JPH03225214A - Instrument for measuring loaded substance - Google Patents

Instrument for measuring loaded substance

Info

Publication number
JPH03225214A
JPH03225214A JP2153790A JP2153790A JPH03225214A JP H03225214 A JPH03225214 A JP H03225214A JP 2153790 A JP2153790 A JP 2153790A JP 2153790 A JP2153790 A JP 2153790A JP H03225214 A JPH03225214 A JP H03225214A
Authority
JP
Japan
Prior art keywords
distance
measuring
holder
soil
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2153790A
Other languages
Japanese (ja)
Inventor
Hideyuki Takahashi
秀幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2153790A priority Critical patent/JPH03225214A/en
Publication of JPH03225214A publication Critical patent/JPH03225214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To highly accurately measure the quantity of a loaded substance even if a loading place like a large ship is expanded by providing the loaded substance measuring instrument with a moving distance measuring means constituted of arranging a reflector on the prescribed position of a loading field or one side of a holder, and arranging an optical wave range finder 3 as a moving distance measuring means for measuring the moving distance of the holder. CONSTITUTION:The reflector 5 and a wave transmitter/receiver 6 are arranged on the holder 4 and the holder 4 is moved from one end of a ship 1 to the other end. A distance from the holder 4 up to the surface of soil 2 is found out by measuring the time required from the generation of an ultrasonic wave from the wave transmitter/receiver 6 up to the return of the wave reflected on the surface of the soil 2. On the other hand, a distance between the optical wave range finder 3 arranged on a deck and the reflector 5 fixed to the holder 4 is measured. When the distance from the range finder 3 up to the reflector 5 is defined as L, the fixing position of the transmitter/receiver 6 can be found out by correcting a distance l0 between the reflector 5 and the transmitter/receiver 6. The height of the soil 2 is measured by the transmitter/receiver 6 to find out a sectional area and the area is integrated by the distance information of the range finder 3 to find out the whole quantity, i.e. volume, of the soil 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、船舶等に搭載した土砂等の搭載物の体積を計
測する搭載物計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a payload measuring device for measuring the volume of a payload such as earth and sand mounted on a ship or the like.

〔従来技術〕[Prior art]

従来、この種の装置としては実開昭61−63105号
に開示された1体積計測装置ヨがあった。第4図はその
システム構成を示すブロック図である。同図において、
21〜25は超音波距離検出器、26〜30は送受波器
、31は積載物を収容する容器、32は積載物、33は
演算回路、34は表示器、35は位置検出器である。
Conventionally, as an apparatus of this type, there has been a volume measuring apparatus disclosed in Japanese Utility Model Application Publication No. 61-63105. FIG. 4 is a block diagram showing the system configuration. In the same figure,
21 to 25 are ultrasonic distance detectors, 26 to 30 are transducers, 31 is a container for storing a loaded object, 32 is a loaded object, 33 is an arithmetic circuit, 34 is a display, and 35 is a position detector.

超音波距離検出器21〜25からのパルス波を送受波器
26〜30で超音波に変換し、積載物32に向けて発射
する。積載物32で反射された超音波は前記送受波器2
6〜30で受け、超音波距離検出器21〜25によって
積載物32の積載高さを求める。該積載高さと、予め設
定きれている容器31の区間X I””’ X 4のそ
れぞれの長さを演算回路33で乗算し、積載物32の断
面積を求める。
The pulse waves from the ultrasonic distance detectors 21 to 25 are converted into ultrasonic waves by the transducers 26 to 30, and are emitted toward the loaded object 32. The ultrasonic waves reflected by the loaded object 32 are transmitted to the transducer 2
6 to 30, and the loading height of the loaded object 32 is determined by the ultrasonic distance detectors 21 to 25. The arithmetic circuit 33 multiplies the loading height by the preset length of each section X I''''X 4 of the container 31 to obtain the cross-sectional area of the loaded object 32.

一方積載物32の縦方向の長さは位置検出器35によっ
て計測し、該計測値を演算回路33に入力する。演算回
路33は位置検出器35の計測値と、前記積載物32の
断面積を乗算し、積載物32の体積を算出する。算出値
は表示器34で表示する。
On the other hand, the length of the loaded object 32 in the vertical direction is measured by a position detector 35, and the measured value is input to the calculation circuit 33. The arithmetic circuit 33 multiplies the measured value of the position detector 35 by the cross-sectional area of the loaded object 32 to calculate the volume of the loaded object 32. The calculated value is displayed on the display 34.

第4図(A)、(B)、(C)、(D)は、それぞれ従
来の船舶に搭載した搭載物計測装置の構成を示す図であ
る。
FIGS. 4(A), (B), (C), and (D) are diagrams each showing the configuration of a conventional payload measuring device mounted on a ship.

第4図(A)において、船舶の位置はコードパー41と
:1−ド読取り器40で読取っている。
In FIG. 4(A), the position of the ship is read by a code parr 41 and a :1-code reader 40.

船舶の位置の読取りはこれ以外に第4図(B)に示す方
法がある。同図(B)はロータリエンコダ43を駆動し
、水平移動距離をワイヤーローブゲ 42の移動量で測定する方法である。また、第5図(C
)は船舶の舷側に取付けたコードバー41を移動形の支
柱44に取付けたコード読取器40に移動距離を411
1定する方法である。同図(D)はローラ45にロータ
リエンコーダ43を直結し、該ロークリエンコーダ43
の回転数により移動量を求める方法である。
There is another method for reading the position of a ship, as shown in FIG. 4(B). FIG. 4B shows a method in which the rotary encoder 43 is driven and the horizontal movement distance is measured by the amount of movement of the wire lobe gear 42. In addition, Fig. 5 (C
) is a code bar 41 attached to the side of the ship, and a code reader 40 attached to a movable support 44 reads the distance traveled by 411.
This is a method of determining In the same figure (D), the rotary encoder 43 is directly connected to the roller 45, and the rotary encoder 43 is directly connected to the roller 45.
This method calculates the amount of movement based on the number of rotations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記従来構成のいずれの搭載物計i’1l
11装置でも、例えば船舶が大型化するとスケールも大
きくなり、製作が困難になると同時に計測精度が低下す
るという問題点があった。
However, for any of the above conventional configurations, the payload total i'1l
Even with the No. 11 device, for example, as the ship becomes larger, the scale also becomes larger, making it difficult to manufacture and at the same time, there are problems in that the measurement accuracy decreases.

本発明は上述の点に鑑みてなされたもので、上記問題点
を除去し、船舶等に搭載された土量等の搭載物を精度よ
く測定できる土量fl!11定装置を折装置ることにあ
る。
The present invention has been made in view of the above-mentioned points, and eliminates the above-mentioned problems and makes it possible to accurately measure loads such as the amount of earth mounted on a ship or the like! 11 The purpose is to fold the fixed device.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、搭載物の縦方向に移
動できる移動架台の一定の高さから該搭載物の表面迄の
高を測定する高さ測定手段を複数並列搭載物を横断する
方向に設置し、該高さ測定手段の出力から搭載物の断面
積を求める断面積算出手段と、搭載物を搭載した搭載場
の所定位置又は該架台の一方に反射鏡を設置し、他方に
光波flllJ距儀を設置してなる該架台の移動距離を
測定する移動距離測定手段を有し、断面積算出手段で断
面積を移動距離z![1定手段で測定した距離で積分し
、搭載物の体積算出する手段を具備することを特徴とす
る。
In order to solve the above-mentioned problems, the present invention provides a plurality of height measuring means for measuring the height from a fixed height of a movable platform that can move in the vertical direction of the loaded object to the surface of the loaded object in parallel in a direction that traverses the loaded object. A cross-sectional area calculating means for calculating the cross-sectional area of the loaded object from the output of the height measuring means, a reflecting mirror installed at a predetermined position of the loading place where the loaded object is mounted, or a reflecting mirror on one side of the mount, and a light wave It has a moving distance measuring means for measuring the moving distance of the frame on which the flllJ rangefinder is installed, and the cross-sectional area is calculated as the moving distance z! by the cross-sectional area calculating means. [It is characterized by comprising means for calculating the volume of the loaded object by integrating the distance measured by the constant means.

〔作用〕[Effect]

上記の如く架台の移動距離を測定する移動距離411j
定手段として、搭載場の所定位置又は該架台の一方に反
射鏡を設置し、他フjに光波測距儀を設置してなる移動
距離測定手段としたので、大型の船舶等搭載場が大型化
しても、搭載物の量の計測が精度よくできる。
The moving distance 411j for measuring the moving distance of the gantry as described above.
As a means of measuring travel distance, a reflector is installed at a predetermined position of the loading area or on one side of the mount, and a light wave rangefinder is installed on the other side. The amount of cargo loaded can be measured with high accuracy even when the load is changed.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の搭載物計測装置の構成概要を示す図、
第2図はそのシステム構成を示すブロック図である。第
1図において、1は船、2は該船1に搭載した土、3は
光波測距儀、4は移動架台、5は反射鏡、6は送受波器
である。第2図において、6−1〜6−nは送受波器、
12−1〜12−nは高さ検出器、13はデータ処理部
、14は表示器である。以下、上記構成の搭載物計測装
置の動作を説明する。
FIG. 1 is a diagram showing an outline of the configuration of the payload measuring device of the present invention,
FIG. 2 is a block diagram showing the system configuration. In FIG. 1, 1 is a ship, 2 is a soil mounted on the ship 1, 3 is a light wave range finder, 4 is a movable stand, 5 is a reflector, and 6 is a transducer. In Fig. 2, 6-1 to 6-n are transducers;
12-1 to 12-n are height detectors, 13 is a data processing section, and 14 is a display device. The operation of the loaded object measuring device having the above configuration will be explained below.

第1図において、まず船1に±2が搭載されており、更
に船1の甲板上に移動架台4が移動できるように取付ら
れており、この移動架台4には反射鏡5と送受波器6が
取付けられている。移動架台4は船1の一端から他端へ
と移動する。この間に土の表面迄の距離は、送受波器6
から超音波を発射し、土2の表面より反射して帰って来
る迄の時間を計測して求める。
In Fig. 1, ±2 is first mounted on a ship 1, and a movable mount 4 is movably mounted on the deck of the ship 1. 6 is installed. The movable frame 4 moves from one end of the ship 1 to the other end. During this time, the distance to the soil surface is the transducer 6
This is determined by emitting ultrasonic waves from the soil 2 and measuring the time it takes for them to return after being reflected from the surface of the soil 2.

一方甲板上に置かれた光波測距儀3を移動架台4に取付
けられた反射鏡5の迄の距離を測定する。この光波測距
儀3から反射鏡5の迄の距離を距@Lとすると、送受波
器6の取付けられている位置は反射鏡5と送受波器6と
の距離P0を補正することにより求めることができる。
On the other hand, a light wave rangefinder 3 placed on the deck measures the distance to a reflecting mirror 5 attached to a movable pedestal 4. If the distance from the light wave range finder 3 to the reflecting mirror 5 is defined as distance @L, then the mounting position of the transducer 6 can be found by correcting the distance P0 between the reflecting mirror 5 and the transducer 6. be able to.

送受波器6により土2の高きを測定し、断面積を求め光
波測距儀3の距離情報で積分すれば全体の土量、つまり
体積を求めることができる。
By measuring the height of the soil 2 using the transducer 6, determining the cross-sectional area, and integrating it using the distance information from the light wave range finder 3, the total amount of soil, that is, the volume can be determined.

この土量の求めかたを、第2図を用いて詳細に説明する
。送受波器6−1〜6−nは移動架台4に複数個取付ら
れている。この個数は土量の測定精度を高めるには、数
が多い方がよい。この送受波器6−1〜6−nには予め
既知の高さHoに取付げられている。今、送受波器6−
1から±2の表面迄の距離H1が求まるとすると、土量
を求めるだめの土2の高さhlは、 h、=H,−H。
The method for determining this amount of soil will be explained in detail using Figure 2. A plurality of transducers 6-1 to 6-n are attached to the movable frame 4. In order to improve the accuracy of soil volume measurement, it is better to have a larger number. The transducers 6-1 to 6-n are mounted at a known height Ho in advance. Now, transducer 6-
Assuming that the distance H1 from 1 to the surface of ±2 is found, the height hl of the soil 2 in which the volume of soil is to be determined is h, = H, -H.

となる。送受波器6−1〜6−nを船1を横断する方向
、即ち搭載された±2を横断する方向に並べておくと、
土2の断面積が求められる。送受波器6−1〜6−nは
高さ検出器12−1〜12nと接続されており、ここで
高さh1〜h、を求める。
becomes. If the transducers 6-1 to 6-n are arranged in a direction across the ship 1, that is, in a direction across the mounted ±2,
The cross-sectional area of soil 2 is found. The transducers 6-1 to 6-n are connected to height detectors 12-1 to 12n, and the heights h1 to h are determined here.

この時の断面積Sは、 S = h +’W1+h 、、 w、+ ==十h 
、、−、・w、、、+h、、w、、−80 として算出される。ここでSoは補正係数である。
The cross-sectional area S at this time is S = h +'W1+h , w, + == 10h
, , -, ·w, , +h, , w, , -80. Here, So is a correction coefficient.

船1の全体の長さをPとすると土量Vは前記断波測距儀
3から反射鏡5迄の距離Pを測定し、データ処理部13
に送り、距離!の積分を求める。
Assuming that the entire length of the ship 1 is P, the earth volume V can be determined by measuring the distance P from the breaking wave range finder 3 to the reflecting mirror 5,
Send it to the distance! Find the integral of .

ここでvoは補正値である。この土量Vの算出もデータ
処理部13で行なう。この算出結果をデータ処理部13
から表示器14に出力し、表示する。
Here, vo is a correction value. The calculation of this earth volume V is also performed by the data processing section 13. This calculation result is sent to the data processing unit 13.
It is output from the display unit 14 and displayed.

なお、上記実施例では、反射鏡5を移動架台4を取付け
たが、この反射鏡5は船1の甲板に設置し光波測距儀3
を移動架台4に取付けてもよいことは当然である。
In the above embodiment, the reflecting mirror 5 is attached to the movable frame 4, but this reflecting mirror 5 is installed on the deck of the ship 1 and the light wave range finder 3 is attached to the reflecting mirror 5.
Of course, it is also possible to attach it to the movable frame 4.

虜し また、上記実例では船1に搭載した土の量を計測する例
を示したが、本発明の搭載物計測装置はこれに限定きれ
るものではなく、平坦な搭載場に搭載した搭載物量の計
測にも利用できる。また、搭載物も土、砂等に限定され
るものではなく、ヤードに載置した鉱石或いは穀物の量
を計測する場合戸にも利用できる。
In addition, although the above example shows an example of measuring the amount of soil loaded on the ship 1, the loaded object measuring device of the present invention is not limited to this, and can be used to measure the amount of loaded materials loaded on a flat loading field. It can also be used for measurement. Further, the loaded object is not limited to soil, sand, etc., and can also be used for measuring the amount of ore or grain placed in a yard.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれは、架台の移動距離を
測定する移動距離測定手段として、搭載場の所定位置又
は該架台の一方に反射鏡を設置し、他方に光波測距儀を
設置してなる移動距離測定手段としたので、大型の船舶
等搭載場が大型化しても、大型のスケールを用いること
なく、簡単な構成で搭載物の量の計測が精度よくできる
といら優れた効果が得られる。
As explained above, according to the present invention, a reflecting mirror is installed at a predetermined position in the loading area or on one side of the gantry, and a light wave range finder is installed on the other side, as a moving distance measuring means for measuring the moving distance of the gantry. This is a moving distance measurement means that can be used to measure the distance traveled by large ships, so even if the loading area of a large ship becomes larger, the amount of the loaded object can be measured accurately with a simple configuration without using a large scale. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の搭載物計測装置の構成概要を示す図、
第2図はそのシステム構成を示すブロック図、第3図は
従来の搭載物計測装置のシステム構成を示すブロック図
、第4図(A)、(B)。 (C)、(D)は、それぞれ従来の船舶に搭載した搭載
物計測装置の構成を示す図である。 図中、1・・・・船、2・・・・土、3・・・・光波測
距儀、4・・・・移動架台、5・・・・反射鏡、6−1
〜6n ・・送受波器、12−1〜12−n・・・・高
さ検出器、13・・・データ処理部、14・・・・表示
器。
FIG. 1 is a diagram showing an outline of the configuration of the payload measuring device of the present invention,
FIG. 2 is a block diagram showing the system configuration thereof, FIG. 3 is a block diagram showing the system configuration of a conventional payload measuring device, and FIGS. 4(A) and (B). (C) and (D) are diagrams each showing the configuration of a conventional payload measuring device mounted on a ship. In the figure, 1...Ship, 2...Soil, 3...Light wave range finder, 4...Moveable mount, 5...Reflector, 6-1
~6n...Transducer/receiver, 12-1~12-n...Height detector, 13...Data processing section, 14...Display device.

Claims (1)

【特許請求の範囲】 搭載物の縦方向に移動できる移動架台の一定の高さから
該搭載物の表面迄の高さを測定する高さ測定手段を複数
並列搭載物を横断する方向に設置し、 該高さ測定手段の出力から搭載物の断面積を求める断面
積算出手段と、 前記搭載物を搭載した搭載場の所定位置又は該架台の一
方に反射鏡を設置し、他方に光波測距儀を設置してなる
該架台の移動距離を測定する移動距離測定手段を有し、 前記断面積算出手段で断面積を移動距離測定手段で測定
した距離で積分し、搭載物の体積算出する手段を具備す
ることを特徴とする搭載物計測装置。
[Claims] A plurality of height measuring means for measuring the height from a fixed height of a movable platform that can move the loaded object in the longitudinal direction to the surface of the loaded object are installed in a direction across the loaded object in parallel. , a cross-sectional area calculation means for calculating the cross-sectional area of the loaded object from the output of the height measuring means; a reflecting mirror is installed at a predetermined position of the loading place where the loaded object is mounted or on one side of the mount, and a light wave ranging device is installed on the other side. said cross-sectional area calculating means integrates the cross-sectional area by the distance measured by the moving distance measuring means, and calculates the volume of the loaded object. A payload measuring device comprising:
JP2153790A 1990-01-30 1990-01-30 Instrument for measuring loaded substance Pending JPH03225214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153790A JPH03225214A (en) 1990-01-30 1990-01-30 Instrument for measuring loaded substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153790A JPH03225214A (en) 1990-01-30 1990-01-30 Instrument for measuring loaded substance

Publications (1)

Publication Number Publication Date
JPH03225214A true JPH03225214A (en) 1991-10-04

Family

ID=12057717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153790A Pending JPH03225214A (en) 1990-01-30 1990-01-30 Instrument for measuring loaded substance

Country Status (1)

Country Link
JP (1) JPH03225214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632419U (en) * 1992-09-28 1994-04-28 株式会社明電舎 Conveyor system controller
CN104019857A (en) * 2014-06-21 2014-09-03 辽宁工程技术大学 System and method for measuring discharge volume of shield tunneling machine
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632419U (en) * 1992-09-28 1994-04-28 株式会社明電舎 Conveyor system controller
CN104019857A (en) * 2014-06-21 2014-09-03 辽宁工程技术大学 System and method for measuring discharge volume of shield tunneling machine
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition

Similar Documents

Publication Publication Date Title
US5841541A (en) Apparatus and method for dimensional weighing utilizing a rotating sensor
US5770864A (en) Apparatus and method for dimensional weighing utilizing a laser scanner or sensor
US5815274A (en) Method for dimensional weighing by spaced line projection
US5781286A (en) Method and apparatus for measurement of axle and wheel positions of motor vehicles
US6798528B1 (en) System and method for measuring the dimensions of moving packages
US5612905A (en) Three-dimensional measurement of large objects
US5808912A (en) Method for dimensional weighing utilizing point determination
Romkens et al. A laser microreliefmeter
US7098409B2 (en) Apparatus for weighing materials online
EP0790484A2 (en) Horizontal position error correction mechanism for electronic level
US20030121322A1 (en) Volume measurement system and method for volume element counting
US20060009929A1 (en) In-service insulated tank certification
CN2294453Y (en) Automatically measuring and drawing the volume of coal bulk on ground
CN110339548A (en) Health and fitness facilities exercise data acquisition system based on ranging technology
Clarke et al. Laser-based triangulation techniques in optical inspection of industrial structures
JPH03225214A (en) Instrument for measuring loaded substance
US4815857A (en) Method and apparatus for measuring an object
JPH03505252A (en) Measuring road roughness
JPH0643684Y2 (en) Dimension weight measuring device
JPH06281417A (en) Method for measuring height and deviation of trolley line
GB2173301A (en) Survey apparatus and method
JPH09505883A (en) Equipment for measuring the dimensions of large objects
CN112504173A (en) Track irregularity measuring device and method based on laser profile scanning
RU2242711C2 (en) Device for measuring dimensions of cargo bays of oil tankers
JPH0641187Y2 (en) Volumetric device for irregularly shaped loads