61.2DI6・0.15 017−3.30  N 9−1.51633 ν 9
〜64.1DI8−0.40 019−5.1i0  N10・1.51633 シ1
0−64.1R20−60,62 R21−1329,38 R22−14,81 R23−19,48 R24−−62,00 (非球面) R25−フレアー絞り R26寓 −2342 827−584,18 R28−−19,84 020−0,80 D21− 2.00 022− 1.25 D23− 4.00 024−可変 D251−可変 D26− 1.10 D27− 4.6O N11−1.84666 N12−1.64769 N13−1.7859O N14−1.53256 シ11−23.9 シ12−33.8 シ13−44.2 シ14−45.9 非球面係数 八− B−2,2554X 1O−5 C−1,04924xlO−’ 数値実施例3 F−36,3 〜131.7 RI−181,13 R2−55,94 R3−123,08 R4−35,44 R5−90,34 R6−93,40 87−15,47 88−−45,15 89線  50.14 8IO−28,1O R11−−48,93 R12−−21,73 R13−−89,13 814−(絞り) R15−43,04 RI6−513.92 R17−27,27 RI8− 56.17 R19−23,49 FNo−1: 4 〜5.6 2ω−61,6゜ 〜13.7’ 01・ 2.30 0 2− 7.50 D  3− 0.12 0 4− 4.50 D5−可変 D  6− 1.25 D  7− 4.90 D  8− 1.00 09−0.50 DIO−3,90 Dll−1,10 012−1,00 013−可変 014− 1.50 015冒 2.85 016−0.15 017− 2.80 D18−0.25 D19−9.00 1−1.80518 2−1.55962 !−25,4 2−61,2 3禦1.55962 3−61.2 4〜1.77250 4−49.6 5−1.80400 5−46.6 6曙1.80518 6−25.4 N  7−1.77250  ν 7■49.68−1
.60311 8−60.7 9−1.58913 9−61.2 N10−1.51633 シ10−64.1 R20−316,74 R21−:]16.74 822−  14.96 R23−19,38 R24虐 −72,50 (非球面) R25−7レアー絞り R26嵩 −26,15 R27−171,30 R28−−21,53 D20〜0.00 021− 3.60 D22− 1.25 023− 3.50 024・可変 D25−可変 026− 1.20 027− 5.6O N11−1.84666 N12−1.64769 N13−1.8061O N14−1.53256 シll−23,9 シ12−33.8 シ13−40.9 シ14−45.9 非球面係数 A窮  O B−190481xlO−’ C−−6,69143xlO−” (表 1 ) (発明の効果) 本発明によれば所定の屈折力の4つのレンズ群の変倍に
おける移動条件及び各レンズ群のレンズ構成を面述の如
く設定することにより、レンズ全長の短縮化を図りつつ
、撮影画角62度、変倍比3、TPj度の広画角でしか
も高変倍比の全変倍範囲にわたり高い光学性能を有した
小型のズームレンズを達成することかできる。
Numerical Example I F-36,:] ~+31 R1・+91.67 R2-58,88 R3-177,75 R4-37,51 R5-101,06 R6-77,15 87-14,70 R8-- 41,39 R9-54,44 RIo・ 2805 R11--46,42 R12--22,56 R13-103,61 8I4~ (2 F) RI5- 28.24 RJ5-325. [10 R17-21,64 R18・102.65 R1! ! -31,71 FNo-1:4 2ω-61,6゜7
~5.6 ~18.7°D 1・
2.40 N +-1,80518ν l-25
,402-7,00N 2-1.60311 ν
2-60.7D 3-0.12 D 4-4.40 N 3・1.60311
ν 3-60.7D5・Variable D 6-1.25 N 4-1.77250 ν 4
-49.6D7・5.15 D 8-1.00 N 5-1.80400 ν 5
-46.609-0.50 DIo・4.00 86-1.80518 ν 6-2
5.4DI+-1,10 Di2-1.00 N 7-1.77250 ν 7
-49.6D13・Variable 014- 1.00 015- : 1.60 88-1.55962 v
8-6], 2D15-0.15 D]7・3.30 N 9-1.51633 ν 9
-64.1D18-0.40 D19・5.31 N10-1.51633 Shi10
-64.1R20-58,70 R21-2154,79 822-14,72 R23-19,40 824--62,00 (Aspherical) R25/Flare diaphragm R26--23,73 R27-624,35 R28- -20,14 020-0,80 021-2,00 D22- 1.25 023- 4.00 024-Variable D25-Variable D26- 1.10 027- 4.6G 1l-1 4686 N12・1.64759 N13 -1.7859O N1 1.53256 11-23.9 b12 33.8 13-44 ν 14-45 Aspheric coefficient - 8-2,29113xlO-' C-1,08793xlO-8 Numerical example 2 F-: I6.3 ~131.7 RI-193,70 82-58,99 R3・-171,07 R4・3728 R5-97,60 86・79.10 87 injection 14.76 R8--41, 70 R9-54,82 RIO-28,08 R11--46,74 R12--22,61 R13--10510 RI4・ (Aperture) R]5- 28.33 818・-303,83 817-22,38 R18-96,75 819-30,66 FNo.! :4 2ω・61.6'~5.6
~18.7゜D I-2,40N
1・1.80518 ν l−25,4D 2−
7.00 N 2-1.50311 ν
2-60.7D 3・012 D 4・4.40N 3□1.80311
v 3-50.7D5・Variable D 6-1.25 N 4・1.77250 ν 4
-49.6D7・5.15 D 8-1.00 N 5-1.80400 ν 5
・46.6D 9-0.50 010-4.00 86・1.805+8 ν 6-2
5.4Dll-1,10 DI2・1.00 N 7-1.77250 ν 7
-49.6013・Variable DI4-1.00 015-3.60 N 8・1.55962 ν 8
-61.2DI6・0.15 017-3.30 N 9-1.51633 ν 9
~64.1DI8-0.40 019-5.1i0 N10・1.51633 Si1
0-64.1R20-60,62 R21-1329,38 R22-14,81 R23-19,48 R24--62,00 (Aspherical) R25-Flare diaphragm R26 -2342 827-584,18 R28-- 19,84 020-0,80 D21- 2.00 022- 1.25 D23- 4.00 024-Variable D251-Variable D26- 1.10 D27- 4.6O N11-1.84666 N12-1.64769 N13 -1.7859O N14-1.53256 11-23.9 12-33.8 13-44.2 14-45.9 Aspheric coefficient 8- B-2,2554X 1O-5 C-1 ,04924xlO-' Numerical Example 3 F-36,3 ~131.7 RI-181,13 R2-55,94 R3-123,08 R4-35,44 R5-90,34 R6-93,40 87-15 ,47 88--45,15 89 line 50.14 8IO-28,1O R11--48,93 R12--21,73 R13--89,13 814-(aperture) R15-43,04 RI6-513. 92 R17-27,27 RI8- 56.17 R19-23,49 FNo-1: 4 ~ 5.6 2ω-61,6° ~ 13.7' 01・ 2.30 0 2- 7.50 D 3- 0.12 0 4- 4.50 D5-Variable D 6- 1.25 D 7- 4.90 D 8- 1.00 09-0.50 DIO-3,90 Dll-1,10 012-1,00 013-variable 014- 1.50 015 2.85 016-0.15 017- 2.80 D18-0.25 D19-9.00 1-1.80518 2-1.55962! -25,4 2-61,2 3-1.55962 3-61.2 4-1.77250 4-49.6 5-1.80400 5-46.6 6 Akebono 1.80518 6-25.4 N 7-1.77250 ν 7■49.68-1
.. 60311 8-60.7 9-1.58913 9-61.2 N10-1.51633 10-64.1 R20-316,74 R21-: ]16.74 822- 14.96 R23-19,38 R24 -72,50 (Aspherical surface) R25-7 Rare aperture R26 volume -26,15 R27-171,30 R28--21,53 D20~0.00 021- 3.60 D22- 1.25 023- 3. 50 024・Variable D25-Variable 026- 1.20 027- 5.6O N11-1.84666 N12-1.64769 N13-1.8061O N14-1.53256 Sill-23,9 Sill-12-33.8 Sill 13-40.9 14-45.9 Aspherical coefficient A OB-190481xlO-'C--6,69143xlO-" (Table 1) (Effect of the invention) According to the present invention, 4 of a predetermined refractive power By setting the movement conditions for zooming of the two lens groups and the lens configuration of each lens group as described above, it is possible to shorten the overall lens length while achieving a shooting angle of view of 62 degrees, a zoom ratio of 3, and a wide TPj degree. It is possible to achieve a compact zoom lens that has high optical performance over the entire zoom range with a wide angle of view and a high zoom ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のズームレンズの近軸屈折力配置の説明
図、第2〜第4図は本発明の数値実施例1〜3の広角端
におけるレンズ断面図、第5〜第7図は本発明の数値実
施例1〜3の諸収差図である。収y−図において(A)
は広角端、(B)は中間、(C)は望遠端を示す。 図中、■は第1群、nは第2群、■は第3群、■は第4
群、SPは絞り、FPはフレアー絞り、ΔSはサジタル
像面、6Mはメリディオナル像面である。 第 」 イ$bカ 遍2図 831E/ ■ ■ ■工 丁V 1 ■ ■ ■ 第 図(A) 球面収に 正弦条件 #点数た 歪曲収差(4) 第 つ 図 (C) 止つL求1( 裏 図(8) タ3 7 図 (A ) 化51朶1+ 必 図(C )
FIG. 1 is an explanatory diagram of the paraxial refractive power arrangement of the zoom lens of the present invention, FIGS. 2 to 4 are lens sectional views at the wide-angle end of numerical examples 1 to 3 of the present invention, and FIGS. 5 to 7 are FIG. 3 is a diagram showing various aberrations of numerical examples 1 to 3 of the present invention. In the y-diagram (A)
shows the wide-angle end, (B) shows the middle, and (C) shows the telephoto end. In the figure, ■ is the first group, n is the second group, ■ is the third group, and ■ is the fourth group.
group, SP is a diaphragm, FP is a flare diaphragm, ΔS is a sagittal image plane, and 6M is a meridional image plane. Figure 831E/ ■ ■ ■ Work V 1 ■ ■ ■ Figure (A) Distortion aberration with sine condition # points on spherical convergence (4) Figure (C) Stop L equation 1 (Back figure (8) Ta3 7 figure (A) 51 pages 1+ required figure (C)

Claims (1)

【特許請求の範囲】 (1)物体側より順に正の屈折力の第1群、負の屈折力
の第2群、正の屈折力の第3群、そして第4群の4つの
レンズ群を有し、広角端から望遠端への変倍に際して該
第1群と第2群との空気間隔が増大、該第2群と第3群
との空気間隔が減少、該第3群と第4群との空気間隔が
増大するように該第1群と第3群を物体側へ移動させ、
該第i群の焦点距離をfi、全系の望遠端の焦点距離を
fT、無限遠物体における第2群の望遠端での結像倍率
をβ2Tとするとき −0.85<β2T<−0.65 0.45<f1/fT<0.65 0.1<|f2/fT|<0.15 0.12<f3/fT<0.3 なる条件を満足することを特徴とするズームレンズ。 (2)前記第4群は変倍中固定であることを特徴とする
請求項1記載のズームレンズ。 (3)前記第4群は負の屈折力を有することを特徴とす
る請求項1記載のズームレンズ。(4)物体側より順に
前記第1群はメニスカス状の負の第11レンズと両レン
ズ面が凸面の第12レンズとを接合した接合レンズ、そ
してメニスカス状の正の第13レンズを有し、前記第2
群は物体側に凸面を向けたメニスカス状の負の第21レ
ンズ、物体側に強い屈折面を向けた両レンズ面が凹面の
第22レンズ、両レンズ面が凸面の第23レンズ、そし
て像面側に凸面を向けたメニスカス状の負の第24レン
ズを有し、前記第3群は物体側に強い屈折面を向けた2
つの正の第31レンズと第32レンズ、物体側に強い屈
折面を向けた正の第33レンズ、像面側に強い屈折面を
向けた負の第34レンズ、両レンズ面が凸面の正の第3
5レンズを有し、前記第4群は物体側に強い屈折面を向
けた負の第41レンズと像面側に強い屈折面を向けた正
の第42レンズを有していることを特徴とする請求項1
記載のズームレンズ。 (5)前記第35レンズの少なくとも1つのレンズ面を
非球面より構成したことを特徴とする請求項4記載のズ
ームレンズ。 (6)前記第3群と第4群との間に変倍中移動するフレ
ア除去用の絞りを配置したことを特徴とする請求項4記
載のズームレンズ。
[Claims] (1) Four lens groups: a first group with positive refractive power, a second group with negative refractive power, a third group with positive refractive power, and a fourth group in order from the object side. When zooming from the wide-angle end to the telephoto end, the air distance between the first and second groups increases, the air distance between the second and third groups decreases, and the air distance between the third and fourth groups increases. moving the first group and the third group toward the object so that the air distance between the first group and the third group increases;
When the focal length of the i-th group is fi, the focal length at the telephoto end of the entire system is fT, and the imaging magnification at the telephoto end of the second group for an object at infinity is β2T, -0.85<β2T<-0 A zoom lens that satisfies the following conditions: .65 0.45<f1/fT<0.65 0.1<|f2/fT|<0.15 0.12<f3/fT<0.3. (2) The zoom lens according to claim 1, wherein the fourth group is fixed during zooming. (3) The zoom lens according to claim 1, wherein the fourth group has negative refractive power. (4) In order from the object side, the first group includes a cemented lens made of a meniscus-shaped negative eleventh lens and a twelfth lens whose both lens surfaces are convex, and a meniscus-shaped positive thirteenth lens, Said second
The group consists of a meniscus-shaped negative 21st lens with a convex surface facing the object side, a 22nd lens with both concave lens surfaces with a strong refractive surface facing the object side, a 23rd lens with both convex lens surfaces, and an image plane. It has a meniscus-shaped negative 24th lens with a convex surface facing the side, and the third group has a 24th lens with a strong refractive surface facing the object side.
a positive 31st lens and a 32nd lens, a positive 33rd lens with a strong refracting surface facing the object side, a negative 34th lens with a strong refracting surface facing the image side, and a positive lens with both lens surfaces convex. Third
5 lenses, and the fourth group includes a negative 41st lens with a strong refractive surface facing the object side and a positive 42nd lens with a strong refractive surface facing the image plane side. Claim 1
Zoom lens listed. (5) The zoom lens according to claim 4, wherein at least one lens surface of the 35th lens is an aspherical surface. (6) The zoom lens according to claim 4, further comprising a flare removal diaphragm that moves during zooming and is arranged between the third group and the fourth group.
JP2336590A 1990-02-01 1990-02-01 Zoom lens Pending JPH03228007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2336590A JPH03228007A (en) 1990-02-01 1990-02-01 Zoom lens
US07/647,226 US5144488A (en) 1990-02-01 1991-01-29 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2336590A JPH03228007A (en) 1990-02-01 1990-02-01 Zoom lens

Publications (1)

Publication Number Publication Date
JPH03228007A true JPH03228007A (en) 1991-10-09

Family

ID=12108534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2336590A Pending JPH03228007A (en) 1990-02-01 1990-02-01 Zoom lens

Country Status (1)

Country Link
JP (1) JPH03228007A (en)

Similar Documents

Publication Publication Date Title
JP2816436B2 (en) High-magnification large-aperture zoom optical system
JP3074026B2 (en) Super wide-angle zoom lens
JP3167082B2 (en) Zoom lens
JPH1020193A (en) Zoom lens
JP3018723B2 (en) Zoom lens
JPH11223772A (en) Zoom lens
CN110389430B (en) Zoom lens and image pickup apparatus including the same
JP2808905B2 (en) Zoom lens
JPS6021019A (en) Zoom lens
JPH08220439A (en) Zoom lens
JP3391883B2 (en) Zoom lens
JP3219574B2 (en) Zoom lens
JP2819727B2 (en) Inner focus zoom lens
JP3352263B2 (en) Zoom lens
JP2002062477A (en) Wide-angle zoom lens
JPH0894930A (en) Variable power lens system for copying
JP2003315677A (en) Zoom lens system including wide angle
JP2707766B2 (en) Zoom lens
JP3262235B2 (en) Wide-angle zoom lens
JP2006053437A (en) Zoom lens
JP3647237B2 (en) Zoom optical system
JPH11211985A (en) Zoom lens
JPH0569209B2 (en)
JPH04301612A (en) Rear focus type zoom lens
JPH077147B2 (en) Small zoom lens