JPH0322451B2 - - Google Patents

Info

Publication number
JPH0322451B2
JPH0322451B2 JP26167885A JP26167885A JPH0322451B2 JP H0322451 B2 JPH0322451 B2 JP H0322451B2 JP 26167885 A JP26167885 A JP 26167885A JP 26167885 A JP26167885 A JP 26167885A JP H0322451 B2 JPH0322451 B2 JP H0322451B2
Authority
JP
Japan
Prior art keywords
pellets
diameter
small
screen
diameter pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26167885A
Other languages
Japanese (ja)
Other versions
JPS62124235A (en
Inventor
Kunihiko Tokukasa
Hideo Mabuchi
Katsuteru Sakata
Keisuke Pponda
Nobuhiro Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26167885A priority Critical patent/JPS62124235A/en
Publication of JPS62124235A publication Critical patent/JPS62124235A/en
Publication of JPH0322451B2 publication Critical patent/JPH0322451B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はペレツト製造方法及び製造設備に関
し、詳細には粒径の異なるペレツトを同時に製造
することによつて良好な生産性を発揮することの
できる方法及び製造設備に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method and equipment for producing pellets, and more particularly, to a method and equipment for producing pellets, and in particular, a method for producing pellets with different particle sizes at the same time to achieve good productivity. It is related to the method and manufacturing equipment that can be used.

[従来の技術] 高炉装入用ペレツトは主に平均粒径10〜13mm程
度の小径成品が汎用されているが、平均粒径15〜
20mm程度の大径ペレツトを製造し、該大径ペレツ
トを1/2〜1/4程度に破砕することによつてペレツ
トの品質を改善する手法も試みられている。そし
て小径ペレツト及び大径ペレツトの双方を製造す
る必要が生じた場合には、単一のペレツト製造設
備によつて小径←→大径間の切換えを行なつてい
る。
[Prior art] Pellet for blast furnace charging is mainly used in small diameter products with an average particle size of about 10 to 13 mm, but with an average particle size of 15 to 13 mm,
Attempts have also been made to improve the quality of pellets by producing large diameter pellets of about 20 mm and crushing the large diameter pellets to about 1/2 to 1/4. When it becomes necessary to produce both small-diameter pellets and large-diameter pellets, a single pellet production facility is used to switch between small diameter and large diameter pellets.

図面を用いて更に詳述する。第2図は典型的な
先行技術を示す概略説明図である。
This will be explained in further detail using the drawings. FIG. 2 is a schematic diagram showing a typical prior art.

小径ペレツトの製造時には、造粒スクリーン2
の篩目を小径ペレツト用に変更すると共に、全て
の造粒機1は小径ペレツトを造粒する様に製造条
件が変更される。造粒機1で造粒された後の小径
生ペレツトはグレート3、キルン4及びアンニユ
ラークーラ6の順序で移送される。その際、キル
ンバーナ5の燃焼熱によつて生ペレツトがグレー
ト3上で乾燥・予熱されると共にキルン4内で焼
成され、更にアンニユラークーラ6内で熱回収さ
れて冷却される。焼成・冷却された小径ペレツト
(成品ペレツト)は破砕機8に送られることなく、
直接成品スクリーン9で篩分けされた後、高炉若
しくはヤードに送られ、その後の処理に付され
る。尚図中7は成品ペレツトを破砕機8又は成品
クリーン9のどちらか一方に移送する為の正逆回
転可能な移動コンベアである。
When producing small diameter pellets, granulation screen 2
The sieve mesh is changed to one for small-diameter pellets, and the manufacturing conditions of all granulators 1 are changed so that small-diameter pellets can be granulated. The small-diameter raw pellets after being granulated by the granulator 1 are transferred to a grate 3, a kiln 4, and an annual cooler 6 in this order. At this time, the raw pellets are dried and preheated on the grate 3 by the combustion heat of the kiln burner 5, and fired in the kiln 4, and further heat is recovered and cooled in the annual cooler 6. The fired and cooled small diameter pellets (finished pellets) are not sent to the crusher 8,
After being sieved through the direct product screen 9, it is sent to a blast furnace or yard for further processing. In the figure, reference numeral 7 denotes a moving conveyor capable of forward and reverse rotation for transferring the product pellets to either the crusher 8 or the product clean 9.

大径ペレツト製造時には、前記造粒スクリーン
2が大径ペレツト用に変更され、全ての造粒機1
は大径ペレツトを造粒する様に製造条件が変更さ
れる。造粒機1で造粒された大径生ペレツトは、
小径ペレツトの場合と同様に焼成・冷却されて成
品ペレツトとなる。更に大径ペレツトの場合は破
砕機8で破砕されてから成品スクリーン9で篩分
けされ、高炉若しくはヤードに送られ、その後の
処理に付される。
When producing large-diameter pellets, the granulation screen 2 is changed to one for large-diameter pellets, and all granulators 1
The manufacturing conditions are changed so that large diameter pellets are granulated. The large-diameter raw pellets granulated by the granulator 1 are
As with the case of small-diameter pellets, they are fired and cooled to become finished pellets. Further, in the case of large-diameter pellets, they are crushed by a crusher 8, sieved by a finished product screen 9, and sent to a blast furnace or yard for further processing.

以上述べた如く現在のところでは、小径ペレツ
トと大径ペレツトの双方を製造する必要あつても
双方を同時に製造することができず、各ペレツト
ごとに切換えて間欠的に製造しているのが実情で
ある。
As mentioned above, at present, even if it is necessary to produce both small-diameter pellets and large-diameter pellets, it is not possible to produce both at the same time, and the reality is that pellets are manufactured intermittently by switching for each pellet. It is.

[発明が解決しようとする問題点] 上述した様に粒径の異なるペレツトを製造する
には、各ペレツトを間欠的に製造せざるを得ず、
従つてこの場合には下記に列挙する様な問題点が
ある。
[Problems to be Solved by the Invention] In order to produce pellets with different particle sizes as described above, each pellet must be produced intermittently.
Therefore, in this case, there are problems as listed below.

(1) 操業の切替毎に造粒スクリーン2の篩目を変
更する必要があり、造粒スクリーン2の取替時
には一旦造粒機1を停止させるのでペレツトの
生産性が低下してしまう。
(1) It is necessary to change the sieve mesh of the granulating screen 2 every time the operation is changed, and the granulating machine 1 must be temporarily stopped when replacing the granulating screen 2, resulting in a decrease in pellet productivity.

(2) 造粒スクリーン2の取替の際の作業費が必要
となり、不経済である。
(2) The cost of replacing the granulation screen 2 is uneconomical.

(3) 操業切替時に粒径が中途半端な所謂中間品が
発生する。
(3) When switching operations, so-called intermediate products with intermediate particle sizes are generated.

(4) 操業切替周期が短い場合は操業の安定が阻害
される。
(4) If the operation switching cycle is short, operational stability will be hindered.

(5) ペレツト製造能力と高炉操業とは対応させる
必要があるが、各ペレツトを間欠的に製造する
とペレツト製造能力と高炉操業とが対応できな
くなる。その結果、ペレツト工場で製造された
直後のペレツト(以下直送ペレツトと称する)
を直ちに送ることができなくなり、その代りに
ヤードに備蓄したペレツト(以下ヤードペレツ
トと称する)を使用する必要が生じる(逆に言
えば常に一定量のヤードペレツトを備蓄してお
かなければならない)が、高炉操業にはできる
だけ直送ペレツトを使用するのが望ましいとい
う要求があるので上記態勢は本質的に好ましい
ことではない。即ち、ヤードペレツトは直送ペ
レツトに比べて付着水分、付着粉が多いので高
炉の安定操業を阻害する要因となり、高炉の安
定操業を図る為には可能な限り直送ペレツトを
使用する方が望ましいのである。
(5) Pellet manufacturing capacity and blast furnace operation must correspond, but if pellets are manufactured intermittently, pellet manufacturing capacity and blast furnace operation will not be compatible. As a result, the pellets immediately after being manufactured at the pellet factory (hereinafter referred to as direct pellets)
It becomes necessary to use pellets stored in the yard (hereinafter referred to as yard pellets) instead (in other words, a certain amount of yard pellets must always be stockpiled). This arrangement is not inherently desirable since there is a desire to use direct feed pellets as much as possible in the operation. That is, yard pellets have more attached moisture and powder than directly delivered pellets, which is a factor that impedes the stable operation of a blast furnace, and it is desirable to use direct delivered pellets as much as possible in order to ensure stable blast furnace operation.

(6) 大径ペレツトを単独で製造する際には、小径
ペレツトの製造時よりも粒径及び空隙率が大き
い為、グレート3での伝熱効率及びアンニユラ
ークーラ6での排熱回収効率が低下し、焼成燃
料原単位が上昇する。
(6) When producing large-diameter pellets alone, the particle size and porosity are larger than when producing small-diameter pellets, so the heat transfer efficiency in grate 3 and the exhaust heat recovery efficiency in annual cooler 6 decrease. However, the burning fuel consumption rate increases.

従つて本発明の目的は、上記(1)〜(6)に列挙した
問題点を一挙に解決し得る様なペレツトの製造方
法及びその設備を提供する点に存在するものであ
る。
Therefore, an object of the present invention is to provide a pellet manufacturing method and equipment that can solve the problems listed in (1) to (6) above all at once.

[問題点を解決する為の手段] 発明者らは上記現状に鑑み種々研究した結果、
下記の構成を採用することによつて(1)〜(6)に列挙
した問題点が一挙に解決できるとの着想を得、本
発明を完成するに至つた。
[Means for solving the problem] As a result of various research conducted by the inventors in view of the above-mentioned current situation,
The present invention was completed based on the idea that the problems listed in (1) to (6) could be solved all at once by adopting the configuration described below.

上記目的を達成し得た本発明の方法とは、粒径
の異なる生ペレツトを造粒後混合し、混合状態で
焼成及び冷却を施して粒径の異なる製品ペレツト
を同時に製造する点に要旨を有するものである。
The gist of the method of the present invention that has achieved the above object is that raw pellets with different particle sizes are mixed after granulation, and then fired and cooled in the mixed state to simultaneously produce product pellets with different particle sizes. It is something that you have.

又その製造設備とは、粒径の異なる生ペレツト
ごとに設けられる造粒機構と、造粒した後の生ペ
レツトを混合する機構と、混合された状態のペレ
ツトを焼成及び冷却する機構とを含む点に要旨を
有するものである。
The manufacturing equipment includes a granulation mechanism provided for each raw pellet having a different particle size, a mechanism for mixing the granulated raw pellets, and a mechanism for firing and cooling the mixed pellets. The main points are the main points.

[作 用] 本発明者らは上記構成を採用するに先だち小径
ペレツトと大径ペレツトを混合した状態で焼成及
び冷却を施すことによつて、焼成燃料原単位の低
減を図ることが可能であるとの知見を得た。即ち
小径ペレツトと大径ペレツトを混合すれば、第3
図aに示す如く、夫々のペレツトを単独で焼成し
た場合よりもペレツト充填層内の空隙率が低下
し、ペレツトの充填密度は上昇する。これは大径
ペレツト間の空隙内に小径ペレツトが入り込む為
と思われる。第3図aに示した様に空隙率が変化
する場合に、グレートにおけるペレツトの熱交換
量及びクーラにおけるペレツトの熱回収量を伝熱
シユミレーシヨンモデルによつて解析した。
[Function] The present inventors are able to reduce the burning fuel consumption by firing and cooling a mixture of small-diameter pellets and large-diameter pellets prior to adopting the above configuration. We obtained the following knowledge. In other words, if small diameter pellets and large diameter pellets are mixed, the third
As shown in Figure a, the porosity in the pellet packed bed is lower than when each pellet is fired individually, and the packing density of the pellets is increased. This is thought to be due to the small diameter pellets entering the spaces between the large diameter pellets. When the porosity changes as shown in FIG. 3a, the amount of heat exchanged from the pellets in the grate and the amount of heat recovered from the pellets in the cooler were analyzed using a heat transfer simulation model.

その結果を第3図b及び第3図cに夫々示す。
第3図b,cの結果から明らかな様に、小径ペレ
ツトと大径ペレツトを混合して焼成及び冷却を施
せば、小径ペレツト及び大径ペレツトの夫々を単
独で焼成・冷却したとき(図中、破線で示す)よ
りも熱交換量及び熱回収量が増加するのが理解さ
れる。
The results are shown in FIGS. 3b and 3c, respectively.
As is clear from the results shown in Figures 3b and 3c, if the small diameter pellets and the large diameter pellets are mixed together and fired and cooled, then when the small diameter pellets and the large diameter pellets are individually fired and cooled ( It is understood that the amount of heat exchange and the amount of heat recovery are increased compared to the case shown by the broken line).

例えば小径ペレツトと大径ペレツトの混合比が
50:50の場合には、第3図bの矢印Aに示す如く
グレートにおけるペレツトへの熱交換量は単独焼
成時の荷重平均値よりも4×103Kcal/t程度増
加する。即ちグレートでの熱交換量が計算値より
も1.7%上昇することになる。一方この場合には
クーラにおいても同様に第3図cの矢印Bに示す
如くクーラにおけるペレツトの熱回収量は単独焼
成時の荷重平均値よりも4×103Kcal/t程度増
加する。即ちクーラでの冷却効率は計算値よりも
1.6%上昇することになる。クーラの排ガスはキ
ルンバーナの2次空気として使用される為、クー
ラにおける熱回収量の増加はキルンバーナのの燃
料の減少に寄与する。ちなみに小径ペレツトと大
径ペレツトを50:50の割合で混合した場合には、
合計8×103Kcal/tの焼成燃料原単位の低減を
図れることとなる。
For example, the mixing ratio of small diameter pellets and large diameter pellets is
In the case of 50:50, as shown by arrow A in FIG. 3b, the amount of heat exchanged to the pellets in the grate increases by about 4×10 3 Kcal/t compared to the weighted average value during single firing. In other words, the amount of heat exchange at the grate will increase by 1.7% from the calculated value. On the other hand, in this case, the amount of heat recovered from the pellets in the cooler also increases by about 4×10 3 Kcal/t compared to the load average value during individual firing, as shown by arrow B in FIG. 3c. In other words, the cooling efficiency of the cooler is higher than the calculated value.
This will result in an increase of 1.6%. Since the exhaust gas from the cooler is used as secondary air for the kiln burner, an increase in the amount of heat recovered in the cooler contributes to a reduction in fuel consumption for the kiln burner. By the way, if you mix small diameter pellets and large diameter pellets at a ratio of 50:50,
This results in a total reduction of 8×10 3 Kcal/t in the burning fuel consumption rate.

[実施例] 第1図は本発明の一実施例の概略説明図であ
る。小径ペレツト及び大径ペレツトが夫々必要と
される生産比率に応じて、小径ペレツト造粒用造
粒機1aの基数と大径ペレツト造粒用造粒機1b
の基数が設定される。
[Embodiment] FIG. 1 is a schematic explanatory diagram of an embodiment of the present invention. Depending on the production ratio in which small-diameter pellets and large-diameter pellets are required, the number of granulators 1a for granulating small-diameter pellets and the granulator 1b for granulating large-diameter pellets are determined.
The radix of is set.

造粒スクリーン2に関しては、小径ペレツトを
造粒する機構側(造粒機1a側)には小径ペレツ
ト用のスクリーンを、大径ペレツトを造粒する機
構側(造粒機1b側)には大径ペレツト用のスク
リーン2を設備する様にしてもよいが、造粒歩留
向上の為には全機構とも造粒スクリーン2のアン
ダーサイズ側に従来の小径ペレツト用のアンダー
サイズのものを設置し、且つオーバーサイズ側に
は大径ペレツト用のオーバサイズのものを設置す
るのが望ましい。
Regarding the granulation screen 2, a screen for small-diameter pellets is installed on the side of the mechanism that granulates small-diameter pellets (granulator 1a side), and a screen for large-diameter pellets is installed on the mechanism side that granulates large-diameter pellets (granulator 1b side). A screen 2 for pellets with a smaller diameter may be installed, but in order to improve the granulation yield, a conventional undersize screen for pellets with a smaller diameter is installed on the undersize side of the granulation screen 2 in all mechanisms. , and it is desirable to install an oversized one for large diameter pellets on the oversized side.

各造粒機1a,1bで造粒された小径ペレツト
及び大径ペレツトは、グレート3迄の輸送過程即
ちベルトコンベア上及びベルトコンベア乗継部、
更にはグレート3への供給時にはほぼ均一に混合
される(生ペレツトを混合する機構)。
The small-diameter pellets and large-diameter pellets granulated by each of the granulators 1a and 1b are transported to grade 3, that is, on the belt conveyor and at the belt conveyor transition area.
Furthermore, the raw pellets are mixed almost uniformly when fed to grade 3 (mechanism for mixing raw pellets).

グレート3において混合されたペレツト(以下
混合ペレツトと称する)の熱交換効率を上げる為
には、できる限り小径ペレツトと大径ペレツトを
均一に混合して混合ペレツトの充填密度を高める
ことが望ましい。その為には、小径ペレツト或は
大径ペレツトを造粒する機構を交互に選択する様
にすれば有効である。
In order to increase the heat exchange efficiency of the pellets mixed in grade 3 (hereinafter referred to as mixed pellets), it is desirable to mix small diameter pellets and large diameter pellets as uniformly as possible to increase the packing density of the mixed pellets. For this purpose, it is effective to alternately select mechanisms for granulating small-diameter pellets or large-diameter pellets.

混合ペレツトは、混合状態のままでグレート
3、キルン4及びアンニユラークーラ6の順序で
移送される。この間、混合ペレツトはグレート3
上で乾燥・予熱されると共にキルン4内で焼成さ
れ、更にアンニユラークーラ6内で熱回収されて
冷却される。混合ペレツトを焼成・冷却する機構
は従来と何ら変わるところはなく、従つてグレー
ト3、キルン4及びアンニユラークーラ6等は設
計変更する必要がなく既存の設備をそのまま使用
すればよい。
The mixed pellets are transferred to the grate 3, kiln 4, and annual cooler 6 in this order while remaining in a mixed state. During this time, the mixed pellets are
It is dried and preheated at the top, fired in the kiln 4, and further heat-recovered and cooled in the annual cooler 6. The mechanism for firing and cooling the mixed pellets is no different from the conventional one, so there is no need to change the design of the grate 3, kiln 4, annual cooler 6, etc., and the existing equipment can be used as is.

混合ペレツトはアンニユラークーラ6で冷却さ
れた後、アンニユラークーラ6のペレツト排出側
に設けられたスクリーン10で粒径ごとに篩分け
される。即ちスクリーン10の篩下には小径ペレ
ツトが篩分けられ、該小径ペレツトは成品スクリ
ーン9aで篩分けされて粒径が揃えられた後、高
炉若しくはヤードに送られる。但し本発明ではヤ
ードに送る必要がなく、仮に送ることがあつても
それは緊急避難用で十分である。一方スクリーン
10の篩上には大径ペレツトが篩分けされ、該大
径ペレツトは成品スクリーン9bで篩分けられて
粒径が揃えられた後、必要により破砕機8で粉砕
してから高炉若しくはヤードに送られる。この様
に粒径の異なるペレツトを同時に製造し、その後
篩分けして各粒径のペレツトを分離する為には、
スクリーン10以降のプロセスで小径ペレツト、
大径ペレツトの各系統の為の2種の輸送ラインが
必要となり、従来設備と比べて輸送ラインを1系
統追加することとなる。
After the mixed pellets are cooled in an annual cooler 6, they are sieved by a screen 10 provided on the pellet discharge side of the annual cooler 6 according to particle size. That is, small-diameter pellets are sieved under the sieve of the screen 10, and after the small-diameter pellets are sieved by the finished product screen 9a to have a uniform particle size, they are sent to a blast furnace or a yard. However, in the present invention, there is no need to send it to the yard, and even if it is sent, it is sufficient for emergency evacuation. On the other hand, large-diameter pellets are sieved on the sieve of the screen 10, and after the large-diameter pellets are sieved by the product screen 9b to make the particle size uniform, they are crushed by a crusher 8 if necessary and then sent to a blast furnace or yard. sent to. In this way, in order to simultaneously produce pellets with different particle sizes and then sieve to separate pellets of each particle size,
The process after screen 10 produces small diameter pellets,
Two types of transport lines are required for each system of large-diameter pellets, and one transport line is added compared to the conventional equipment.

以上述べた様な構成を採用することによつて、
粒径の異なるペレツトの同時製造が可能となり、
間欠的な製造しかできなかつた従来の問題点を解
決し得るものである。又本発明においては焼成・
冷却した後に粒径ごとに分離することも考慮して
いるので、粒径の異なるペレツトごとに使用する
必要性が生じた場合であつても何ら支障はない。
尚小径ペレツトと破砕したペレツト(大径ペレツ
ト)とを混合した状態で高炉に供給する場合に
は、破砕機8の後の輸送プロセスを1系統とする
様な構成を採用してもよく、或は焼成・冷却後の
混合ペレツトを篩分することなく全量破砕機8を
通過させる様な構成を採用してもよい。更に小径
ペレツトと大径ペレツトを混合した状態で高炉に
供給する様な場合には、スクリーン10、破砕機
8を省略し、クーラ6以降の輸送ラインを1系統
とする様な構成を採用してもよい。
By adopting the configuration described above,
It is possible to simultaneously produce pellets with different particle sizes,
This can solve the problem of the conventional method, which could only be manufactured intermittently. In addition, in the present invention, firing and
Since it is also considered that the pellets are separated by particle size after cooling, there is no problem even if it becomes necessary to use pellets of different particle sizes.
In addition, when supplying small-diameter pellets and crushed pellets (large-diameter pellets) to the blast furnace in a mixed state, a configuration may be adopted in which the transportation process after the crusher 8 is integrated into one system, or Alternatively, a configuration may be adopted in which the mixed pellets after firing and cooling are passed through the crusher 8 without being sieved. Furthermore, if small-diameter pellets and large-diameter pellets are to be supplied to the blast furnace in a mixed state, the screen 10 and crusher 8 can be omitted, and a configuration in which only one transportation line after the cooler 6 is adopted is adopted. Good too.

以上に述べた構成の各実施態様はいずれも本発
明の技術範囲に含まれる。
All of the embodiments of the configuration described above are included in the technical scope of the present invention.

[発明の効果] 以上述べた如く本発明によれば、既存の構成を
採用することによつて、粒径の異なる各ペレツト
を間欠的に製造する必要がなくなり、上記に列挙
した様な問題点が全て解消される。
[Effects of the Invention] As described above, according to the present invention, by adopting the existing configuration, it is no longer necessary to intermittently produce pellets with different particle sizes, and the problems listed above can be solved. are all resolved.

即ち本発明の構成を採用することによつて、下
記の利益を得ることができる。
That is, by adopting the configuration of the present invention, the following benefits can be obtained.

(1) 間欠製造に合わせて造粒スクリーンを取替え
る必要がなくなり、スクリーン取替時の造粒機
の停止がなくなる為設備のペレツト生産能力が
増すと共に、スクリーン取替作業費が不要とな
り経済的である。
(1) There is no need to replace the granulation screen in accordance with intermittent production, and the granulator does not have to stop when replacing the screen, which increases the pellet production capacity of the equipment and eliminates the cost of replacing the screen, making it economical. be.

(2) 小径ペレツトから大径ペレツトへの操業切替
時及び大径ペレツトから小径ペレツトへの操業
時に発生する中間品の発生がなくなる。
(2) Eliminates the generation of intermediate products that occur when switching from small-diameter pellets to large-diameter pellets and when switching from large-diameter pellets to small-diameter pellets.

(3) 操業の切替が不要となる為ペレツト製造操業
の安定化が図れる。
(3) Pellet manufacturing operations can be stabilized because there is no need to switch operations.

(4) 粒径の異なる各ペレツト共高炉の操業条件に
対応して高炉への直送が可能となり、高炉操業
の安定化を図ることができる。
(4) Pellets with different particle sizes can be directly sent to the blast furnace in accordance with the operating conditions of the blast furnace, making it possible to stabilize the blast furnace operation.

(5) グレートにおけるペレツトへの熱交換効率及
びクーラにおけるペレツトからの熱回収効率が
向上するので焼成燃料原単位の低減が可能とな
る。
(5) Since the heat exchange efficiency to the pellets in the grate and the heat recovery efficiency from the pellets in the cooler are improved, it is possible to reduce the burning fuel consumption rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略説明図、第2
図は典型的な先行技術の概略説明図、第3図は異
径ペレツトの混合比がペレツト空隙率及びグレー
トでの熱交換量並びにクーラでの熱回収量の夫々
に与える影響を示すグラフである。 1,1a,1b…造粒機、2…造粒スクリー
ン、3…グレート、4…キルン、5…キルンバー
ナ、6…アンニユラークーラ、7…移動コンベ
ア、8…破砕機、9,9a,9b…成品スクリー
ン、10…スクリーン。
FIG. 1 is a schematic explanatory diagram of one embodiment of the present invention, and FIG.
The figure is a schematic explanatory diagram of a typical prior art, and Figure 3 is a graph showing the influence of the mixing ratio of pellets of different diameters on the pellet porosity, the amount of heat exchange in the grate, and the amount of heat recovery in the cooler. . 1, 1a, 1b... Granulator, 2... Granulation screen, 3... Grate, 4... Kiln, 5... Kiln burner, 6... Annual cooler, 7... Moving conveyor, 8... Crushing machine, 9, 9a, 9b... Finished product screen, 10...screen.

Claims (1)

【特許請求の範囲】 1 粒径の異なる生ペレツトを造粒後混合し、混
合状態で焼成及び冷却を施して粒径の異なる成品
ペレツトを同時に製造することを特徴とする異径
ペレツトの製造方法。 2 粒径の異なる生ペレツトごとに設けられる造
粒機構と、造粒した後の生ペレツトを混合する機
構と、混合された状態のペレツトを焼成及び冷却
する機構とを含むことを特徴とする異径ペレツト
の製造設備。
[Scope of Claims] 1. A method for producing pellets of different diameters, characterized in that raw pellets of different particle diameters are mixed after granulation, and baked and cooled in the mixed state to simultaneously produce finished pellets of different particle diameters. . 2. A difference characterized in that it includes a granulation mechanism provided for each raw pellet having a different particle size, a mechanism for mixing the raw pellets after granulation, and a mechanism for firing and cooling the mixed pellets. Equipment for producing diameter pellets.
JP26167885A 1985-11-21 1985-11-21 Method and equipment for producing pellets of different diameters Granted JPS62124235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26167885A JPS62124235A (en) 1985-11-21 1985-11-21 Method and equipment for producing pellets of different diameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26167885A JPS62124235A (en) 1985-11-21 1985-11-21 Method and equipment for producing pellets of different diameters

Publications (2)

Publication Number Publication Date
JPS62124235A JPS62124235A (en) 1987-06-05
JPH0322451B2 true JPH0322451B2 (en) 1991-03-26

Family

ID=17365208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26167885A Granted JPS62124235A (en) 1985-11-21 1985-11-21 Method and equipment for producing pellets of different diameters

Country Status (1)

Country Link
JP (1) JPS62124235A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832932B2 (en) * 1989-02-15 1996-03-29 日本鋼管株式会社 Raw pellet production method in agglomerated ore production
JP5203789B2 (en) * 2008-04-17 2013-06-05 株式会社神戸製鋼所 Blast furnace top gas temperature control method

Also Published As

Publication number Publication date
JPS62124235A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
JPS6237325A (en) Calcined lump ore and its production
CN111747727B (en) System and process for sintering copper-nickel-containing solid hazardous waste
JPH0322451B2 (en)
US6451085B1 (en) Method for producing reduced iron
CN212610314U (en) Copper-nickel-containing solid hazardous waste sintering system
TWI775855B (en) Method of operating a sinter plant and method of operating a blast furnace in a blast furnace plant
JP6333770B2 (en) Method for producing ferronickel
JPH04193914A (en) Method for supplying sintering raw material
JPS6052533A (en) Preliminary treatment of sintered raw material
JP3635252B2 (en) Method for reducing metal oxide
JP2000273553A (en) Method for granulating sintering raw material
CN214704412U (en) Sintering control system
JPH06136456A (en) Production of sintered ore
CN218932244U (en) Material distribution system for composite agglomeration of sintering machine and sintering machine
CN114644472B (en) Cement material processing device and cement material processing method
CN216716968U (en) Steel belt type pellet roasting system for magnetite
JPS5952694B2 (en) Sintered ore manufacturing method
CN207944028U (en) A kind of novel burning apparatus of powdered lime
CN116854382A (en) Based on CO 2 System and process for producing enriched small-particle lime
JPS60194023A (en) Production of sintered ore
JPS63128127A (en) Manufacture of sintered ore
RU1821456C (en) Method of granulated charge sintering
JPS63247315A (en) Production of sintered ore
JPS62130227A (en) Method for sintering fine ore
JPH01205038A (en) Production of sintered ore