JPH0322684A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH0322684A
JPH0322684A JP1158019A JP15801989A JPH0322684A JP H0322684 A JPH0322684 A JP H0322684A JP 1158019 A JP1158019 A JP 1158019A JP 15801989 A JP15801989 A JP 15801989A JP H0322684 A JPH0322684 A JP H0322684A
Authority
JP
Japan
Prior art keywords
storage battery
battery cell
switch
toner
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1158019A
Other languages
Japanese (ja)
Inventor
Takeshi Miyabayashi
毅 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP1158019A priority Critical patent/JPH0322684A/en
Priority to US07/537,797 priority patent/US5036396A/en
Publication of JPH0322684A publication Critical patent/JPH0322684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reproduce a picture with toner development or the like by providing a thermister switch able to vary an electric resistance and a development electrode selectively corresponding to a sheet battery cell and discharging the remaining charge of a battery cell after discharge through a development electrode. CONSTITUTION:A battery 1 is discharged through a discharge electrode 9 in response to light radiation intensity and radiation time to form light latent image. Then switches 34, 35 are switched sequentially by an external power supply 42 to supply power to a heater 19, which is selectively heated. Then thermister members 16, 22 are heated to decrease the electric resistance of the thermister members 16, 22 and a negative charge is fed selectively to the development electrode 23. When a switch 44 is closed in this state, a toner is adsorbed by electrophoresis and electrolytic effect from a toner spray 43 to apply toner development. Then toner transfer paper is supplied to transfer the toner onto the paper, then a toner image corresponding to the light latent image is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体撮像装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a solid-state imaging device.

[従来の技術] 従来、固体!lf!装置として電荷結合素子(CCD》
が広く用いられている.このCODは入射光により生じ
た電荷を転送信号で転送する素子である. [発明が解決しようとする課題] ところで、このCODは、電荷の転送効率が表面単位密
度、ディバイスの形状や種々の動作条件で変動し易く、
そのため、正確に光情報を電気信号として取り出すには
動作条件を厳しく管理しなければならない。また、CO
Dは蓄積される表面電荷量が極めて低く、外部に対して
仕事をするだけの蓄電機能を保持させることは容易では
ない.本発明は、上記問題を解消するもので、一画素毎
に十分な蓄電機能を付与し、入射した光情報から容易、
かつ正確に蓄電量を計測することができ、トナー現像等
により画像を再現するなど外部に仕事をすることが可能
な固体me装置を提供することを目的とする. [課題を解決するための手段] 上記目的を達成するため本発明の固体撮像装置は、シー
ト状蓄電池セルと、この蓄電池セルの陽極もしくは陰極
集電木上に形成した光尋電性物質からなる放電用スイッ
チとにより光メモリ素子を構成し、この光メモリ素子を
複数個配列してなる固体操像素子と、前記蓄電池セルを
外部電源から充電する充電回路と、充電後に前記光導電
性物質に光が照射された時に前記蓄電池セルの電荷を放
電させる放電回路と、前記蓄電池セルの光導電性物質が
位置する側とは反対側に設けられ、蓄電池セルに対応し
て選択的に電気抵抗を可変なサーミスタスイッチ及び、
このサーミスタスイッチに接する現像用電極とを備え、
放電後の蓄電池セルの残存電荷を現像用電極を通して放
電可能にしたものである. また、本発明の固体撮像装置は、シート状蓄電池セルと
、この蓄電池セルのw:j掻もしくは陰[!集電体上に
形成した光電変換素子により光メモリ素子を構成し、こ
の光メモリ素子を複数個配列してなる固体撮像素子と、
前記光電変換素子が受光した時に生じる電気エネルギー
を前記蓄電池セルに充電する充電回路と、前記蓄電池セ
ルの光電変換素子が位置する側とは反対側に設けられ、
蓄電池セルに対応して選択的に電気抵抗を可変なサーミ
スタスイッチ及び、このサーミスタスイッチに接する現
像用電極とを備え、充電後の蓄電池セルの電荷を現像用
電極を通して放電可能にしたものである. また、上記においてサーミスタスイッチに代えてモス型
トランジスタを用いてもよい.[作用] 上記構成において、光導電性物質もしくは光電変換素子
に光が入射すると、シート状蓄電池に蓄積電荷量の分布
が生じ、光メモリ素子として光潜像が形成される,この
蓄電池の電荷を放電させることにより潜像に対応したビ
ットマップ情報を得ることができる.このビットマップ
情報をデータ処理後、外部電源により、再び、蓄電池を
充電する.この後、サーミスタスイッチの抵抗を制御し
て蓄電池を個別に現像用電極を通して放電させ、同電極
にトナー等を転写し現像することができる。
[Conventional technology] Conventionally, solid! lf! Charge-coupled device (CCD) as a device
is widely used. This COD is an element that transfers charges generated by incident light using a transfer signal. [Problems to be Solved by the Invention] Incidentally, in this COD, the charge transfer efficiency tends to vary depending on the surface unit density, the shape of the device, and various operating conditions.
Therefore, operating conditions must be strictly controlled to accurately extract optical information as electrical signals. Also, CO
D has an extremely low amount of accumulated surface charge, and it is not easy to maintain a power storage function sufficient to perform work on the outside. The present invention solves the above problem by providing a sufficient power storage function for each pixel, and easily collecting information from incident light information.
The purpose of the present invention is to provide a solid-state ME device that can accurately measure the amount of stored electricity and that can perform external work such as reproducing images by developing toner. [Means for Solving the Problems] In order to achieve the above object, the solid-state imaging device of the present invention comprises a sheet-like storage battery cell and a photovoltaic material formed on the anode or cathode current collector of the storage battery cell. A discharging switch constitutes an optical memory element, a solid-state image element formed by arranging a plurality of optical memory elements, a charging circuit for charging the storage battery cell from an external power source, and a charging circuit that charges the photoconductive material after charging. A discharge circuit that discharges the electric charge of the storage battery cell when irradiated, and a discharge circuit that is provided on the side of the storage battery cell opposite to the side where the photoconductive material is located, and that is capable of selectively varying the electric resistance corresponding to the storage battery cell. thermistor switch and
Equipped with a developing electrode in contact with this thermistor switch,
The remaining charge in the storage battery cell after discharge can be discharged through the developing electrode. Further, the solid-state imaging device of the present invention includes a sheet-like storage battery cell and a w:j scratch or shadow [! An optical memory element is configured by a photoelectric conversion element formed on a current collector, and a solid-state image sensor is formed by arranging a plurality of optical memory elements;
A charging circuit that charges the storage battery cell with electrical energy generated when the photoelectric conversion element receives light, and a charging circuit that is provided on the opposite side of the storage battery cell from the side where the photoelectric conversion element is located,
It is equipped with a thermistor switch whose electric resistance can be selectively varied according to the storage battery cell, and a developing electrode in contact with the thermistor switch, so that the electric charge of the storage battery cell after charging can be discharged through the developing electrode. Furthermore, in the above, a MOS type transistor may be used instead of the thermistor switch. [Function] In the above configuration, when light is incident on the photoconductive substance or the photoelectric conversion element, a distribution of accumulated charges occurs in the sheet-like storage battery, and a latent optical image is formed as an optical memory element.The charges of this storage battery are discharged. By doing this, bitmap information corresponding to the latent image can be obtained. After processing this bitmap information, the storage battery is charged again using an external power source. Thereafter, by controlling the resistance of the thermistor switch, the storage battery is individually discharged through the developing electrode, and toner or the like can be transferred to the same electrode for development.

[実施例] 以下、本発明を具体化したー実施例を図面を参照して説
明する. 第1図〜第65!jは本発明の第1実施例を示す。
[Examples] Hereinafter, examples that embody the present invention will be described with reference to the drawings. Figures 1-65! j indicates the first embodiment of the present invention.

第1図は固体撮像装置における固体m像素子を形成する
光メモリ素子単体の構成を、第2図は同光メモリ素子の
配列構成を、第3図は固体撮像素子、現像用電極部及び
電気回路を含んだ固体撮像装置の原理構戒を、第4図は
同電極部におけるサーミスタスイッチの構或を、第5図
は光メモリ素子単体とis部の各部材の形状を、第6図
は光メモリ素子と電機回路の模式構成を、夫々示す.ま
ず、第1図により固体man素子の構成要素である光メ
モリ素子について説明する.光メモリ素子1は、シート
状蓄電池(セル)2と、その上に設けられた放電用スイ
ッチ3とからなる.シート状蓄電池2は、Ni等の陽極
集電体4と、VeO13、V 2 0 s等からなる陽
極5と、ポリエチレン誘導体にL I C j O 4
を混入したボリマー電解質等からなる電解質6と、L 
i−Aj合金からなる陰f!7と、N1等の陰極集電体
8とからなる。
Figure 1 shows the configuration of a single optical memory element forming a solid-state m-image element in a solid-state imaging device, Figure 2 shows the arrangement of the optical memory element, and Figure 3 shows the solid-state imaging element, developing electrode section, and electric circuit. Figure 4 shows the structure of the thermistor switch in the same electrode section, Figure 5 shows the shape of the optical memory element itself and each member of the IS section, and Figure 6 shows the optical memory element and its structure. The schematic configuration of each electrical circuit is shown. First, an optical memory element, which is a component of a solid-state MAN element, will be explained with reference to FIG. The optical memory element 1 consists of a sheet-shaped storage battery (cell) 2 and a discharge switch 3 provided thereon. The sheet-like storage battery 2 includes an anode current collector 4 made of Ni or the like, an anode 5 made of VeO13, V20s, etc., and a polyethylene derivative containing L I C j O 4 .
Electrolyte 6 consisting of a polymer electrolyte etc. mixed with L
Yin f! made of i-Aj alloy! 7 and a cathode current collector 8 such as N1.

放電用スイヅチ3は、ITO等の膜でなる透明電極《放
電用電極〉9と、T 1 02 、Z n O及び有機
光導電性物質(OPC)等からなる光導電性物質10か
らなる.なお、本実施例では陽極集電体4上に放電用ス
イッチ2を設けたものを示したが、陰極集電体8上に設
けたものであってもよい.上記のような光メモリ素子1
を複数個X,Y方向にマトリックス状に配置結合して構
成した固体撮像素子に、後述するように同素子内の蓄電
池を個別放電するためのサーミスタスイッチ材及びトナ
ー現像用電極を組合せた撮像部12を第2図に示してい
る. すなわち、この撮像部12は、最上面に設けられたガラ
ス基板11と、光メモリ素子(光導電性スイッチおよび
蓄電池セル)からなる固体aim素子、サーミスタース
イッチ材およびトナー現像用電極からなる11ltIA
素子部13と、光メモリ素子の蓄電池の陰極集電体、サ
ーミスタスイッチ材の発熱体電極のX方向の各引き出し
用電f!14と、蓄電池の放電用電極、陽極集電体、発
熱体電極のY方向の各引き出し用電極15とで構成され
ている.第3図において、前述と同符号は同部材を示し
、撮像素子部13における蓄電池の陰極$電体8の下面
には、各蓄電池セルに対応して選択的に電気抵抗を可変
なサーミスタスイッチ部(16〜22)と、この下面に
接するトナー現像用の電極23とが設けられている.こ
のサーミスタスイッチ材は、サーミスタ材16と、絶縁
層17と、Y方内発熱体用電極18と、発熱体19と、
X方内発熱体用電極20と、絶縁層21と、サーミスタ
材22とからなる.なお、24〜27は絶縁レジストで
ある. 上記サーミスタースイッチ部な詳細′!iA造は第4図
に示すごとくであり、X,Y方向の発熱体用電極の交点
に位置する発熱体が発熱し、その部分のサーミスタ材の
抵抗が小さくなるように構威されている.また、上記各
部材の形状は第5図に示すごとくである. 次に、第3図、第6国を参照して引き出し用電極とその
電気回路について説明する.コントローラ30は、X,
Y方向の各種Tth極に対してマトリックススキャンを
行なうためのものであり、そのスイッチの構或手段とし
てはシフトレジスタなどを用いればよい.このコントロ
ーラ30において、陽極集電体4、放電用電極9にスイ
ッチ31.32(Y方向)が、陰極集電体8にスイッチ
33(X方向〉が、発熱体用電極18にスイッチ34(
Y方向〉が、発熱体用電極20にスイッチ35(X方向
)が、夫々接続されている,スイッチ36と外部電源3
7は、スイッチ31.33を介して蓄電池1を充電する
充電回路を構或し、放電用抵抗38は、スイッチ32.
33、光導電性物質でなる放電用スイッチ3を介して蓄
電池2の電荷を放電する放電回路を梢戒し、スイッチ3
9、抵抗(計測用負荷)40は、放電後の蓄電池2の残
存蓄電量を計測する(ビットマップ情報として取り出す
)ための計測回路を構成する.また、スイッチ41、外
部電源42は、スイッチ34.35を介して発熱体19
を発熱するための電源回路を梢戒する. また、トナー現像用電極23の下面に対向位置するトナ
ースプレー43とスイッチ44は、スイッチ31を介し
て蓄電池2を放電し、もってトナー現像用電極23をト
ナー現像する現像部を構成する.上記コントローラ30
内の各スイッチはCPU45により情報の書込み、読出
しを行なうために制御され、また、計測されたデータは
メモリ46に記憶される。
The discharge switch 3 includes a transparent electrode (discharge electrode) 9 made of a film such as ITO, and a photoconductive material 10 made of T 1 02 , Z n O, organic photoconductive material (OPC), etc. In this embodiment, the discharge switch 2 is provided on the anode current collector 4, but it may be provided on the cathode current collector 8. Optical memory element 1 as described above
A solid-state imaging device is constructed by arranging and combining a plurality of the above in a matrix in the X and Y directions, and a thermistor switch material for individually discharging the storage batteries in the device and an electrode for toner development are combined as described later. 12 is shown in Figure 2. That is, this image pickup section 12 includes a glass substrate 11 provided on the uppermost surface, a solid AIM element consisting of an optical memory element (a photoconductive switch and a storage battery cell), an 11ltIA consisting of a thermistor switch material and an electrode for toner development.
The element portion 13, the cathode current collector of the storage battery of the optical memory element, and the heating element electrode of the thermistor switch material are drawn out in the X direction f! 14, and electrodes 15 for drawing out the discharge electrode, anode current collector, and heating element electrode of the storage battery in the Y direction. In FIG. 3, the same reference numerals as mentioned above indicate the same members, and on the lower surface of the storage battery cathode electric body 8 in the image sensor section 13, there is a thermistor switch section that can selectively vary the electric resistance corresponding to each storage battery cell. (16 to 22) and an electrode 23 for toner development that is in contact with the lower surface thereof. This thermistor switch material includes a thermistor material 16, an insulating layer 17, a Y-direction heating element electrode 18, a heating element 19,
It consists of an electrode 20 for the heating element in the X direction, an insulating layer 21, and a thermistor material 22. Note that 24 to 27 are insulating resists. Details of the thermistor switch above! The iA structure is as shown in Figure 4, and is constructed so that the heating element located at the intersection of the heating element electrodes in the X and Y directions generates heat, and the resistance of the thermistor material in that area is reduced. Moreover, the shapes of each of the above members are as shown in FIG. Next, the extraction electrode and its electric circuit will be explained with reference to Figure 3 and Country 6. The controller 30 has X,
This is to perform matrix scanning for various Tth poles in the Y direction, and a shift register or the like may be used as the switch structure or means. In this controller 30, switches 31 and 32 (Y direction) are connected to the anode current collector 4 and discharge electrode 9, switches 33 (X direction) are connected to the cathode current collector 8, and switches 34 (in the X direction) are connected to the heating element electrode 18.
The switch 36 and the external power supply 3 are connected to the heating element electrode 20 and the switch 35 (X direction) respectively.
7 constitutes a charging circuit that charges the storage battery 1 via switches 31.33, and a discharging resistor 38 is connected to switches 32.33.
33. A discharge circuit for discharging the charge of the storage battery 2 via the discharge switch 3 made of a photoconductive substance is connected to the switch 3.
9. A resistor (measuring load) 40 constitutes a measuring circuit for measuring the remaining amount of stored electricity in the storage battery 2 after discharge (extracting it as bitmap information). Further, the switch 41 and the external power source 42 are connected to the heating element 19 via the switches 34 and 35.
The power supply circuit for generating heat must be carefully controlled. Further, the toner spray 43 and the switch 44 located opposite to each other on the lower surface of the toner developing electrode 23 constitute a developing section that discharges the storage battery 2 via the switch 31 and thereby develops the toner developing electrode 23 with toner. The above controller 30
Each switch within is controlled by the CPU 45 to write and read information, and measured data is stored in the memory 46.

なお、第6図において、スイッチSl,32・・・が上
記スイッチ33に相当し、スイッチS11,S21,・
・・が上記スイッチ31に相当し、スイッチS12.8
22.・・・が上記スイッチ32に相当する.また、計
測は、CPU45が負荷40の両端の端子40′の電圧
を読み込むことにより行われる. 次に、上記構成の動作を説明する. スイッチ36を一定時間ON状態にし、スイッチ31.
33を順次切換え、外部電源(定電流電源が望ましい》
37からシート状蓄電池1に規定量の電流を供給し、電
.気エネルギーを蓄積する.次にスイッチ32.33を
全てON状態とし、放電用スイッチ3の上方から光hν
を照射すると、光導電性物質10が導通《ON)状態に
なり、光照射強度及び照射時間に応じて放電用電極9を
通して蓄電池1の放電が行なわれる.このようにすると
蓄電池1に蓄電量分布が生じ光潜像が形威される. 次に、光潜像をビットマップ情報として外部へ読出すた
めのスイッチ39をON状態にし、スイッチ31.33
を順次切換えて負荷40で放電し、各蓄電池1の残量電
荷量を読出す.この読出しにより各画素毎のビットマッ
プ情報すなわち入射光像の情報を得ることができ、これ
をメモリ46に記憶させる.なお、この情報に基き、そ
の強度分布を2次元にプロットすれば、光学像をトレー
スすることができる. 次に、上記のビットマップ情報に基き放電電荷量(=初
期電荷量一残存電荷量)に相当する電荷を外部電源37
でシート状蓄電池lの各セル毎に再び充電すれば、再び
、潜像を形戒することができる.その後、外部電源42
によりスイッチ34.35を順次切換えて発熱#19に
3i1mml,、同発熱体19を選択的に加熱すること
によりサーミスタ材16.22を加熱し、同サーミスタ
ー材16.22の電気抵抗を降下させる.すると、現像
用電極23に選択的に負電荷が供給される.この状態で
、スイッチ44をONすれば、トナースプレー43より
トナーが電気泳動、電析効果により現像用電極23に吸
着され、トナー現像が行なわれる.その後、トナー転写
用紙(不図示)を供給して用紙上にトナーを移し取れば
光潜像に対応するトナー像が得られ、複写が可能となる
. 上記実總例では、光メモリ素子1の梢或要素として光導
電性物質10からなる放電用スイッチ3を用いた例を示
したが、この放電用スイッチ3に代えて、光電変換素子
を用いたものであってもよい.この場合には、光照射に
より光電変換素子により生じた電気エネルギーを蓄電池
に充電し、この充電電荷を計測することにより、前述と
同様に各画素毎のビットマップ情報を得ることができる
,第7図は他の実施例による固体撮像素装置の撮像部1
12の構成を、第8図は同撮像部112の撮像素子部1
13と電気回路を含んだ原理梢或を示す. この実施例では上記サーミスタスイッチ部に代えて、モ
ス型トランジスタ、例えばTPT(thinfilm 
transistor )等によるスイッチを用いた点
が前述のものと相違する.第7図において、撮像部11
2は前述と同様の光メモリ素子とTFT51によるスイ
ッチとからなる撮像素子部113と、TF’r51に対
するシグナル電極52及びゲート電@53からなる. 第8図に示すように、各陰極集電体8の中にTFT51
が形或され、かつ、その下面がトナー現像用電極23と
して形威されている,’r’FT51のソースS、ゲー
トG及びドレインDは、それぞれ陰極集電体8、ゲート
電極52の引き出し電極及びトナー現像用電極23に接
続されている.上記シグナル電[i52の引き出し電極
はマトリックススキャンされるスイッチ33《前述した
第3図のスイッチ33と同等物〉に接続されている.ま
た、ゲート電極52の引き出し電極はマトリックススキ
ャンされるスイッチ41を介して電源42に接続されて
いる.これはTFT51を個別制御するためのもので、
前記のサーミスタスイッチを個別制御するスイッチ34
,35.41,電源42と同等の部材である. この実施例の構成においても、前述と同様にして光hν
を照射して光導電性物質10からなるスイッチを通して
蓄電池1の電荷を放電することで、光潜像が得られる.
その後、スイッチ41をマトリックススキャンしてTF
T5 1のスイッチを順次、個別に導通させ、蓄電池セ
ルの残存電荷をスイッチ44、トナースプレー43を介
して放電することにより、トナー現像用t[i23にト
ナーを吸着・析出《転写》させ、現像することができる
.上記のいずれの実施例においても、サーミスタスイッ
チ或いはモス型トランジスタによりトナー現像用電ti
i23の作動を順次切換えるようにしているため、トナ
ー転写は上記のように1画素毎に行なうスプレ一方式の
他に、全面浸漬による方式を採用してもよい. [発明の効果] 以上のように本発明によれば、シート状蓄電池と光導電
性物質または光電変換素子よりなる光メモリ素子を複数
個配列して形成した固体撮像素子を用い、光照射により
蓄電池の電荷を充・放電することで、光入力に応じた蓄
電池の残存蓄電量による感光潜像を得て、これをビット
マップ情報として読出し、また、これを適宜、修正処理
して再び、潜像を形成して現像することができる.した
がって、1回の露光で形成された光潜像を直接、現像す
ることができ、露光系、現倣系の構成を簡略化すること
ができる.また、露光により蓄積される各画素に相当す
る電荷量を正確に読出すことができ、固体撮像素子とし
てCODを用いた場合に較べて動作条件の制約が少なく
、容易かつ、安価に被写体の画像を高い再現性をもって
形或することができる. また、サーミスタスイッチ或いはモス型トランジスタを
用いて蓄電池セル毎に個別に放電させて現像するので、
現像方式に制約を受けることがない.
In FIG. 6, the switches Sl, 32, . . . correspond to the switch 33, and the switches S11, S21, .
...corresponds to the above switch 31, and switch S12.8
22. ... corresponds to the switch 32 above. Further, the measurement is performed by the CPU 45 reading the voltage of the terminals 40' at both ends of the load 40. Next, the operation of the above configuration will be explained. The switch 36 is turned on for a certain period of time, and the switch 31.
33 in sequence and connect an external power supply (preferably a constant current power supply).
A specified amount of current is supplied from 37 to the sheet storage battery 1. Accumulate energy. Next, all switches 32 and 33 are turned on, and light hν is applied from above the discharge switch 3.
When irradiated with light, the photoconductive substance 10 becomes conductive (ON), and the storage battery 1 is discharged through the discharge electrode 9 in accordance with the light irradiation intensity and irradiation time. In this way, a distribution of the amount of charge is generated in the storage battery 1, and an optical latent image is formed. Next, the switch 39 for reading out the optical latent image as bitmap information is turned on, and the switches 31 and 33 are turned on.
are sequentially switched and discharged by the load 40, and the remaining charge amount of each storage battery 1 is read out. By this reading, bitmap information for each pixel, that is, information on the incident light image can be obtained, and this is stored in the memory 46. Furthermore, if the intensity distribution is plotted two-dimensionally based on this information, the optical image can be traced. Next, based on the above bitmap information, a charge corresponding to the discharge charge amount (= initial charge amount - remaining charge amount) is transferred to the external power supply 37.
By recharging each cell of the sheet storage battery l, the latent image can be recorded again. After that, the external power supply 42
The switches 34 and 35 are sequentially switched to heat the heat generating element 19 by 3 mm, and the thermistor material 16.22 is heated by selectively heating the heat generating element 19, thereby lowering the electrical resistance of the thermistor material 16.22. .. Then, negative charges are selectively supplied to the developing electrode 23. In this state, when the switch 44 is turned on, toner from the toner spray 43 is attracted to the developing electrode 23 by electrophoresis and electrodeposition effects, and toner development is performed. Thereafter, by supplying toner transfer paper (not shown) and transferring the toner onto the paper, a toner image corresponding to the optical latent image is obtained, making it possible to copy. In the above example, the discharge switch 3 made of the photoconductive material 10 is used as a top element of the optical memory element 1, but instead of the discharge switch 3, a photoelectric conversion element is used. It may be. In this case, bitmap information for each pixel can be obtained in the same manner as described above by charging a storage battery with electrical energy generated by the photoelectric conversion element due to light irradiation and measuring this charged charge. The figure shows an imaging unit 1 of a solid-state imaging device according to another embodiment.
12, FIG. 8 shows the configuration of the imaging element section 1 of the imaging section 112.
13 and shows the principle structure including an electric circuit. In this embodiment, instead of the thermistor switch section, a MOS type transistor, for example, a TPT (thin film)
It differs from the previous one in that it uses a switch such as a transistor. In FIG. 7, the imaging unit 11
2 is composed of an image sensor section 113 consisting of an optical memory element and a switch using a TFT 51 as described above, and a signal electrode 52 and a gate electrode @53 for the TF'r 51. As shown in FIG. 8, there is a TFT 51 in each cathode current collector 8.
The source S, gate G, and drain D of the 'r'FT 51 are shaped like a toner developing electrode 23, and the lower surface thereof is used as the toner developing electrode 23, respectively. and is connected to the toner developing electrode 23. The extraction electrode of the signal electrode [i52] is connected to a switch 33 (equivalent to the switch 33 in FIG. 3 described above) which is subjected to matrix scanning. Further, an extraction electrode of the gate electrode 52 is connected to a power source 42 via a switch 41 that is subjected to matrix scanning. This is for controlling TFT51 individually.
A switch 34 that individually controls the thermistor switch.
, 35.41, is a member equivalent to the power supply 42. Also in the configuration of this embodiment, the light hν
A latent photoimage is obtained by discharging the charge of the storage battery 1 through a switch made of a photoconductive material 10.
After that, the switch 41 is matrix-scanned and the TF
By sequentially turning on the T5 1 switches individually and discharging the remaining charge in the storage battery cell via the switch 44 and the toner spray 43, the toner is adsorbed and deposited (transferred) on the toner developing T[i23] and developed. can do. In any of the above embodiments, the toner developing voltage ti is controlled by a thermistor switch or a MOS transistor.
Since the operation of the i23 is switched sequentially, toner transfer may be performed by a full-surface immersion method in addition to the spray method performed pixel by pixel as described above. [Effects of the Invention] As described above, according to the present invention, a solid-state image pickup device formed by arranging a sheet storage battery and a plurality of optical memory elements each made of a photoconductive substance or a photoelectric conversion element is used, and the storage battery is activated by light irradiation. By charging and discharging the charge, a photosensitive latent image is obtained based on the amount of remaining charge in the storage battery according to the light input, this is read out as bitmap information, and this is corrected as appropriate to create a latent image again. It can be formed and developed. Therefore, the optical latent image formed by one exposure can be directly developed, and the configurations of the exposure system and development copying system can be simplified. In addition, the amount of charge accumulated in each pixel due to exposure can be accurately read out, and there are fewer restrictions on operating conditions than when using a COD as a solid-state image sensor, and images of objects can be captured easily and inexpensively. can be shaped with high reproducibility. In addition, since each storage battery cell is individually discharged and developed using a thermistor switch or a MOS transistor,
There are no restrictions on the development method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による画像形或装置に用いた
固体撮像素子を梢成する光メモリ素子の梢成図、第2図
は固体撮像素子からなる撮像部の構成を示す平面図、第
3図は撮像素子部及び電気回路を含んだ全体梢戒図、第
4図は上記撮像部におけるトナー現像のために蓄電池を
個別放電させるたのサーミスタスイッチの構或図、第5
図(a)〜(m)は上記撮像素子部の各部材の形状を示
す平面図、第6図は上記光メモリ素子と電気回路の模式
梢或図、第7図は本発明の他の実施例によるm像部の平
面図、第8図はこの実施例の場合の撮像素子部及び電気
回路を含んだ全体構成図である.1・・・光メモリ素子
、2・・・シート状蓄電池、3・・・放電用スイッチ、
4・・・陽極集!#.、8・・・陰極集電体、10・・
・光導電性物質、12.112・・・撮像部、13,1
13・・・撮像素子部、16.22・・・サーミスタ材
、23・・・トナー現像用電極、31,32.33.3
6.39・・・スイッチ、37・・・外部電源、38・
・・放電用抵抗、40・・・抵抗〈負荷)43・・・ト
ナースプレー、51・・・TPT,41・・・スイッチ
、42・・・電源.
FIG. 1 is a top view of an optical memory element that forms a solid-state image sensor used in an image forming device according to an embodiment of the present invention, and FIG. 2 is a plan view showing the configuration of an imaging section made of a solid-state image sensor. Fig. 3 is an overall diagram including the image sensor section and electric circuit, Fig. 4 is a diagram of the configuration of a thermistor switch for individually discharging the storage battery for toner development in the above-mentioned image pick-up section, and Fig. 5
Figures (a) to (m) are plan views showing the shapes of each member of the image sensor section, Figure 6 is a schematic top view of the optical memory element and electric circuit, and Figure 7 is another embodiment of the present invention. FIG. 8 is a plan view of the m-image section according to the present invention, and is an overall configuration diagram including the image sensor section and electric circuit in this embodiment. DESCRIPTION OF SYMBOLS 1... Optical memory element, 2... Sheet storage battery, 3... Discharging switch,
4... Anode collection! #. , 8... cathode current collector, 10...
・Photoconductive substance, 12.112...imaging section, 13,1
13... Image pickup element section, 16.22... Thermistor material, 23... Toner developing electrode, 31, 32.33.3
6.39...Switch, 37...External power supply, 38.
...Discharge resistor, 40...Resistance (load) 43...Toner spray, 51...TPT, 41...Switch, 42...Power supply.

Claims (3)

【特許請求の範囲】[Claims] (1)シート状蓄電池セルと、この蓄電池セルの陽極も
しくは陰極集電体上に形成した光導電性物質からなる放
電用スイッチとにより光メモリ素子を構成し、この光メ
モリ素子を複数個配列してなる固体撮像素子と、 前記蓄電池セルを外部電源から充電する充電回路と、 充電後に前記光導電性物質に光が照射された時に前記蓄
電池セルの電荷を放電させる放電回路と、前記蓄電池セ
ルの光導電性物質が位置する側とは反対側に設けられ、
蓄電池セルに対応して選択的に電気抵抗を可変なサーミ
スタスイッチ及び、このサーミスタスイッチに接する現
像用電極とを備え、 放電後の蓄電池セルの残存電荷を現像用電極を通して放
電可能にしたことを特徴とする固体撮像装置。
(1) An optical memory element is constituted by a sheet-shaped storage battery cell and a discharge switch made of a photoconductive material formed on the anode or cathode current collector of the storage battery cell, and a plurality of these optical memory elements are arranged. a solid-state image sensor; a charging circuit that charges the storage battery cell from an external power source; a discharge circuit that discharges the charge of the storage battery cell when the photoconductive substance is irradiated with light after charging; provided on the opposite side to the side where the sexual substance is located,
It is characterized by comprising a thermistor switch whose electric resistance can be selectively varied according to the storage battery cell, and a developing electrode in contact with the thermistor switch, so that the residual charge of the storage battery cell after discharge can be discharged through the developing electrode. A solid-state imaging device.
(2)シート状蓄電池セルと、この蓄電池セルの陽極も
しくは陰極集電体上に形成した光電変換素子により光メ
モリ素子を構成し、この光メモリ素子を複数個配列して
なる固体撮像素子と、 前記光電変換素子が受光した時に生じる電気エネルギー
を前記蓄電池セルに充電する充電回路と、前記蓄電池セ
ルの光電変換素子が位置する側とは反対側に設けられ、
蓄電池セルに対応して選択的に電気抵抗を可変なサーミ
スタスイッチ及び、このサーミスタスイッチに接する現
像用電極とを備え、 充電後の蓄電池セルの電荷を現像用電極を通して放電可
能にしたことを特徴とする固体撮像装置。
(2) An optical memory element is constituted by a sheet-shaped storage battery cell and a photoelectric conversion element formed on the anode or cathode current collector of the storage battery cell, and a solid-state image sensor formed by arranging a plurality of these optical memory elements; A charging circuit that charges the storage battery cell with electrical energy generated when the conversion element receives light, and a charging circuit provided on the side opposite to the side where the photoelectric conversion element of the storage battery cell is located,
It is characterized by comprising a thermistor switch whose electric resistance can be selectively varied according to the storage battery cell, and a developing electrode in contact with the thermistor switch, so that the electric charge of the storage battery cell after charging can be discharged through the developing electrode. solid-state imaging device.
(3)サーミスタスイッチに代えてモス型トランジスタ
を用いたことを特徴とする請求項1又は2に記載の固体
撮像装置。
(3) The solid-state imaging device according to claim 1 or 2, characterized in that a MOS transistor is used in place of the thermistor switch.
JP1158019A 1989-06-19 1989-06-19 Solid-state image pickup device Pending JPH0322684A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1158019A JPH0322684A (en) 1989-06-19 1989-06-19 Solid-state image pickup device
US07/537,797 US5036396A (en) 1989-06-19 1990-06-14 Solid image-pickup device having storage cell unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158019A JPH0322684A (en) 1989-06-19 1989-06-19 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH0322684A true JPH0322684A (en) 1991-01-31

Family

ID=15662494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158019A Pending JPH0322684A (en) 1989-06-19 1989-06-19 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH0322684A (en)

Similar Documents

Publication Publication Date Title
EP0117957B1 (en) Solid-state device having a plurality of optical functions
JPS6252981B2 (en)
EP1041400A3 (en) Method and device for recording and reading a radiation image using solid state radiation detectors
EP1035421B1 (en) Method and apparatus for reading a solid state radiation image
JPH0315081A (en) Electrostatic image potential correcting method
JPH0322684A (en) Solid-state image pickup device
CN1087447C (en) Charging device and image forming apparatus
JP2861065B2 (en) Image forming device
CN1139225A (en) Image forming apparatus
US4771183A (en) Photo-electric imaging device having overlaying row and column electrodes forming discrete, independently addressable areas
JP3226661B2 (en) X-ray imaging element and method of forming a radiation image on the element
US5045643A (en) Positional information inputting device using sheet-like photo-conductive switch or the like
JPH0322683A (en) Solid-state image pickup device
JP2797457B2 (en) Location information input device
US5036396A (en) Solid image-pickup device having storage cell unit
US5159472A (en) Image forming apparatus using solid image-pickup element
JP2853172B2 (en) Image forming device
JP2737972B2 (en) Image forming device
JPH0321959A (en) Image forming device
JP2914899B2 (en) Method for assisting image formation of printing plate and printing plate used in the method
US5157422A (en) Solid imaging member with matrix of connected photoelectric conversion devices, providing exposure surface, and charge storage devices, providing opposite surface for latent image formation and developed image transfer
JP2876609B2 (en) Solid image pickup body for color image and image forming apparatus therefor
JPS58107554A (en) Formation of image
JPS58139561A (en) Reading method of electrostatic latent image
JP2797456B2 (en) Location information input device