JPH03227999A - Method for cutting saccharide chain out of glycoprotein - Google Patents

Method for cutting saccharide chain out of glycoprotein

Info

Publication number
JPH03227999A
JPH03227999A JP25456389A JP25456389A JPH03227999A JP H03227999 A JPH03227999 A JP H03227999A JP 25456389 A JP25456389 A JP 25456389A JP 25456389 A JP25456389 A JP 25456389A JP H03227999 A JPH03227999 A JP H03227999A
Authority
JP
Japan
Prior art keywords
glycoprotein
hydrazine
reaction
reaction vessel
sugar chains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25456389A
Other languages
Japanese (ja)
Other versions
JP2651941B2 (en
Inventor
Asanao Kamei
麻直 亀井
Takemi Murata
健臣 村田
Takashi Yamaguchi
隆司 山口
Masaru Goto
勝 後藤
Fumihiro Koyama
文裕 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGIYAMA SANGYO KAGAKU KENKYUSHO
Honen Corp
Original Assignee
SUGIYAMA SANGYO KAGAKU KENKYUSHO
Honen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGIYAMA SANGYO KAGAKU KENKYUSHO, Honen Corp filed Critical SUGIYAMA SANGYO KAGAKU KENKYUSHO
Priority to JP25456389A priority Critical patent/JP2651941B2/en
Publication of JPH03227999A publication Critical patent/JPH03227999A/en
Application granted granted Critical
Publication of JP2651941B2 publication Critical patent/JP2651941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten reaction time for cutting out saccharide chains for analyzing a glycoprotein useful as a medicine and diagnostic agent by reacting the glycoprotein in contact with hydrazine vapor. CONSTITUTION:A glycoprotein is initially dried in a small tube and the tube containing the aforementioned glycoprotein therein is then installed in a hermetically sealable reaction vessel. The interior of the reaction vessel is preferably replaced with nitrogen, etc., and subsequently decompressed with preferably a vacuum pump. Hydrazine is further injected thereinto and preferably reacted at 130 deg.C for 30min to 1hr. After the reaction, the above-mentioned tube is taken out and toluene is added thereto. The resultant mixture is then subjected to vacuum evaporation to dryness. The aforementioned operation, as necessary, is repeated once more to cut out the objective saccharide chains.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、糖タンパク質の糖鎖分析を行うに際して、前
処理としての糖タンパク質からの糖鎖の切り出し法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for cutting out sugar chains from glycoproteins as a pretreatment when performing sugar chain analysis of glycoproteins.

(従来の技術) 近年、生体由来の生理活性を有する糖タンパク質を医薬
、あるいは診断薬として利用する試みがなされている。
(Prior Art) In recent years, attempts have been made to utilize physiologically active glycoproteins derived from living organisms as medicines or diagnostic agents.

この対象となる糖タンパク質を生産する手段としては組
織からの抽出、細胞の大量培養、遺伝子操作による組み
替えタンパク質の大量生産などが挙げられる。これまで
、得られた糖タンパク質の生理活性の同一性として、ア
ミノ酸組成分析に代表されるように、そのポリペプチド
部分のみによって特徴付けることが一般に行われてきた
。しかし、最近、糖タンパク質の生理的発現において糖
鎖が重要な役割を果たしていることが明らかにされつつ
ある。
Means for producing the target glycoprotein include extraction from tissues, mass culture of cells, and mass production of recombinant proteins through genetic manipulation. Until now, the identity of the physiological activity of the obtained glycoprotein has generally been characterized only by its polypeptide portion, as typified by amino acid composition analysis. However, recently it has been revealed that sugar chains play an important role in the physiological expression of glycoproteins.

例えば、タンパク質の安定化、代謝におけるシグナル作
用、細胞内局所のシグナル作用、及びレセプターや標的
細胞に対する認識としてのシグナル作用などである。
Examples include protein stabilization, signal action in metabolism, intracellular local signal action, and signal action as recognition of receptors and target cells.

このように、糖タンパク質を医薬或いは診断薬として有
効且つ特異的に利用するためには糖鎖構造を目的に沿っ
て規定することが重要となってくる。そのためには生産
された糖タンパク質糖鎖の構造の迅速な分析法が必要と
なってくる。
Thus, in order to effectively and specifically utilize glycoproteins as medicines or diagnostic agents, it is important to define the sugar chain structure according to the purpose. To this end, a rapid method for analyzing the structure of produced glycoprotein sugar chains is required.

糖タンパク質糖鎖を分析するためには、まず糖鎖を糖タ
ンパク質から切り出すことが必要である。糖鎖の切り出
し方法としては、ヒドラジン分解法、[純生化学実験講
座4、複合糖質研究法■、141頁、東京化学同人]、
及びグリコペプチダーゼ(アーモンド由来)  [Bi
ochem、Biophys 、 Res 、 Com
mun 、 、第76巻、1194頁(1977) ]
[J、Biochem、、第84巻、1476頁(19
78) ]、或いはN−グリカナーゼ[J、Biol、
Chem、、第259巻、10700頁(1984) 
]などの酵素による切断法がある。切り出された糖鎖は
通常、トリチウム標識化や蛍光標識化されて分析に供せ
られる。
In order to analyze glycoprotein sugar chains, it is first necessary to cut out the sugar chains from the glycoprotein. Methods for cutting out sugar chains include the hydrazine decomposition method, [Pure Biochemistry Experiment Course 4, Complex Carbohydrate Research Methods ■, p. 141, Tokyo Kagaku Doujin],
and glycopeptidase (derived from almond) [Bi
ochem, Biophys, Res, Com
mun, vol. 76, p. 1194 (1977)]
[J, Biochem, vol. 84, p. 1476 (19
78) ], or N-glycanase [J, Biol.
Chem, vol. 259, p. 10700 (1984)
] There are enzyme-based cleavage methods such as The excised sugar chains are usually labeled with tritium or fluorescent and subjected to analysis.

(発明が解決しようとする課題) しかしながら、従来の酵素法は反応時間が10時間以上
と時間がかかり、更に糖鎖の構造、タンパク質の構造に
よって、切り出し効率が著しく影響を受けるなどの問題
点があった。又従来のヒドラジン分解法(無水ヒドラジ
ンを試料に直接添加、100°Cで反応)は反応時間が
約10時間であり、反応後に過剰なヒドラジンを除くた
めに更に数時間を要する。
(Problem to be solved by the invention) However, the conventional enzymatic method takes a long reaction time of 10 hours or more, and further has problems such as the excision efficiency is significantly affected by the structure of the sugar chain and the structure of the protein. there were. Furthermore, the conventional hydrazine decomposition method (directly adding anhydrous hydrazine to a sample and reacting at 100°C) requires a reaction time of about 10 hours, and several hours are additionally required to remove excess hydrazine after the reaction.

そこで本発明は、従来のヒドラジン分解を改良すること
により、より迅速で簡便な糖タンパク質からの糖鎖の切
り出し法を提供することにある。
Therefore, the present invention aims to provide a faster and simpler method for cutting out sugar chains from glycoproteins by improving conventional hydrazine degradation.

(課題を解決する為の手段) 本発明が特徴とするところは、糖タンパク質試料をヒド
ラジン蒸気と接触させ分解反応を行うことにある。
(Means for Solving the Problems) The present invention is characterized by bringing a glycoprotein sample into contact with hydrazine vapor to carry out a decomposition reaction.

従来、ヒドラジン蒸気と接触させる分解反応により糖鎖
を糖タンパク質から切り出すという方法は検詞されてい
ない。
Until now, there has been no method of cutting out sugar chains from glycoproteins by a decomposition reaction in which they are brought into contact with hydrazine vapor.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは鋭意検討の結果、糖タンパク質から糖鎖を
切り出すに際し、公知のヒドラジン分解法に変えて、ヒ
ドラジン蒸気による分解によれば、迅速で良い結果が得
られることを見出した。
As a result of extensive studies, the present inventors have found that when cutting out sugar chains from glycoproteins, rapid and good results can be obtained by decomposition using hydrazine vapor instead of the known hydrazine decomposition method.

本発明では、糖タンパク質は小チューブの中で予め良く
乾燥させておく。この糖タンパク質試料の入ったチュー
ブを密閉可能な反応容器内に設置する。それから、反応
容器内を真空ポンプによって減圧する。その際、窒素、
アルゴンなとの不活性な気体で反応容器内を置換してか
ら減圧するとより望ましい。ヒドラジンは減圧前に、反
応容器内に加えておいても良いが、望ましくは、反応容
器内を減圧してから、注入するのが良い。
In the present invention, the glycoprotein is thoroughly dried in a small tube in advance. The tube containing this glycoprotein sample is placed in a sealable reaction container. Then, the pressure inside the reaction vessel is reduced using a vacuum pump. At that time, nitrogen,
It is more preferable to purge the inside of the reaction vessel with an inert gas such as argon and then reduce the pressure. Although hydrazine may be added to the reaction vessel before the pressure is reduced, it is preferable to inject it after the pressure inside the reaction vessel is reduced.

本発明でのヒドラジン分解の際の標準的な反応条件は減
圧下、100〜150°0115分から2時間で、好ま
しくは、130℃、30分から1時間である。反応後、
試料チューブを反応容器より取り出し、トルエンを加え
て減圧乾固する。場合によっては、この操作をもう一度
繰り返すことにより糖タンパク質から糖鎖を切り出すこ
とが出来る。次に公知の方法により、N−アセチル化を
行ない、さらにピリジルアミノ化やABEE(パラアミ
ノ安息香酸)化による標識化を行った後にHP L C
分析に供する。
The standard reaction conditions for hydrazine decomposition in the present invention are under reduced pressure from 100 to 150° for 15 minutes to 2 hours, preferably at 130° C. for 30 minutes to 1 hour. After the reaction,
Take out the sample tube from the reaction container, add toluene and dry it under reduced pressure. In some cases, sugar chains can be excised from glycoproteins by repeating this operation once more. Next, by a known method, N-acetylation is performed, and further labeling is performed by pyridylamination and ABEE (para-aminobenzoic acid), followed by HPLC.
Provide for analysis.

従来法では無水ヒドラジンによる分解反応に約10時間
要していたが、本発明の方法によると30分から 1時
間で反応を終了することが可能となった。更に、糖タン
パク質試料にはヒドラジン蒸気し2か接触しないため、
反応後に除去すべきヒドラジン量か従来法に比べて著し
く少量になり、糖タンパク質試料からのヒドラジンの減
圧による除去時間を著しく短縮することも可能となった
In the conventional method, the decomposition reaction using anhydrous hydrazine required about 10 hours, but according to the method of the present invention, it became possible to complete the reaction in 30 minutes to 1 hour. Furthermore, since only hydrazine vapor comes into contact with the glycoprotein sample,
The amount of hydrazine that needs to be removed after the reaction is significantly smaller than in conventional methods, and it is also possible to significantly shorten the time required to remove hydrazine from a glycoprotein sample under reduced pressure.

以下に、本発明の実施例を示し、本発明を具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
EXAMPLES Below, the present invention will be specifically explained by showing examples of the present invention, but the present invention is not limited to these examples.

(実施例) 実施例1  オブアルブミン糖鎖の分析■ オブアルブ
ミン糖鎖の切り出し オブアルブミン(シグマ社)200μgを試料チューブ
の中でよく乾燥させた後、密閉可能な反応容器に設置し
た。反応容器内を減圧にした後、ヒドラジン500μm
を反応容器内に注入した。反応容器内を130°Cにし
、45分反応させた。反応後、容器内を冷却し、常圧に
してから試料チューブを取り出し、別の密閉可能な容器
内に移し、200μmのトルエンを加え5分間減圧乾固
する操作を2回繰り返し糖鎖の切り出しを行った。
(Example) Example 1 Analysis of ovalbumin sugar chain ■ Excision of ovalbumin sugar chain After thoroughly drying 200 μg of ovalbumin (Sigma) in a sample tube, it was placed in a sealable reaction vessel. After reducing the pressure inside the reaction vessel, 500 μm of hydrazine was added.
was injected into the reaction vessel. The inside of the reaction vessel was heated to 130°C, and the reaction was carried out for 45 minutes. After the reaction, the inside of the container was cooled down to normal pressure, the sample tube was taken out, transferred to another sealable container, 200 μm of toluene was added, and the tube was dried under reduced pressure for 5 minutes, which was repeated twice to cut out the sugar chains. went.

■ オブアルブミン糖鎖の分析 ■で得られた試料に飽和炭酸水素ナトリウム水溶液を2
00μm加えてから、これに20μmの無水酢酸を5回
に分けて15分間隔で攪拌しながら加えて最後に30分
攪拌してN−アセチル化を行った。次に試料溶液をイオ
ン交換樹脂(Dowex50Wx2)のカラムに通して
脱塩し、カラムは更に純水で数回洗浄した。この素通り
画分と洗液とを合せ、減圧乾固した。試料残渣は常法通
りにピリジルアミノ化[純生化学実験講座4、複合糖質
研究法I、145〜149頁、東京化学同人]によって
蛍光標識してから5ephadex G−15で精製し
た後、HP L Cにて分析した。第1図にそのクロマ
トグラムを示す。カラムはShimapak CLC−
ODS (内径0.6x15cm)  (島津製作所)
を55°Cの恒温槽中て用い、溶媒は10mMリン酸緩
衝液(PH38)中、n−ブタノールの0.1から02
5%の直線濃度勾配を60分間でかけ、流量を1.0m
l/minとした。
■Analysis of ovalbumin sugar chains■ Add saturated aqueous sodium bicarbonate solution to the sample obtained in ■
After adding 00 μm of acetic anhydride, 20 μm of acetic anhydride was added in 5 portions with stirring at 15 minute intervals, and finally stirred for 30 minutes to perform N-acetylation. Next, the sample solution was desalted by passing through a column of ion exchange resin (Dowex 50W x 2), and the column was further washed several times with pure water. This pass-through fraction and the washing liquid were combined and dried under reduced pressure. The sample residue was fluorescently labeled by pyridylamination in a conventional manner [Pure Biochemistry Experiment Course 4, Complex Carbohydrate Research Methods I, pp. 145-149, Tokyo Kagaku Dojin], purified with 5ephadex G-15, and then purified with HPLC. It was analyzed in Figure 1 shows the chromatogram. The column is Shimapak CLC-
ODS (inner diameter 0.6x15cm) (Shimadzu)
was used in a constant temperature bath at 55°C, and the solvent was 0.1 to 0.02% of n-butanol in 10mM phosphate buffer (PH38).
A 5% linear concentration gradient was applied over 60 minutes with a flow rate of 1.0 m
It was set to 1/min.

なお、対照として従来法によるヒドラジン分解(無水ヒ
ドラジン添加、100℃、10時間)で切り出した糖鎖
のHP L Cのクロマトグラムを第2図に示した。
As a control, FIG. 2 shows an HPLC chromatogram of a sugar chain excised by conventional hydrazine decomposition (addition of anhydrous hydrazine, 100° C., 10 hours).

第1図、第2図に示したように、本発明による糖鎖の切
り出し法によっても従来法と全く同一のクロマトグラム
が得られた。
As shown in FIGS. 1 and 2, the method for cutting out sugar chains according to the present invention yielded completely the same chromatogram as the conventional method.

実施例2   IgG糖鎖の分析 ■ IgG糖鎖の切り出し IgG(シグマ社)200μgを試料チューブの中でよ
く乾燥させた後、密閉可能な反応容器に設置した。反応
容器内を減圧にした後、ヒドラジン500μmを反応容
器内に注入した。反応容器内を130℃にし、45分反
応させた。反応後、容器内を冷却し、常圧にしてから試
料チューブを取り出し、別の密閉可能な容器内に移し2
00μmのトルエンを加え5分間減圧乾固する操作を2
回繰り返し糖鎖の切り出しを行った。
Example 2 Analysis of IgG sugar chains ■ Excision of IgG sugar chains After thoroughly drying 200 μg of IgG (Sigma) in a sample tube, it was placed in a sealable reaction container. After reducing the pressure inside the reaction vessel, 500 μm of hydrazine was injected into the reaction vessel. The inside of the reaction vessel was heated to 130°C, and the reaction was carried out for 45 minutes. After the reaction, cool the inside of the container and bring it to normal pressure, then take out the sample tube and transfer it to another sealable container.
Add 00 μm of toluene and dry under reduced pressure for 5 minutes.
The sugar chains were excised repeatedly.

■ IgG糖鎖の分析 ■で得られた試料に飽和炭酸水素ナトリウム水溶液を2
00μm加えてから、これに20μmの無水酢酸を5回
に分けて15分間隔で攪拌しながら加えて最後に30分
攪拌してN−アセチル化を行った。次に試料溶液をイオ
ン交換樹脂(DOWeX50Wx2)のカラムに通して
脱塩し、カラムは更に純水で数回洗浄した。この素通り
画分と洗液とを合せ、減圧乾固した。試料残渣は常法通
りにピリジルアミノ化によって蛍光標識してから5ep
hadex G−15で精製した後、HP L Cにて
分析した。第3図にそのクロマトグラムを示した。カラ
ムはShimapak C1、C−0DS (内径0.
6X15cm)(島津製作所)を55°Cの恒温槽中で
用い、溶媒は10mMリン酸緩衝液(PH3,8)中、
n−ブタノールの01から0.25%の直線濃度勾配を
60分間でかけ、流量を1.0ml/minとした。
■Analysis of IgG sugar chains■ Add 2 saturated aqueous sodium bicarbonate solutions to the sample obtained in ■.
After adding 00 μm of acetic anhydride, 20 μm of acetic anhydride was added in 5 portions with stirring at 15 minute intervals, and finally stirred for 30 minutes to perform N-acetylation. Next, the sample solution was desalted by passing it through a column of ion exchange resin (DOWeX50Wx2), and the column was further washed several times with pure water. This pass-through fraction and the washing liquid were combined and dried under reduced pressure. The sample residue was fluorescently labeled by pyridylamination in a conventional manner, and then 5ep
After purification with hadex G-15, it was analyzed by HPLC. FIG. 3 shows the chromatogram. The column is Shimapak C1, C-0DS (inner diameter 0.
6 x 15 cm) (Shimadzu Corporation) in a constant temperature bath at 55 °C, the solvent was 10 mM phosphate buffer (PH 3, 8),
A linear concentration gradient of n-butanol from 0.01 to 0.25% was applied over 60 minutes, with a flow rate of 1.0 ml/min.

なお、対照として従来法によるヒドラジン分解で切り出
した糖鎖のトI P L Cのクロマトグラムを第4図
に示した。
As a control, FIG. 4 shows an IPLC chromatogram of a sugar chain excised by hydrazine decomposition using a conventional method.

第3図、第4図に示すように、本発明による糖鎖の切り
出し法によっても従来法と全く同一のクロマトグラムが
得られた。
As shown in FIGS. 3 and 4, the sugar chain excision method according to the present invention yielded completely the same chromatogram as the conventional method.

(発明の効果) 以」二、詳細に説明した通り、本発明によれば、糖タン
パク質より糖鎖を切り出す際の反応時間を著しく短縮す
ることが可能となり、更に反応後試料からのヒドラジン
の除去の操作時間を短縮することも可能となった。
(Effects of the Invention) As explained in detail in Section 2, according to the present invention, it is possible to significantly shorten the reaction time when cutting out sugar chains from glycoproteins, and it is also possible to remove hydrazine from the sample after the reaction. It has also become possible to shorten the operation time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による方法(ヒドラジン蒸気、130°
C145分)によって切り出したオブアルブミン糖鎖の
蛍光標識化物のHP L Cのクロマトグラム、第2図
は従来法(ヒドラジン添加、100°C110時間)で
切り出したオブアルブミン糖鎖の蛍光標識化物のHP 
L Cのクロマトグラムである。 第3図は本発明による方法(ヒドラジン蒸気、130℃
、45分)によって切り出したIgG糖鎖の蛍光標識化
物のHPLCのクロマトグラム、第4図は従来法(ヒド
ラジン添加、100°0110時間)で切り出したIg
G糖鎖の蛍光標識化物のHP L Cのクロマトグラム
である。 (以下余白) 0 第 1 薗 名 目 笛 回 葛4
Figure 1 shows the method according to the invention (hydrazine vapor, 130°
Figure 2 shows the HPLC chromatogram of a fluorescently labeled ovalbumin sugar chain cut out using the conventional method (addition of hydrazine, 100°C for 110 hours).
It is a chromatogram of LC. Figure 3 shows the method according to the invention (hydrazine vapor, 130°C).
Figure 4 shows an HPLC chromatogram of a fluorescently labeled IgG sugar chain excised by the conventional method (addition of hydrazine, 100°C for 10 hours).
This is an HPLC chromatogram of a fluorescently labeled G-glycan. (Left below) 0 No. 1 Sononame Fue Round 4

Claims (1)

【特許請求の範囲】[Claims] (1)糖タンパク質をヒドラジン蒸気と接触反応させる
ことを特徴とする、糖タンパク質からの糖鎖の切り出し
法。
(1) A method for cutting out sugar chains from glycoproteins, which is characterized by contacting glycoproteins with hydrazine vapor.
JP25456389A 1989-09-29 1989-09-29 Extraction method of sugar chain from glycoprotein Expired - Lifetime JP2651941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25456389A JP2651941B2 (en) 1989-09-29 1989-09-29 Extraction method of sugar chain from glycoprotein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25456389A JP2651941B2 (en) 1989-09-29 1989-09-29 Extraction method of sugar chain from glycoprotein

Publications (2)

Publication Number Publication Date
JPH03227999A true JPH03227999A (en) 1991-10-08
JP2651941B2 JP2651941B2 (en) 1997-09-10

Family

ID=17266788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25456389A Expired - Lifetime JP2651941B2 (en) 1989-09-29 1989-09-29 Extraction method of sugar chain from glycoprotein

Country Status (1)

Country Link
JP (1) JP2651941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585473A (en) * 1994-12-09 1996-12-17 The Biomembrane Institute Compounds and methods for monosaccharide analysis
JP2005308697A (en) * 2004-04-26 2005-11-04 Mitsubishi Chemicals Corp Sugar chain separating method, specimen analyzing method, liquid chromatograph, sugar chain analyzing method, and sugar chain analyzing apparatus
JP2006329938A (en) * 2005-05-30 2006-12-07 Shimadzu Corp Sugar chain cut-out device
CN111638291A (en) * 2020-06-16 2020-09-08 江南大学 Method for determining trace carbohydrate impurities in amino acid bulk drug

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585473A (en) * 1994-12-09 1996-12-17 The Biomembrane Institute Compounds and methods for monosaccharide analysis
JP2005308697A (en) * 2004-04-26 2005-11-04 Mitsubishi Chemicals Corp Sugar chain separating method, specimen analyzing method, liquid chromatograph, sugar chain analyzing method, and sugar chain analyzing apparatus
JP2006329938A (en) * 2005-05-30 2006-12-07 Shimadzu Corp Sugar chain cut-out device
CN111638291A (en) * 2020-06-16 2020-09-08 江南大学 Method for determining trace carbohydrate impurities in amino acid bulk drug
CN111638291B (en) * 2020-06-16 2021-11-16 江南大学 Method for determining trace carbohydrate impurities in amino acid bulk drug

Also Published As

Publication number Publication date
JP2651941B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
Bornstein Structure of α1-CB8, a large cyanogen bromide produced fragment from the α1 chain of rat collagen. The nature of a hydroxylamine-sensitive bond and composition of tryptic peptides
Koenig et al. Structure of carbohydrate of hemoglobin AIc.
Hansen et al. A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells
JP2766647B2 (en) Peptides
EP1688404A2 (en) Kit comprising a device for the synthesis of 2-[18F]fluoro-2-deoxy-D-glucose (FDG)
JP4312615B2 (en) D-enzyme compositions and methods for their use
US4782139A (en) Selective chemical removal of a protein amino-terminal residue
NO164478B (en) PROCEDURE FOR THE ISOLATION OF UNREADDED OLIGOSACCHARIDES
Katzman et al. Invertebrate connective tissue. IX. Isolation and structure determination of glucosylgalactosylhydroxylysine from sponge and sea anemone collagen
Beintema et al. Rat pancreatic ribonuclease I. Isolation and properties
Holroyde et al. Studies on the use of sepharose-N-(6-aminohexanoyl)-2-amino-2-deoxy-D-glucopyranose for the large-scale purification of hepatic glucokinase
JPS5839513B2 (en) Storage method for purified trypsin and trypsin-like enzymes
JPH0565108B2 (en)
JPH03227999A (en) Method for cutting saccharide chain out of glycoprotein
JPH03228000A (en) Method for cutting saccharide chain out of glycoprotein
Novak et al. Tyrosyl peptide models for acidic protein-DNA interactions
EP3853241B1 (en) Site-specific serine adp-ribosylated proteins and peptides and method for producing the same
JPS63501541A (en) Production of polypeptides
US5214138A (en) Imidazopyridinium compound and processes for isolating, identifying, and chemically synthesizing same
Kagamiyama et al. Aspartate transaminase from E. coli: Amino acid sequences of the NH2-terminal 33 residues and chymotryptic pyridoxyl tetrapeptide
Tanaka et al. Discovery and application of 6π-azaelectrocyclization to natural product synthesis and synthetic biology
Krisko et al. Protein and glycoprotein synthesis by isolated kidney glomeruli
JP2778086B2 (en) Purification of Factor XIII by Affinity Chromatography
Waley et al. Rearrangement of the amino-acid residues in peptides by the action of proteolytic enzymes
Grosser, Y.,* Eales, L.* & Sano The chemical structure of porphyrin-peptide variegata

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13