JPH03225063A - Variable static flow type fuel injection device - Google Patents

Variable static flow type fuel injection device

Info

Publication number
JPH03225063A
JPH03225063A JP2258390A JP2258390A JPH03225063A JP H03225063 A JPH03225063 A JP H03225063A JP 2258390 A JP2258390 A JP 2258390A JP 2258390 A JP2258390 A JP 2258390A JP H03225063 A JPH03225063 A JP H03225063A
Authority
JP
Japan
Prior art keywords
fuel
fuel pressure
valve
injection
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2258390A
Other languages
Japanese (ja)
Inventor
Hitoshi Asano
仁 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2258390A priority Critical patent/JPH03225063A/en
Publication of JPH03225063A publication Critical patent/JPH03225063A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge injectable flow by providing a fuel pressure switching solenoid valve, positioned on the upstream side of a fuel measuring part in the fuel flowing direction, for repeating the switching of a fuel passage on the basis of high frequency duty control so as to generate plural mutually different kinds of fuel pressure alternatively on its downstream side. CONSTITUTION:A fuel pressure switching solenoid valve 64 switches fuel pressure on its downstream side into plural set values P1, P2 to generate plural flow characteristics. That is, when high frequency duty control is performed to the valve body 40 of this solenoid valve 64, the inner fuel pressure of an injector body 2 is kept to the low fuel pressure P1, and in this state, when a valve member 22 is operated to open by a first solenoid 28, the fuel quantity injected from a nozzle 16 becomes relatively small, thus obtaining the small flow characteristic. On the other hand, the large flow characteristic is obtained by performing fuel injection under such a state that a duty ratio in the driving of the valve body 40 is made large to maintain the internal fuel pressure to the high fuel pressure P2.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、エンジンの燃料供給系に設けられて燃料を
噴rA7る燃料噴射装置に関し、特に1回当たりの燃料
噴射量の設定構造の改良に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a fuel injection device that is installed in a fuel supply system of an engine and injects fuel, and particularly relates to an improvement in the structure for setting the amount of fuel injection per injection. Regarding.

〈従来の技術〉 従来、よく知られている燃料噴射装置(いわゆるインジ
ェクタ)の一種に、ボデーと、ボデー内を通る燃料通路
と、燃料通路の先端部に形成された噴射口と、噴射口を
開閉するバルブ部材と、バルブ部材を開閉動作させるバ
ルブ駆動手段とを備えたものが知られている。例えば実
開昭58−132162号公報は、この種のインジェク
タを開示する。
<Prior art> Conventionally, a type of well-known fuel injection device (so-called injector) includes a body, a fuel passage passing through the body, an injection port formed at the tip of the fuel passage, and an injection port. A device is known that includes a valve member that opens and closes, and a valve drive means that opens and closes the valve member. For example, Japanese Utility Model Application Publication No. 58-132162 discloses this type of injector.

このようなインジェクタにおいて、噴射1回当たりの燃
料噴射量はできるだけ精度よく設定する必要があるが、
そのために燃料の流れ方向における絞り部として燃料計
量部が設けられている。この燃料計量部は噴射口部が兼
ねている場合もあるし、噴射口部とは別個に設けられて
いる場合もある。いずれにしても燃料圧力(燃圧)を一
定とすれば、燃料計量部の通路断面積と噴射時間(バル
ブ開時間)との積に基づいて1回当たりの噴射量が規定
される。
In such injectors, it is necessary to set the amount of fuel injected per injection as accurately as possible.
For this purpose, a fuel metering section is provided as a throttle section in the fuel flow direction. This fuel metering section may also serve as the injection port, or may be provided separately from the injection port. In any case, if the fuel pressure (fuel pressure) is constant, the amount of injection per injection is determined based on the product of the passage cross-sectional area of the fuel metering section and the injection time (valve opening time).

イして、エンジンの吸入工程に対応して一定短旧間バル
ブ部材が開いて噴射が行われ、その噴射日、′f間が一
般にはパルス信号でデユーティ制御される。ここで、エ
ンジンの出力が小さいときは吸入空気量が少ないので、
1回当たりの噴射時間(パルス幅)が短く、エンジンの
出力が大きいときは吸入空気量が多いのでパルス幅は長
くなる。
Then, in response to the intake stroke of the engine, the valve member is opened for a certain period of time to perform injection, and the injection period 'f is generally duty-controlled by a pulse signal. Here, when the engine output is low, the amount of intake air is small, so
The injection time (pulse width) per injection is short, and when the engine output is high, the amount of intake air is large, so the pulse width becomes long.

〈発明が解決しようとする課題〉 ところで、従来、このようなインジェクタにおける燃料
計量部の通路断面積は、設計・製造の段階で一義的に決
定され、それによりインジェクタの流量特性もまた一義
的に決まる。
<Problems to be Solved by the Invention> Conventionally, the passage cross-sectional area of the fuel metering section in such an injector is uniquely determined at the design and manufacturing stage, and as a result, the flow rate characteristics of the injector are also uniquely determined. It is decided.

第5図は、燃料計量部の通路断面積が小さく設定された
小流量インジェクタの特性■と、大きく設定された大流
量インジェクタの特性■とを示すものである。いずれの
特性でもパルス幅(噴射時間)の増大に伴って噴射流量
がゼロから全開時のQl 、Q2にそれぞれ増大してい
るが、実際上このパルス幅の使用範囲の決定に関し実用
上使用可能な範囲は、流量のバラツキの問題から、パル
ス幅と噴射流量とが直線関係にあるWの範囲に限られて
くる。従って、実用上、小流量の特性工では最低流量q
1n+inから最大流量q 1 maxまでの領MQS
に、また大流量の特性■では最低流ff11m1nから
最大流量q2iaxまでの領域Q[に、それぞれの流量
能力が決まるが、いずれをとってみても一長一短がある
FIG. 5 shows the characteristic (2) of a small flow rate injector in which the passage cross-sectional area of the fuel metering section is set small, and the characteristic (2) of a large flow rate injector in which the passage cross-sectional area of the fuel metering section is set large. In both characteristics, as the pulse width (injection time) increases, the injection flow rate increases from zero to Ql and Q2 at full opening, respectively, but in reality, it is difficult to determine the usable range of this pulse width for practical use. The range is limited to the range W in which the pulse width and the injection flow rate have a linear relationship due to the problem of flow rate variations. Therefore, in practice, for small flow characteristic machining, the minimum flow rate q
Area MQS from 1n+in to maximum flow rate q 1 max
In addition, in the case of the large flow rate characteristic (2), the flow capacity is determined by the region Q [from the minimum flow rate ff11m1n to the maximum flow rate q2iax, but each has its advantages and disadvantages.

すなわち、小流量の特性工ではエンジンの最低出力状態
(車両エンジンのアイドリング時等)における燃料の消
費1を低く抑えることができるが、高出力が必要なとき
(車両の加速時等)に噴射流量が頭打ちになり、出力限
界が低い欠点がある。
In other words, with a small flow rate characteristic, it is possible to keep fuel consumption low at the lowest engine output state (such as when the vehicle engine is idling), but when high output is required (such as when the vehicle is accelerating), the fuel consumption 1 can be kept low. The disadvantage is that the output has reached a plateau and the output limit is low.

一方、大流量の特性■では高出力は充分に得られるが、
最低出力状態において噴射流ωを必要最小限まで抑える
ことが困難で、必要以上の燃料を消費する結果となる。
On the other hand, with the large flow rate characteristic ■, high output can be obtained sufficiently, but
In the lowest output state, it is difficult to suppress the injection flow ω to the necessary minimum, resulting in consumption of more fuel than necessary.

これは、一般に、インジェクタの計1範囲の広さの指標
であるダイナミックレンジRd(Rd−QllaX /
qlin )が小さいことに起因しているが、最近の車
両エンジンには低燃費と高出力という二つのす求が同時
にあり、エンジンの運転に必要な空気領域は極めて広く
なっている。従ってインジェクタにも広い計量範囲が要
求されているのである。
This is generally expressed as the dynamic range Rd (Rd - QllaX /
This is due to the fact that qlin ) is small, but modern vehicle engines are required to have both low fuel consumption and high output at the same time, and the air area required for engine operation has become extremely wide. Therefore, injectors are also required to have a wide measurement range.

本発明の課題は、1つのインジェクタに複数の流量特性
を持たせ、より大きなダイナミックレンジを得ることに
ある。
An object of the present invention is to provide one injector with a plurality of flow characteristics to obtain a larger dynamic range.

〈課題を解決するための手段〉 まず、この課題解決の原理を説明する。一般には、燃料
計量部の通路断面積と噴射時間との積で噴gAimが決
まり、その通路断面積によってインジェクタの特性も一
義的に決まるが、その通路断面積が固定的であってもイ
ンジェクタ内の燃圧が変われば噴射流量も変わる。従っ
てインジェクタ内の燃圧を例えば高・低2段階に切り換
えることができれば、低燃圧状態では小流量の特性が、
また高燃圧状態では大流量の燃圧が得られることとなる
<Means for solving the problem> First, the principle of solving this problem will be explained. In general, the injection gAim is determined by the product of the passage cross-sectional area of the fuel metering section and the injection time, and the characteristics of the injector are also uniquely determined by the passage cross-sectional area. If the fuel pressure changes, the injection flow rate also changes. Therefore, if the fuel pressure in the injector can be switched to two levels, high and low, for example, the characteristics of a small flow rate in a low fuel pressure state will be
Furthermore, in a high fuel pressure state, a large flow rate of fuel pressure can be obtained.

すなわち、本発明に係る燃料噴射装置(インジエクタ)
は、前述のようなボデー、燃料通路、噴射口、バルブ部
材、バルブ駆動手段及び燃料計量部を含むことを前提と
し、かつ以下の燃料切換用電磁弁、すなわち燃料の流れ
方向において燃料計量部より上流側の位置に設けられ、
その位置より下流側に互いに異なる複数の燃圧を択一的
に生じさせるように高周波数デユーティ−制御に基づい
て燃料通路の開閉を繰り返す燃圧切換用電磁弁を含む。
That is, the fuel injection device (injector) according to the present invention
is assumed to include the body, fuel passage, injection port, valve member, valve driving means, and fuel metering section as described above, and the following fuel switching solenoid valve, that is, from the fuel metering section in the direction of fuel flow. Located at the upstream side,
It includes a fuel pressure switching electromagnetic valve that repeatedly opens and closes the fuel passage based on high frequency duty control so as to selectively generate a plurality of mutually different fuel pressures downstream from that position.

〈作 用〉 本発明に係る燃料噴射装置においては、燃圧切換用電磁
弁により、それより下流側(燃料計量部側)の燃圧が複
数の設定値に切り換えられ、それに対応して複数の流量
特性が生じる。例えば第−燃圧値とそれより高い第二燃
圧値とが設定されれば、第−燃圧値において小流量特性
が、第二燃焼圧値において大流量特性がそれぞれ生じる
<Function> In the fuel injection device according to the present invention, the fuel pressure on the downstream side (fuel metering section side) is switched to a plurality of set values by the fuel pressure switching electromagnetic valve, and a plurality of flow characteristics are correspondingly changed. occurs. For example, if a first fuel pressure value and a higher second fuel pressure value are set, a small flow rate characteristic occurs at the first fuel pressure value, and a large flow rate characteristic occurs at the second combustion pressure value.

〈実施例〉 以下、本発明の一実施例を図面に基づいて説明する。<Example> Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に示す燃料噴射装置(インジェクタ)1は、中央
i、L ip線八へ関し、図の左側が一般的な燃料噴射
機能を宋たリインジJ、クク本体2、右側かインジェク
タ本体2内の燃圧設定〈切換え)を担う燃圧設定部4と
なっている。インジェクタ本体2はボデー構成部材6a
、6b、6C,6dからなる小f−6を備え、燃圧設定
部4はボデー構成部材8a、8bからなるボデー8を備
え、これら双方のボデー6.8が一体化されて全体とし
て1つの装置小デー10を構成している。この装置ボデ
ー10内には、基端の燃料人口12からフィルタ14を
経て先端の噴射口16に至る燃料通路18が形成されて
いる。噴射口16は先端に向ってテーパ状に絞られた小
孔であり、本実施例ではこの噴射口16が、絞り部とし
て噴射流量を規定する燃料計11部を兼ねている。
The fuel injection device (injector) 1 shown in FIG. The fuel pressure setting section 4 is responsible for setting (switching) the fuel pressure. The injector main body 2 is a body component member 6a
, 6b, 6C, and 6d, and the fuel pressure setting section 4 includes a body 8 consisting of body component members 8a and 8b, and both bodies 6.8 are integrated into one device as a whole. It makes up 10 small days. A fuel passage 18 is formed in the device body 10 from a fuel port 12 at the base end to an injection port 16 at the tip via a filter 14. The injection port 16 is a small hole tapered toward the tip, and in this embodiment, the injection port 16 also functions as a constriction portion and the fuel gauge 11 that regulates the injection flow rate.

インジェクタ本体2内には、この噴射口16を闇rli
 ?lる球状のバルブヘッド20を備えた中空軸状のバ
ルブ部材22が軸方向に移動可能に設けられている。バ
ルブ部材22はスプリング24によって開方向(第1図
においては左方向)に付勢されており、燃料通路18は
このバルブ部材22の内部を通って噴射口16まで延び
ている。
Inside the injector body 2, this injection port 16 is
? A hollow shaft-shaped valve member 22 having a spherical valve head 20 is provided so as to be movable in the axial direction. The valve member 22 is biased in the opening direction (to the left in FIG. 1) by a spring 24, and the fuel passage 18 extends through the interior of the valve member 22 to the injection port 16.

バルブ部材22の後端にはアーマチュア26が固定され
、これに対向してバルブ駆動手段として機能する第一ソ
レノイド28が設けられている。
An armature 26 is fixed to the rear end of the valve member 22, and a first solenoid 28 functioning as a valve driving means is provided opposite to the armature 26.

第一ソレノイド28のコア30にはボビン32を介して
コイル34が巻かれており、このコイル34に2個のタ
ーミナル36(図では1個のみ示す)により励磁電圧が
印加される。アーマチュア26及びコア30は中空構造
のもので、それら中空部が燃料通路18となっており、
また、アーマチュア26とコア30とのエアギャップに
よりバルブ部材22の移動ストロークが規定される。
A coil 34 is wound around the core 30 of the first solenoid 28 via a bobbin 32, and an excitation voltage is applied to this coil 34 through two terminals 36 (only one is shown in the figure). The armature 26 and the core 30 have a hollow structure, and the hollow portion serves as the fuel passage 18.
Further, the movement stroke of the valve member 22 is defined by the air gap between the armature 26 and the core 30.

一方、燃圧設定部4には、燃料通路18の途中に、磁性
材料からなるバルブ体(アーマチュア)40が、燃料の
流れ方向に移動可能に設けられている。バルブ体40は
短軸状のガイド部42と、その一端に形成されたフラン
ジ状のプレート部44とを有し、ガイド部42において
ボデー構成部材8aの燃料通路18内に軸方向に移動可
能に嵌合されCいる。第2図に示すように、その嵌合部
分は円形断面となっているが、バルブ体ガイド部42の
外周面は4面カットが施されて、燃料通路18となる4
箇所の間隙が確保されている。
On the other hand, in the fuel pressure setting section 4, a valve body (armature) 40 made of a magnetic material is provided in the middle of the fuel passage 18 so as to be movable in the fuel flow direction. The valve body 40 has a short shaft-shaped guide part 42 and a flange-shaped plate part 44 formed at one end thereof, and is movable in the axial direction into the fuel passage 18 of the body component 8a at the guide part 42. It is fitted. As shown in FIG. 2, the fitting portion has a circular cross section, but the outer peripheral surface of the valve body guide portion 42 is cut on four sides to form the fuel passage 18.
Spaces are ensured.

第4図は燃圧設定部4を拡大したものであり、ボデー構
成部材8aには、バルブ体40のプレート部44と平行
にバルブシート而(以下、単にシト面とも称する)46
が形成され、プレート部44にはそのシート面46に対
向する部分に複数の連通孔48が厚さ方向に貫通して形
成されている。バルブ体40はスプリング50によって
プレート部44がシート面46に密着した閉位置に付勢
されているが、第二ソレノイド50によりスプリング5
0に抗してシート面46から引き離されるようになって
いる。
FIG. 4 is an enlarged view of the fuel pressure setting section 4, and the body component 8a has a valve seat (hereinafter simply referred to as the seat surface) 46 parallel to the plate section 44 of the valve body 40.
A plurality of communication holes 48 are formed in the plate portion 44 at a portion thereof facing the sheet surface 46, penetrating the plate portion 44 in the thickness direction. The valve body 40 is biased by a spring 50 to a closed position where the plate portion 44 is in close contact with the seat surface 46;
0 and is pulled away from the sheet surface 46.

第二ソレノイド52は、フランジ付円筒状のコア54と
、これにボビン56を介して巻き付けられIごコイル5
8と、コイル58を外側から被うケース60と、2@の
ターミナル62(図では1個のみを示す)とを備え、そ
れらターミナル62を経て励磁電圧が印加される。本実
施例においては、上述のバルブ体40.スプリング50
及び第二ソレノイド52等が全体として一つの電磁弁6
4を構成している。
The second solenoid 52 includes a flanged cylindrical core 54 and an I coil 5 wound around the core via a bobbin 56.
8, a case 60 that covers the coil 58 from the outside, and a 2@ terminal 62 (only one is shown in the figure), and an excitation voltage is applied through these terminals 62. In this embodiment, the above-mentioned valve body 40. spring 50
and the second solenoid 52 etc. as a whole constitute one solenoid valve 6
4.

コア54の中心孔66は燃料通路18の一部となり、ま
たコア54の下流側の開口端面がストッパ面68とされ
て、このストッパ面68が、バルブ体40の図中右方向
の移動限度(開位置)を規定している。ストッパ面68
には半径方向に4本の連通溝70(第3図参照)が形成
され、これにより、バルブ体40がストッパ面68に密
着した状態でもコア中心孔66から下流側への燃料の流
れが許容される。
The center hole 66 of the core 54 becomes a part of the fuel passage 18, and the downstream opening end surface of the core 54 serves as a stopper surface 68. (open position). Stopper surface 68
Four communication grooves 70 (see FIG. 3) are formed in the radial direction, which allows fuel to flow downstream from the core center hole 66 even when the valve body 40 is in close contact with the stopper surface 68. be done.

燃圧設定部4には、上記電磁弁64の他、燃圧センサ7
2が設けられ、燃料通路18においてバルブ体40の下
流側に近接した部分の燃圧が検出されるようになってい
る。このセンサ72は0リング74により液密にシール
された状態で、ボデー構成部材8aに嵌め込まれ、その
先端がバルブ体42のすぐ下流側の燃料通路18内に露
出している。
In addition to the electromagnetic valve 64, the fuel pressure setting section 4 includes a fuel pressure sensor 7.
2 is provided so that fuel pressure in a portion of the fuel passage 18 adjacent to the downstream side of the valve body 40 is detected. This sensor 72 is fitted into the body component 8a in a state where it is liquid-tightly sealed by an O-ring 74, and its tip is exposed in the fuel passage 18 immediately downstream of the valve body 42.

次に作動を説明する。Next, the operation will be explained.

第4図(a)に示すように、第二ソレノイド52に電圧
が印加されていないときは、バルブ体40はスプリング
50によってシー1〜面46に押し付けられた閉位置に
保たれる。この状態では燃料通路18がバルブ体のプレ
ート部44によって閉鎖され、噴射口16側への燃料の
流れは遮断される。
As shown in FIG. 4(a), when no voltage is applied to the second solenoid 52, the valve body 40 is kept in the closed position pressed against the seams 1 to 46 by the spring 50. In this state, the fuel passage 18 is closed by the plate portion 44 of the valve body, and the flow of fuel toward the injection port 16 is blocked.

一方、第二ソレノイド52に電圧が印加されると、第4
図(b)に示すようにバルブ体40がコア54側に引き
寄せられ、ストッパ面68に密着した開位置に保持され
る。この状態では燃料通路18が開放される結果、燃料
はコア54の中心孔66、連通′f470及びバルブプ
レート部44の連通孔48を通って下流側へ流通可能で
ある。
On the other hand, when voltage is applied to the second solenoid 52, the fourth
As shown in Figure (b), the valve body 40 is drawn toward the core 54 and held in the open position in close contact with the stopper surface 68. In this state, the fuel passage 18 is opened, so that fuel can flow downstream through the center hole 66 of the core 54, the communication 'f470, and the communication hole 48 of the valve plate portion 44.

ここでバルブ体40は、第4図(a)の閉位置と同図(
b)の開位置との間で短時間に繰り返し開閉動作させら
れる。この開閉動作は高周波数のパルス波でデユーティ
−制御され、バルブ体40より下流側の燃圧が所定の燃
圧となるようにデユーティ−比(開時間/1周期)が設
定される。この燃圧として、例えば比較的低い第一の燃
圧P1とこれより高い第二の燃圧P2とが予め定めらる
Here, the valve body 40 is in the closed position in FIG. 4(a) and in the same figure (
b) The opening and closing operations are repeated in a short period of time between the open position and the open position. This opening/closing operation is duty-controlled using high-frequency pulse waves, and the duty ratio (opening time/one period) is set so that the fuel pressure downstream of the valve body 40 becomes a predetermined fuel pressure. As this fuel pressure, for example, a relatively low first fuel pressure P1 and a higher second fuel pressure P2 are determined in advance.

つまり、バルブ体40の開時間を短く(デユーティ−比
を小さく)すれば低い燃圧が、またバルブ体40の開時
間を長く(デユーティ−比を大きく)すれば高い燃圧が
生じる。実際の燃圧は燃圧センサ72が検出して、直ち
にデユーティ−比にフィードバックすることで、上記低
燃圧P1あるいは高燃圧P2が維持される。バルブ体4
0を駆動するパルス波の周波数は、インジェクタ本体2
のバルブ部材22を駆動するパルス周波数より充分大き
い方が燃圧の設定精度はよい。また、燃圧の最高値は、
例えばデリバリバイブ(図示せず)より供給される燃料
の圧力で決まる。また、燃圧の最低値は、例えばバルブ
体40を閉じたままにしておけば、インジェクタ本体2
の内部燃圧は噴射口16から燃料が噴射されることによ
り直ちに噴射口16外の外圧と等しくなるため、その外
圧と同圧ということになる。
That is, by shortening the open time of the valve body 40 (reducing the duty ratio), a low fuel pressure is generated, and by increasing the open time of the valve body 40 (increasing the duty ratio), a high fuel pressure is generated. The actual fuel pressure is detected by the fuel pressure sensor 72 and immediately fed back to the duty ratio, thereby maintaining the low fuel pressure P1 or the high fuel pressure P2. Valve body 4
The frequency of the pulse wave that drives the injector body 2 is
The fuel pressure setting accuracy is better if the pulse frequency is sufficiently higher than the pulse frequency that drives the valve member 22. In addition, the maximum value of fuel pressure is
For example, it is determined by the pressure of fuel supplied from a delivery vibe (not shown). Furthermore, if the valve body 40 is kept closed, the lowest value of the fuel pressure can be determined by the injector body 2.
The internal fuel pressure immediately becomes equal to the external pressure outside the injection port 16 when fuel is injected from the injection port 16, so it is said to be the same pressure as the external pressure.

いま、ハル1体40の高周波数デユーティ−制御により
、インジェクタ本体2の内部燃圧が低燃圧P1に保たれ
、その状態でバルブ部材22が第一ソレノイド28によ
り開作動すると、噴射口16から噴射される燃料は相対
的に少なく、例えば第5図に示す小流量の特性Iが得ら
れる。一方、バルブ体40の駆動におけるデユーティ−
比が大きくされて上記内部燃圧が高燃圧P2に維持され
た状態で燃料噴射が行われると、例えば第5図に示1人
流量の特性■が得られる。
Now, the internal fuel pressure of the injector body 2 is maintained at a low fuel pressure P1 by the high frequency duty control of the hull 1 body 40, and when the valve member 22 is opened by the first solenoid 28 in this state, fuel is injected from the injection port 16. The amount of fuel used is relatively small, and, for example, the small flow rate characteristic I shown in FIG. 5 can be obtained. On the other hand, the duty in driving the valve body 40 is
If the fuel injection ratio is increased and fuel injection is performed with the internal fuel pressure maintained at the high fuel pressure P2, then, for example, the characteristic (1) of the flow rate for one person shown in FIG. 5 is obtained.

つまり、燃圧がPlからP2へ切り換えられたことによ
り流量特性はIから■へ変化する。仮に特性[のb点で
その切換えが行われ同時に噴射時間が調整されれば、流
量特性はその時点で特性■のb点から特性■の0点に移
行し、以後はその特性■に従う。このた枦 燃圧切換え
の前後にわたり、全体的な流量特性は特性■のa−+b
から特性■のC→dにまたがる複合的なものとなり、実
用−Fの噴射可能流量域はqlminからq2maxま
で拡大される。従って、車両のエンジンに燃料を供給す
る場合、アイドリング時の噴射量は必要最小限に、また
加速時等の噴射量は充分に多いものとすることができる
That is, by switching the fuel pressure from Pl to P2, the flow rate characteristic changes from I to ■. If the switching is performed at point b of characteristic [ and the injection time is adjusted at the same time, the flow rate characteristic will shift from point b of characteristic (2) to point 0 of characteristic (2) at that point, and thereafter will follow that characteristic (2). In this case, the overall flow rate characteristics are a-+b of characteristic ■ before and after the fuel pressure switching.
The injectable flow rate range of Practical-F is expanded from qlmin to q2max. Therefore, when supplying fuel to the engine of a vehicle, the injection amount during idling can be kept to the necessary minimum, and the injection amount during acceleration can be made sufficiently large.

なお、設定燃圧をPi 、P2の2種類から、例えばP
i 、P2 、P3の3種類とすれば(PlくP2 <
P3 ) 、その数に対応する複数の流量特性が得られ
る。第6図はその例を示すもので、全体的として特性1
. I[、DIにまたがる複合的な特性が得られ、例え
ば段階的にP1→P2→P3の燃料切換えが行われれば
、a−+b−+c−+d−+e−+fにわたる特性とな
り、非常に大きなダイナミックレンジ(Rd =qla
x /amin )が得られる。
Note that the set fuel pressure can be selected from two types, Pi and P2, for example, P
If there are three types i, P2, and P3, (Pl P2 <
P3), a plurality of flow characteristics corresponding to the number are obtained. Figure 6 shows an example of this, and the overall characteristic is 1.
.. I [, DI can be obtained. For example, if the fuel is changed stepwise from P1 → P2 → P3, the characteristic will be a−+b−+c−+d−+e−+f, which is a very large dynamic characteristic. Range (Rd = qla
x/amin) is obtained.

以上、本発明の一実施例を説明したが、これは文字通り
例示であって、本発明は当業者の知識に基づき種々の変
形態様で実施できることは勿論である。
Although one embodiment of the present invention has been described above, this is literally an example, and it goes without saying that the present invention can be implemented in various modifications based on the knowledge of those skilled in the art.

〈発明の効果〉 本発明によれば、噴射口上流の燃圧を複数段に切り換え
ることに基づき、一つの燃料噴9A装置でありながら、
複数の特性を有する複合特性が得られ、最小流量から最
大流量までの実用上の噴射可能流ωが従来に比べて飛W
的に拡大し、最小流量はより小さく、最大流量はより大
きく設定することができる。従って、車両のエンジンに
対する場合、アイドリング状態では小流量特性を選択し
てアイドリング時の消費燃料を最小限に抑え、加速時等
の高出力を要求される状態では大流量特性を選択して充
分な噴射流量を確保し、より高い出力を得ることができ
、低燃費と高出力という2つの要求に同時に応えること
ができる。
<Effects of the Invention> According to the present invention, based on switching the fuel pressure upstream of the injection port into multiple stages, although it is a single fuel injection 9A device,
Composite characteristics with multiple characteristics can be obtained, and the practically injectable flow ω from the minimum flow rate to the maximum flow rate is faster than before.
The minimum flow rate can be set smaller and the maximum flow rate larger. Therefore, in the case of a vehicle engine, a small flow characteristic is selected in the idling state to minimize fuel consumption during idling, and a large flow characteristic is selected in conditions that require high output such as during acceleration to ensure sufficient fuel consumption. It is possible to secure the injection flow rate, obtain higher output, and meet the two demands of low fuel consumption and high output at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である燃料噴射装置の断面図
、第2図は第1図におけるI−II断面図、第3図は同
じ<m−m断面図、第4図は燃圧設定部の断面図であっ
て、(a)はバルブ閉状態を、(b)は開状態を示す。 第5図は従来技術の説明並びに本発明の作用説明(燃圧
2段切換え)に用いるグラフ、第6図は燃圧3段切換え
の作用説明に用いるグラフである。 2・・・インジェクタ本体 4・・・燃圧設定部 16・・・噴射口 18・・・燃料通路 20・・・バルブヘッド 28・・・第一ソレノイド 40・・・バルブ体 42・・・ガイド部 44・・・プレート部 46・・・バルブシート面 48・・・連通孔 50・・・スプリング 52・・・第二ソレノイド 64・・・電磁弁 68・・・ストッパ面 70・・・連通溝 72・・・燃圧センサ 第 2 図 Z 第 図 第 図 パルス幅(橿相゛時間)− 第 6 図 パル又輸 → (→酊11憫) 金側 自−メ仁手彩”L:ネ市正μm) 平成 2年 4月 3日 1、事件の表示 平成 2年特i:+願第022583号2、発明の名称 静的流量の可変な燃料哨!8装置 4、代 〒460 名古屋市中区栄2T110番19号名古屋商
工会議所ビル内 電話 052 (221>−6141 6434弁理士 岡 1)英 彦 、・−−一5、補正
の対象 (1)明〒H1書第8頁第11行目〜第13行目の゛燃
料通路I8となっており、・・・移動ストロークか規定
される。」の記載を次の通り補正する。 燃料通路18となっている。また、バルブ部材22の移
動ストロークは、ボデー構成部材6b。 6O間に固定されたストッパ6eと、バルブ部材22に
形成されたストッパ対向部22aとの間隙によって規定
される。」 (2)明細書第9頁第13行目の「第二ソレノイド50
.の記載を「第二ソレノイド52」と補正する。 (3)明細書第1O頁第19行目〜第20行目の1バル
ブ体42.の記載を「バルブ体40」と補正する。 (4)図面中第1図を別紙の補正図面第1図のように補
正する。
Fig. 1 is a cross-sectional view of a fuel injection device that is an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along I-II in Fig. 1, Fig. 3 is a cross-sectional view taken along the same line <m-m, and Fig. 4 is a fuel pressure FIG. 3 is a cross-sectional view of the setting section, with (a) showing the valve in a closed state and (b) showing the valve in an open state. FIG. 5 is a graph used to explain the prior art and the operation of the present invention (two-stage fuel pressure switching), and FIG. 6 is a graph used to explain the operation of three-stage fuel pressure switching. 2... Injector body 4... Fuel pressure setting section 16... Injection port 18... Fuel passage 20... Valve head 28... First solenoid 40... Valve body 42... Guide section 44...Plate portion 46...Valve seat surface 48...Communication hole 50...Spring 52...Second solenoid 64...Solenoid valve 68...Stopper surface 70...Communication groove 72 ...Fuel pressure sensor 2nd figure ) April 3, 1990 1, Indication of the incident 1990 Special I: + Application No. 022583 2, Name of the invention Static flow rate variable fuel control! 8 device 4, Address: 460 Sakae, Naka-ku, Nagoya 2T110 No. 19 Nagoya Chamber of Commerce and Industry Building Telephone 052 (221>-6141 6434 Patent Attorney Oka 1) Hidehiko, ---15, Subject of amendment (1) Meiji H1, page 8, line 11 ~ The statement in the 13th line, ``This is the fuel passage I8, and the movement stroke is defined.'' is corrected as follows. This is a fuel passage 18. Further, the movement stroke of the valve member 22 is the same as that of the body component 6b. It is defined by a gap between a stopper 6e fixed between 6O and a stopper opposing portion 22a formed on the valve member 22. (2) "Second solenoid 50" on page 9, line 13 of the specification
.. The description has been corrected to "second solenoid 52." (3) 1 valve body 42 on page 10, lines 19 to 20 of the specification. The description has been corrected to read "valve body 40." (4) Figure 1 in the drawings shall be corrected as shown in the attached corrected drawing Figure 1.

Claims (1)

【特許請求の範囲】 ボデーと、ボデー内を通る燃料通路と、燃料通路の先端
部に形成された噴射口と、噴射口を開閉するバルブ部材
と、バルブ部材を開閉動作させるバルブ駆動手段と、燃
料の流れ方向における絞り部として1回当たりの噴射流
量を規定する燃料計量部と、を含む燃料噴射装置であつ
て、 燃料の流れ方向においてその燃料計量部より上流側の位
置に設けられ、その位置より下流側に互いに異なる複数
の燃圧を択一的に生じさせるように高周波数デューティ
ー制御に基づいて燃料通路の開閉を繰り返す燃圧切換用
電磁弁、を含むことを特徴とする静的流量の可変な燃料
噴射装置。
[Scope of Claims] A body, a fuel passage passing through the body, an injection port formed at the tip of the fuel passage, a valve member that opens and closes the injection port, and a valve driving means that opens and closes the valve member. A fuel injection device including a fuel metering section that serves as a throttle section in the fuel flow direction to regulate the injection flow rate per injection, the fuel injection device being provided at a position upstream of the fuel metering section in the fuel flow direction; A variable static flow rate characterized by including a fuel pressure switching electromagnetic valve that repeatedly opens and closes a fuel passage based on high frequency duty control so as to selectively generate a plurality of different fuel pressures downstream from the position. fuel injection device.
JP2258390A 1990-01-31 1990-01-31 Variable static flow type fuel injection device Pending JPH03225063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258390A JPH03225063A (en) 1990-01-31 1990-01-31 Variable static flow type fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258390A JPH03225063A (en) 1990-01-31 1990-01-31 Variable static flow type fuel injection device

Publications (1)

Publication Number Publication Date
JPH03225063A true JPH03225063A (en) 1991-10-04

Family

ID=12086878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258390A Pending JPH03225063A (en) 1990-01-31 1990-01-31 Variable static flow type fuel injection device

Country Status (1)

Country Link
JP (1) JPH03225063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353327A (en) * 1999-08-20 2001-02-21 Bosch Gmbh Robert Fuel injection method and system for i.c. engines
KR100736999B1 (en) * 2005-08-30 2007-07-09 현대자동차주식회사 control circuit for injectors with cut-solenoid of an LPI engine and cut-solenoid control method and diagnostic method thereof
JP2009197603A (en) * 2008-02-19 2009-09-03 Isuzu Motors Ltd Fuel injection control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353327A (en) * 1999-08-20 2001-02-21 Bosch Gmbh Robert Fuel injection method and system for i.c. engines
GB2353327B (en) * 1999-08-20 2001-10-31 Bosch Gmbh Robert Fuel-injection method and system for an internal combustion engine
KR100736999B1 (en) * 2005-08-30 2007-07-09 현대자동차주식회사 control circuit for injectors with cut-solenoid of an LPI engine and cut-solenoid control method and diagnostic method thereof
JP2009197603A (en) * 2008-02-19 2009-09-03 Isuzu Motors Ltd Fuel injection control device

Similar Documents

Publication Publication Date Title
US5494224A (en) Flow area armature for fuel injector
US5979786A (en) Fuel injection apparatus
JPS63147966A (en) Fuel injector
JPH03502225A (en) small fuel injection valve
US4811905A (en) Electromagnetic fuel injector
GB2039993A (en) Electromagnetic fuel injector
US5542610A (en) Fuel injection nozzle with integral solenoid valve
JP2757220B2 (en) Fuel injection device
CA1119065A (en) Electromagnetic fuel injector
JPH03225063A (en) Variable static flow type fuel injection device
EP0438479A1 (en) Electromagnetic fuel injector in cartridge design.
US4211201A (en) Fuel supply apparatus for internal combustion engines
KR20030007146A (en) Control structure for nozzle needle in fuel injection valve
JPH03225067A (en) Variable static flow type fuel injection device
JP2004510099A (en) Method of setting static gas flow rate of fuel injector by stroke and fuel injector
JPS61272460A (en) Electromagnetic type fuel injection valve
JPH028139B2 (en)
CZ2001820A3 (en) Injection nozzle with blind bore for internal combustion engines with rounded passage between the blind bore and the injector needle seat
JP2814675B2 (en) Fuel injection device
JPH03225064A (en) Variable static flow type fuel injection device
JP3042814B2 (en) Idle rotation control valve and internal combustion engine controller
JPH03225065A (en) Variable static flow type fuel injection device
JPS62131969A (en) Fuel injection valve
JPH10159689A (en) Air blast type fuel injection equipment for internal combustion engine
JP2817374B2 (en) Fuel injection device