JPH03224493A - Production of starch sugar having high purity - Google Patents

Production of starch sugar having high purity

Info

Publication number
JPH03224493A
JPH03224493A JP22556089A JP22556089A JPH03224493A JP H03224493 A JPH03224493 A JP H03224493A JP 22556089 A JP22556089 A JP 22556089A JP 22556089 A JP22556089 A JP 22556089A JP H03224493 A JPH03224493 A JP H03224493A
Authority
JP
Japan
Prior art keywords
liquid
saccharification
starch
saccharified
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22556089A
Other languages
Japanese (ja)
Other versions
JP2733330B2 (en
Inventor
Takashi Kimura
隆志 木村
Masabumi Ogata
緒方 正文
Haruto Kobayashi
治人 小林
Teruo Nakakuki
輝夫 中久喜
Masahiro Yoshida
雅浩 吉田
Kayoko Oishi
大石 佳代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Japan Maize Products Co Ltd, Nihon Shokuhin Kako Co Ltd, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP22556089A priority Critical patent/JP2733330B2/en
Publication of JPH03224493A publication Critical patent/JPH03224493A/en
Application granted granted Critical
Publication of JP2733330B2 publication Critical patent/JP2733330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject product only by slightly increasing the treating amount in the purification process by feeding back a by-product-containing reflux of a membrane-fractionation process to the main saccharification process and feeding back a part of the reflux to a preparatory saccharification process. CONSTITUTION:A liquefied starch is preparatorily saccharified and the obtained partially saccharified liquid is filtered. The filtered partially saccharified liquid is saccharified in the main saccharification process and the obtained saccharified liquid is subjected to membrane fractionation and separated into a liquid containing high purity starch sugar and a reflux liquid composed mainly of polymeric dextrin. Subsequently, the reflux liquid is fed back to the main saccharification process and, at the same time, a part of the enzyme-containing saccharified liquid of the main saccharification process or a part of the above reduced liquid is fed back to the preparatory saccharification process.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、澱粉糖の製造方法に関し、さ5らに詳しくは
、目的生成物であるグルコース等の澱粉糖の純度の高い
澱粉糖の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing starch sugar, and more specifically, the present invention relates to a method for producing starch sugar. Regarding the method.

口従来の技術〕 澱粉糖とは、グルコース、マルトース、マルトオリゴ糖
等である。澱粉糖は、従来、澱粉を原料として酵素を用
いてバッチ法で工業的に製造されている。バッチ法で得
られる澱粉糖中に含まれているグルコース、マルトース
、マルトオリゴ糖等の目的生成物は約40〜95%程度
であり、その他に副生成物としてデキストリン等を含む
[Background Art] Starch sugars include glucose, maltose, maltooligosaccharides, and the like. Starch sugar has conventionally been industrially produced using starch as a raw material in a batch process using enzymes. The target products such as glucose, maltose, and maltooligosaccharides contained in the starch sugar obtained by the batch method account for about 40 to 95%, and also contain dextrin and the like as by-products.

ところが、近年高純度の澱粉糖の要求が高くなっている
。そこで、副生成物を含有する澱粉糖を精製する方法が
提案されている。その中でも限外ろ過膜を用いる膜分画
法は、副生成物の分離効率が高いことから、有望視され
ている〔例えば、特開昭52−57344号公報参照〕
However, in recent years, the demand for high purity starch sugar has increased. Therefore, methods have been proposed to purify starch sugar containing by-products. Among these, the membrane fractionation method using an ultrafiltration membrane is considered promising because of its high separation efficiency of by-products [for example, see Japanese Patent Application Laid-Open No. 52-57344].
.

このような膜分画法では、分画した副生成物(デキスト
リン等)を含む還流液は、副製品として利用するか、あ
るいは澱粉の利用率を上げる目的で、その一部を糖化工
程にフィードバックされる゛のが普通である。
In this type of membrane fractionation method, the reflux liquid containing fractionated byproducts (dextrin, etc.) is used as a byproduct, or a part of it is fed back to the saccharification process in order to increase the utilization rate of starch. It is normal for this to happen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、原料として用いる澱粉液化液には、種々の不
純物が含まれている。そこで、膜分画法では、不純物に
よる膜の閉塞を防止する目的で、糖化工程終了後、膜分
画前に糖化液の精製を、プレコートフィルター、フィル
タープレス等のろ過装置により行う。ところが、前述の
ように、副生成物(デキストリン等)を含む画分を糖化
工程にフィードバックすると、このフィードバック分は
、−度精製されているにもかかわらず、糖化工程終了後
ろ過に付されることになる。その結果、精製(ろ過)工
程における糖化液の処理量は多くなり、負担が大きくな
り、しかも、−度精製しているフィードバック分を再度
精製するのはいかにも効率が悪い。
By the way, the starch liquefied liquid used as a raw material contains various impurities. Therefore, in the membrane fractionation method, in order to prevent membrane clogging due to impurities, the saccharified liquid is purified using a filtration device such as a precoat filter or a filter press after the saccharification step and before membrane fractionation. However, as mentioned above, when the fraction containing by-products (dextrin, etc.) is fed back to the saccharification process, this feedback fraction is filtered after the saccharification process is completed, even though it has been purified to a certain degree. It turns out. As a result, the amount of saccharified liquid processed in the purification (filtration) step increases, resulting in a heavy burden, and furthermore, it is extremely inefficient to repurify the feedback portion that has already been purified.

澱粉液化液を糖化前に精製することも考えられるが、澱
粉液化液の特性上、比較的高温度でろ過をする必要があ
り、現在までのところそのような技術は開発されていな
い。
It is possible to purify the starch liquefied liquid before saccharification, but due to the characteristics of the starch liquefied liquid, it is necessary to filter it at a relatively high temperature, and such a technology has not been developed to date.

そこで、本発明の目的は、膜分画法により、高純度の澱
粉糖を製造方法において、副生成物(デキストリン等)
を含む還流液を予備糖化工程にフィードバックするにも
かかわず、糖化液の精製(ろ過)工程における処理量は
、従来法と比べてわずかに増加するだけの、高純度澱粉
糖の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing high-purity starch sugar using a membrane fractionation method, in which by-products (dextrin, etc.)
Provides a method for producing high-purity starch sugar, in which the amount of processing in the purification (filtration) process of the saccharified liquid is only slightly increased compared to conventional methods, even though the reflux liquid containing saccharification is fed back to the pre-saccharification process. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、(a)澱粉液化液を予備糖化する工程、(b
)予備糖化して得た部分糖化液をろ過する工程、(C)
ろ過した部分糖化液を糖化して糖化液を得る主糖化工程
、 (d)得られた糖化液を膜分画に付して高純度澱粉糖含
有液と高分子デキストリンを主成分とする還流液とに分
画する工程、 (e)高分子デキストリンを主成分とする還流液を主糖
化工程にフィードバックする工程、及び(f)主糖化工
程の酵素を含む糖化液の一部または高分子デキストリン
を主成分とする還流液の一部を予備糖化工程にフィード
バックする工程、を含む高純度澱粉糖の製造方法に関す
る。
The present invention comprises (a) a step of pre-saccharifying a starch liquefied liquid, (b)
) step of filtering the partially saccharified liquid obtained by preliminary saccharification, (C)
Main saccharification step of obtaining a saccharified solution by saccharifying the filtered partially saccharified solution; (d) The obtained saccharified solution is subjected to membrane fractionation to produce a reflux solution containing a high-purity starch sugar-containing solution and a polymer dextrin as main components. (e) a step of feeding back the reflux liquid containing polymer dextrin as a main component to the main saccharification step; and (f) a step of feeding back a part of the saccharification liquid containing the enzyme of the main saccharification step or polymer dextrin. The present invention relates to a method for producing high-purity starch sugar, which includes a step of feeding back a part of the reflux liquid, which is the main component, to a preliminary saccharification step.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明の方法の第1の工程は、澱粉液化液を予備糖化す
る工程である。
The first step of the method of the present invention is a step of pre-saccharifying the starch liquefaction liquid.

ここで用いる澱粉液化液は、従来の澱粉糖の製造に用い
られていたものと同じものでよい。例えば、馬鈴薯、せ
薯、トウモロコシ、キャラサバ等の澱粉を精製し、酸ま
たはα−アミラーゼで液化することにより得られるもの
である。
The starch liquefaction liquid used here may be the same as that used in the conventional production of starch sugar. For example, it is obtained by purifying starch from potatoes, Japanese yam, corn, mackerel, etc., and liquefying it with acid or α-amylase.

予備糖化に用いる酵素は、澱粉糖生成酵素である。本発
明に用いる澱粉糖生成酵素(アミラーゼ)には、特に限
定はない。
The enzyme used for pre-saccharification is a starch sugar producing enzyme. There is no particular limitation on the starch sugar producing enzyme (amylase) used in the present invention.

グルコアミラーゼとしては、リゾプス属、アスペルギル
ス属、ムコール属、ビリカラリア属等のカビ起源のもの
を主に用いることができる。特に、リゾプス・デレマー
起源のものが好適である。そのほかに、エンドマイセス
属、トリコデルマ属、サツカロミセス属などの酵母やク
ロストリジウム・アセトブチリカムなどの細菌起源のも
のを用いることもできる。
As glucoamylase, glucoamylase derived from fungi such as Rhizopus, Aspergillus, Mucor, Viricararia and the like can be mainly used. Particularly suitable are those originating from Rhizopus delemer. In addition, yeasts such as those of the genus Endomyces, Trichoderma, and Satucharomyces, and those of bacterial origin such as Clostridium acetobutylicum can also be used.

マルトース生成アミラーゼとしては、大豆、麦芽等の植
物起源のβ−アミラーセがある。さらに、バチルス−ポ
リミキサCBacillus  olymvxa、 J
Maltose-producing amylase includes β-amylase derived from plants such as soybean and malt. In addition, Bacillus polymyxa, CBacillus olymvxa, J
.

Robyt及びり、 French、 Arch、 B
iochem、 Biophys。
Robyt, French, Arch, B
iochem, Biophys.

104、338 (1964) 〕、バチルス・セレウ
ス[Bacillus cereus、 Y、 タカサ
キ(Takasaki) 。
104, 338 (1964)], Bacillus cereus [Bacillus cereus, Y, Takasaki.

Agric、 Biol、 Chem、、 40.15
15−1523 (1976))、シュードモナス属菌
(Pseudomonas s 、 S、 5hink
eら、  J、  Ferment、 Technol
、、  53. 693−698 (1975)) 、
ストレプトミセス・ヒゲロスコピカス (Stre tom ces hi rosco 1c
us、 Y、ヒダ力(Hidaka)ら、  5tar
ke、  26. 413 (1974)〕、ストレプ
トミセス・プレコックス(Stre tom ces 
 raecox、若生勝馬ら、澱粉科学、 25.15
5 (1978)E等の微生物起源のマルトース生成ア
ミラーゼがある。
Agric, Biol, Chem, 40.15
15-1523 (1976)), Pseudomonas s, S, 5hink
et al., J. Ferment, Technol
,, 53. 693-698 (1975)),
Streptomyces higeloscopicus (Streptomyces hi rosco 1c)
us, Y, Hidaka et al., 5tar
ke, 26. 413 (1974)], Streptomyces plecox
raecox, Wakasei Katsuma et al., Starch Science, 25.15
There are maltose-producing amylases of microbial origin such as 5 (1978) E.

マルトトリオース生成アミラーゼとしては以下のものが
挙げられる:若生勝馬ら、澱粉科学、26、175  
(1979) 、スプレブトミセスφグリセウス(S 
re tmyces  riseus)起源のもの:高
橋義幸、昭和58年度農芸化学大会要旨集、p 169
(1983)、バチルス(Baa i l lus )
属起源のもの。
Maltotriose-producing amylases include the following: Katsuma Wakasa et al., Starch Science, 26, 175
(1979), Sprebutomyces φ griseus (S
re tmyces riseus) Origin: Yoshiyuki Takahashi, Abstracts of the 1981 Agricultural Chemistry Conference, p 169
(1983), Bacillus
of genus origin.

マルトテトラオース生成アミラーゼとしては以下のもの
が挙げられる: J、 F、 Robyt及びR,J。
Maltotetraose-producing amylases include: J, F, Robyt and R, J.

Ackerman: Arch、 Biochem、 
Biophys、、 145.105(1971)、シ
ュードモナス・ストッツエリ(Pseudomonas
 5tutzeri)起源のもの。
Ackerman: Arch, Biochem,
Biophys, 145.105 (1971), Pseudomonas stotteri
5 tutzeri) origin.

マルトペンタオース生成アミラーゼとしては以下のもの
が挙げられる:N、サイトウ(Saito)、Arch
、 Bioche+n、 Biophys、、 155
.290(1973) 、バチルス・リケニホルミス(
Bacillus Iichniformis)起源の
もの;小林ら、昭和58年度日本澱粉学会大会要旨集、
p 301  (1983)  ;吉儀ら、昭和59年
度農芸化学大会要旨集、p584  (1984)。
Examples of maltopentaose-producing amylases include: N, Saito, Arch
, Bioche+n, Biophys, 155
.. 290 (1973), Bacillus licheniformis (
Originated from Bacillus Iichniformis; Kobayashi et al., Abstracts of the 1981 Japanese Starch Society Conference,
p 301 (1983); Yoshigi et al., Abstracts of the 1984 Agricultural Chemistry Conference, p 584 (1984).

マルトヘキサオース生成アミラーゼとしては以下のもの
が挙げられる二に、カイヌマ(Kainuma)ら、F
EBS Lett、、 26.281 (1972)、
クレブシェーラ・ニューモニア(Klebsiella
  neumoniae)起源のもの; J、F、Ke
nnedy及びC,A、 White、 5tarke
、 31゜93(1979);呑口ら、澱粉科学、29
.107 <1982)Y、タカサキ(Takasak
i)、 Agric、 Biol、 Chem、。
Maltohexaose-producing amylases include the following: Second, Kainuma et al., F.
EBS Lett, 26.281 (1972),
Klebsiella pneumonia
pneumoniae) origin; J, F, Ke
nnnedy and C.A., White, 5tarke
, 31°93 (1979); Noguchi et al., Starch Science, 29
.. 107 <1982) Y, Takasaki
i), Agric, Biol, Chem.

47、 2193  (1983’]  。47, 2193 (1983').

予備糖化は、上記澱粉液化液に対し、後述の主糖化工程
からの還流液または高分子デキストリンを主成分とする
還流液の一部に含まれる酵素を利用して、例えば40〜
60℃の温度で、pH4,0〜8.5で行う。本発明に
おいて特に重要なことは、予備糖化を澱粉液化液の55
℃における粘度が5cp以下になるまで行うことである
。澱粉液化液の55℃における粘度を5cp以下にする
ことにより、澱粉液化液のろ過を従来の方法により実施
することができるようになる。
Pre-saccharification is performed on the starch liquefaction liquid by using an enzyme contained in the reflux liquid from the main saccharification process described below or a part of the reflux liquid containing polymer dextrin as a main component, for example.
It is carried out at a temperature of 60° C. and a pH of 4.0 to 8.5. What is particularly important in the present invention is that preliminary saccharification is
This is to be carried out until the viscosity at °C becomes 5 cp or less. By setting the viscosity of the starch liquefied liquid at 55° C. to 5 cp or less, the starch liquefied liquid can be filtered by a conventional method.

ここで、このような結果を得るための予備糖化の条件は
、通常バッチ法で採用されいる程度の酵素使用I、例え
ば、原料澱粉の固形分1g当たり1〜2IUの酵素を用
いて、短時間、例えば2時間程度で実施可能である。そ
の結果として、通常のバッチ法で完全に糖化するための
糖化槽に比べてl/10からl/20程度の非常に小さ
い予備糖化槽で充分である。
Here, the conditions for pre-saccharification to obtain such results are as follows: use of enzyme I at the level normally employed in the batch method, for example, using 1 to 2 IU of enzyme per 1 g of solid content of raw starch, and for a short period of time. , for example, can be carried out in about 2 hours. As a result, a very small preliminary saccharification tank of about 1/10 to 1/20 is sufficient compared to a saccharification tank for complete saccharification in a normal batch method.

予備糖化して、粘度が低下した部分糖化液は次いでろ過
される。ここで用いるろ適法は、従来糖化液をろ過する
のに用いていた方法と同様のものである。例えば、プレ
コートフィルター、フィルタープレスを用いる方法であ
る。プレコートフィルターを用いる場合には、ろ過助剤
として例えばケイソウ土、パーライト、セルロース、活
性炭等を用い、40〜60℃の温度で行う。
The partially saccharified liquid whose viscosity has been reduced through preliminary saccharification is then filtered. The appropriate filtration method used here is the same as the method conventionally used to filter saccharified liquid. For example, there is a method using a precoat filter or a filter press. When a pre-coated filter is used, diatomaceous earth, perlite, cellulose, activated carbon, etc. are used as a filter aid, and the filtering is carried out at a temperature of 40 to 60°C.

また、予備糖化して得た部分糖化液のろ過は、例えば特
開昭59−49815号公報に記載されている装置、特
に回転ドラム式のろ過器を応用することにより効果的に
実施できる。
Further, the partially saccharified liquid obtained by preliminary saccharification can be effectively filtered by applying the apparatus described in, for example, JP-A-59-49815, particularly a rotating drum type filter.

澱粉液化液の原料として用いられる馬鈴薯、せ薯、トウ
モロコシ、キャラサバ等の澱粉には、タンパク質、その
他の含窒素物、ポリフェノール、各種塩類、タンニン、
脂肪が含まれている。例えば、タンパク質及び含窒素物
は、生成物と反応して着色物質を生成することがある。
The starches used as raw materials for starch liquefaction, such as potato, Japanese bran, corn, and challah mackerel, contain proteins, other nitrogen-containing substances, polyphenols, various salts, tannins,
Contains fat. For example, proteins and nitrogenous substances may react with the product to produce colored substances.

澱粉液化液は通常、原料澱粉に清水を加えたものを酸ま
たはα−アミラーゼを用いて液化することにより得られ
る。ところが、このようにして得られた澱粉液化液は、
少量ではあるが上記不純物を含む。そして、例えば、ポ
リフェノールは鉄と反応して分子量の大きい重合物を作
り、膜分画用の膜の細孔を詰まらせる。そこで、これら
残存する不純物は上記ろ過により除去される。
A starch liquefied liquid is usually obtained by adding fresh water to raw starch and liquefying it using an acid or α-amylase. However, the starch liquefied liquid obtained in this way is
Contains the above impurities, albeit in small amounts. For example, polyphenols react with iron to form polymers with large molecular weights, which clog the pores of membranes for membrane fractionation. Therefore, these remaining impurities are removed by the above-mentioned filtration.

ここで、本発明の特徴の一つである「主糖化工程または
後述の膜分離工程からの澱粉糖以外の糖(高分子デキス
トリン)を主成分とする還流液の一部を予備糖化工程に
フィードバックするにもかかわらず、糖化液の精製(ろ
過)工程における処理量が従来法と比べてわずかに増加
するだけである」ことについて説明する。
Here, one of the features of the present invention is to feed back a part of the reflux liquid containing sugars other than starch sugar (polymer dextrin) from the main saccharification process or the membrane separation process described later to the pre-saccharification process. Despite this, the throughput in the purification (filtration) process of the saccharified liquid is only slightly increased compared to the conventional method.''

後述のごとく主糖化工程の酵素濃度は通常のバッチ法に
比べて5〜10倍またはそれ以上にすることが可能であ
り、一方予備糖化工程における酵素濃度は前述のごとく
通常のバッチ法程度で実施可能である。従って、予備糖
化工程に供給される澱粉液化液に対して115〜1/1
0またはそれ以下の還流液を混合することによって、通
常のバッチ法と同程度の酵素濃度が実現できる。この結
果、予備糖化液の精製(ろ過)工程の処理量は、液化液
の量に比べてわずかに増加するだけである。
As described below, the enzyme concentration in the main saccharification step can be increased to 5 to 10 times or more compared to the normal batch method, while the enzyme concentration in the preliminary saccharification step can be carried out at the same level as the normal batch method as described above. It is possible. Therefore, the starch liquefaction liquid supplied to the preliminary saccharification process is 115 to 1/1
By mixing zero or less reflux, enzyme concentrations comparable to those of conventional batch methods can be achieved. As a result, the throughput of the purification (filtration) step of the pre-saccharified liquid increases only slightly compared to the amount of the liquefied liquid.

次に、本発明においては、ろ過した部分糖化液を主糖化
工程においてさらに糖化させる。
Next, in the present invention, the filtered partially saccharified liquid is further saccharified in the main saccharification step.

本発明の主糖化工程では、酵素の添加量を従来の糖化方
法に比べて高くすることができる。通常のバッチ法では
原料澱粉の固形分1g当たり1〜2IUの酵素を使用す
るが、本発明においては、これを5〜l0IUまたはそ
れ以上とすることができる。これは、主糖化後の膜分画
において酵素は澱粉糖以外の画分に含まれ、主糖化工程
に循環され再利用されるからである。
In the main saccharification step of the present invention, the amount of enzyme added can be increased compared to conventional saccharification methods. In normal batch methods, 1 to 2 IU of enzyme is used per gram of solid content of raw starch, but in the present invention, this can be increased to 5 to 10 IU or more. This is because enzymes are contained in fractions other than starch sugar in the membrane fraction after main saccharification, and are recycled and reused in the main saccharification step.

その結果、本発明においては、通常のバッチ法に比べて
、反応槽を大幅に小型化できるという利点がある。
As a result, the present invention has the advantage that the size of the reaction vessel can be significantly reduced compared to the usual batch method.

尚、本発明においては、膜分画において澱粉糖以外の還
流液に含まれる酵素は、還流液ごと主に主糖化工程に循
環されるが、それ以外に、その−部または主糖化工程の
糖化液の一部(いずれも高濃度の酵素を含む)は予備糖
化に循環再利用する。
In addition, in the present invention, enzymes contained in the reflux liquid other than starch sugar in membrane fractionation are mainly recycled together with the reflux liquid to the main saccharification process, but other than that, enzymes contained in the reflux liquid other than starch sugar are recycled to the main saccharification process. A portion of the liquid (all containing high concentrations of enzymes) is recycled and reused for pre-saccharification.

それにより、酵素の利用率を高めることができる。Thereby, the utilization rate of the enzyme can be increased.

尚、本発明の糖化工程(予備糖化及び主糖化)では、澱
粉糖生成酵素(アミラーゼ)の他に枝切り酵素を共存さ
せることが好ましい。
In addition, in the saccharification process (preliminary saccharification and main saccharification) of the present invention, it is preferable to coexist a debranching enzyme in addition to the starch sugar producing enzyme (amylase).

枝切り酵素とは、澱粉中のα−1,6−グルコシド結合
を加水分解する酵素である。そのようなものの例として
バチルス・アシドプルリティカス、クレブシュラ・ニュ
ーモニア等の微生物起源のプロラナーゼやシュードモナ
スφアミロデラモナ、シトファーガ属微生物等が生産す
るイソアミラーゼを用いることができる。グルコース生
成アミラーゼではほとんどがpH4,0〜6.0、マル
トオリゴ糖生成アミラーゼではほとんどかpH5,0〜
8.5の範囲に至適pHを有するので、枝切り酵素も同
様の安定かつ至適pH範囲で用いることが好ましい。
A debranching enzyme is an enzyme that hydrolyzes α-1,6-glucoside bonds in starch. Examples of such substances include prolanases originating from microorganisms such as Bacillus acidopluriticus and Klebschula pneumonia, and isoamylases produced by microorganisms of the genus Pseudomonas and Cytophaga. Most glucose-producing amylases have a pH of 4.0 to 6.0, and most maltooligosaccharide-producing amylases have a pH of 5.0 to 6.0.
Since it has an optimum pH in the range of 8.5, it is preferable to use the debranching enzyme in the same stable and optimum pH range.

枝切り酵素の使用量は、通常、澱粉糖生成酵素11Uに
対して1〜21Uである。但し、必要に応じてこの値を
5〜l0IUの範囲にすることも可能である。枝切り酵
素は、澱粉糖生成酵素よりもかなり高価であるために、
通常は多量に用いることは経済的にできない。しかるに
、前述のように本発明の方法においては、酵素は、循環
使用されるために、失活した酵素の分だけを補給するれ
ばすむので、このような高価な酵素であっても、多量に
使用することができる。
The amount of debranching enzyme used is usually 1 to 21 U per 11 U of starch sugar producing enzyme. However, it is also possible to set this value in the range of 5 to 10 IU, if necessary. Since debranching enzymes are considerably more expensive than starch-sugar-forming enzymes,
It is usually not economical to use large quantities. However, as mentioned above, in the method of the present invention, enzymes are used cyclically, so only the amount of inactivated enzymes needs to be replenished, so even such expensive enzymes can be used in large quantities. It can be used for.

主糖化工程から得られた糖化液は、次いで膜分画に付さ
れる。この膜分画には、限外ろ過膜が用いられる。目的
とするマルトオリゴ糖等の澱粉糖を高純度でしかも効率
良く得るために、1000〜10000の分画分子量を
有する限外ろ過膜を用いることが好ましい。尚、目的生
成物に要求される純度により、限外ろ過膜の分画分子量
は適宜調節することができる。
The saccharified liquid obtained from the main saccharification step is then subjected to membrane fractionation. An ultrafiltration membrane is used for this membrane fractionation. In order to obtain the target starch sugar such as malto-oligosaccharide with high purity and efficiency, it is preferable to use an ultrafiltration membrane having a molecular weight cut-off of 1000 to 10000. Note that the molecular weight cutoff of the ultrafiltration membrane can be adjusted as appropriate depending on the purity required for the target product.

このようにして得られた澱粉糖は、高純度である。The starch sugar thus obtained is of high purity.

膜分画において分画された澱粉糖以外のデキストリン等
を多く含む還流液は、主に主糖化工程に循環される。但
し、還流液の一部は、予備糖化工程へ循環させることも
できる。
The reflux liquid, which is fractionated in the membrane fractionation and contains a large amount of dextrin and the like other than starch sugar, is mainly recycled to the main saccharification step. However, a part of the reflux liquid can also be circulated to the preliminary saccharification step.

〔発明の効果〕〔Effect of the invention〕

本発明の膜分画法を用いる高純度の澱粉糖を製造方法は
、副生成物(デキストリン等)を含む還流液または主糖
化工程の一部を予備糖化工程にフィードバックするにも
かかわず、糖化液の精製(ろ過)工程における処理量は
、従来法に比べてわずか増加するだけである。しかも、
得られる澱粉糖は高純度である。
Although the method for producing high-purity starch sugar using the membrane fractionation method of the present invention feeds back the reflux liquid containing by-products (dextrin, etc.) or a part of the main saccharification process to the pre-saccharification process, the saccharification The throughput in the liquid purification (filtration) process is only slightly increased compared to conventional methods. Moreover,
The starch sugar obtained is of high purity.

さらに、従来法では、酵素を使い捨てしていたために、
酵素濃度を上げることは、経済的に不可能であったが、
本発明の製造方法においては、酵素を再使用できるため
に、酵素濃度を上げることが可能である。
Furthermore, in the conventional method, the enzyme was disposable, so
Although it was not economically possible to increase the enzyme concentration,
In the production method of the present invention, since the enzyme can be reused, it is possible to increase the enzyme concentration.

以下本発明を実施例によりさらに説明する。The present invention will be further explained below with reference to Examples.

〔実施例〕〔Example〕

常法により得られたコーンスターチを原料として、α−
アミラーゼを用いて澱粉液化液(ブリックス濃度:30
、DE:12.8、粗タンパク質含有量:0.202%
、粗脂肪含有量:0.127%)を得た。
α-
Starch liquefaction solution (Brix concentration: 30) using amylase
, DE: 12.8, crude protein content: 0.202%
, crude fat content: 0.127%).

この澱粉液化液を96i/hrで300−の予備糖化槽
に供給した。
This starch liquefaction liquid was supplied to a 300-liter pre-saccharification tank at 96 i/hr.

一方、300dの主糖化槽は、予め上記澱粉液化液にシ
ュードモナス・ストリッツエリ(Pseud。
On the other hand, in the main saccharification tank of 300 d, Pseudomonas stritzeri (Pseud) was added to the starch liquefaction solution in advance.

monas 5tutzeri)起源のマルトテトラオ
ース生成アミラーゼ(比活性801 U/■タンパク質
)を360 IU (5,0IU/g−固形分)、枝切
り酵素であるシュードモナス・アミロデラモサ(Pse
udomonas am loderamosa)起源
のイソアミラーゼ720IU(10,0IU/g−固形
分)を供給し、温度40°C,pH7,0で4時間反応
させて、主糖化槽中のマルトテトラオースが50.5%
である糖化液を得た。
360 IU (5,0 IU/g-solid content) of maltotetraose-producing amylase (specific activity 801 U/■ protein) originating from Pseudomonas monas 5 tutzeri and Pseudomonas amyloderamosa (Pse), a debranching enzyme.
720 IU (10.0 IU/g-solid content) of isoamylase originating from S. udomonas am loderamosa was supplied and reacted for 4 hours at a temperature of 40°C and a pH of 7.0 until maltotetraose in the main saccharification tank was 50.5 %
A saccharified solution was obtained.

先の澱粉液化液とともに、この糖化液を24−/hrで
予備糖化槽に供給した。
This saccharification solution was supplied to the preliminary saccharification tank together with the starch liquefaction solution at a rate of 24/hr.

予備糖化槽から流出する部分糖化液は、次いで、ろ過面
積が0.1イを有する、ケンソウ土をろ過動剤とするプ
レコートフィルターに、120d/hrで供給した。こ
の部分糖化液の55℃における粘度は、5cpであった
The partially saccharified liquid flowing out from the pre-saccharification tank was then supplied at a rate of 120 d/hr to a pre-coat filter having a filtration area of 0.1 I and using Kenso earth as a filtration agent. The viscosity of this partially saccharified liquid at 55°C was 5 cp.

プレコートフィルターから得られた部分糖化液は、前述
の主糖化槽に供給した。
The partially saccharified liquid obtained from the precoat filter was supplied to the above-mentioned main saccharification tank.

主糖化槽から流出する糖化液は、50ciのろ過面積を
有するクロス・フロー型限外ろ過装置(分画分子量20
00)に1000mj/h rで供給した。ろ過液とし
て、製品澱粉糖を96d/hrで得た。一方、還流液は
、主糖化槽に戻した。
The saccharified liquid flowing out from the main saccharification tank is processed through a cross-flow type ultrafiltration device (molecular weight cut-off of 20
00) at a rate of 1000 mj/hr. Product starch sugar was obtained as a filtrate at a rate of 96 d/hr. On the other hand, the reflux liquid was returned to the main saccharification tank.

予備糖化槽及び主糖化槽中の澱粉糖並びに製品澱粉糖の
組成を表1に示す。
Table 1 shows the compositions of the starch sugar in the preliminary saccharification tank and the main saccharification tank and the product starch sugar.

表1Table 1

Claims (1)

【特許請求の範囲】 (a)澱粉液化液を予備糖化する工程、 (b)予備糖化して得た部分糖化液をろ過する工程、 (c)ろ過した部分糖化液を糖化して糖化液を得る主糖
化工程、 (d)得られた糖化液を膜分画に付して高純度澱粉糖含
有液と高分子デキストリンを主成分とする還流液とに分
画する工程、 (e)高分子デキストリンを主成分とする還流液を主糖
化工程にフィードバックする工程、及び (f)主糖化工程の酵素を含む糖化液の一部または高分
子デキストリンを主成分とする還流液の一部を予備糖化
工程にフィードバックする工程、を含む高純度澱粉糖の
製造方法。
[Claims] (a) A step of pre-saccharifying a starch liquefied solution, (b) A step of filtering a partially saccharified solution obtained by pre-saccharification, (c) A step of saccharifying the filtered partially saccharified solution to obtain a saccharified solution. (d) a step of subjecting the obtained saccharified liquid to membrane fractionation to separate it into a high-purity starch sugar-containing liquid and a reflux liquid containing polymer dextrin as the main component; A step of feeding back the reflux liquid containing dextrin as the main component to the main saccharification process, and (f) pre-saccharification of a part of the saccharification liquid containing enzymes in the main saccharification process or a part of the reflux liquid containing polymer dextrin as the main component. A method for producing high-purity starch sugar, including a step of feeding back to the process.
JP22556089A 1989-08-31 1989-08-31 Method for producing high-purity starch sugar Expired - Lifetime JP2733330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22556089A JP2733330B2 (en) 1989-08-31 1989-08-31 Method for producing high-purity starch sugar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22556089A JP2733330B2 (en) 1989-08-31 1989-08-31 Method for producing high-purity starch sugar

Publications (2)

Publication Number Publication Date
JPH03224493A true JPH03224493A (en) 1991-10-03
JP2733330B2 JP2733330B2 (en) 1998-03-30

Family

ID=16831212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22556089A Expired - Lifetime JP2733330B2 (en) 1989-08-31 1989-08-31 Method for producing high-purity starch sugar

Country Status (1)

Country Link
JP (1) JP2733330B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009098A1 (en) 1999-07-09 2008-12-31 Novozymes A/S Glucoamylase variant
EP2186887A1 (en) 2005-11-18 2010-05-19 Novozymes A/S Glucoamylase variants
WO2011020852A1 (en) 2009-08-19 2011-02-24 Danisco A/S Variants of glucoamylase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009098A1 (en) 1999-07-09 2008-12-31 Novozymes A/S Glucoamylase variant
EP2186887A1 (en) 2005-11-18 2010-05-19 Novozymes A/S Glucoamylase variants
WO2011020852A1 (en) 2009-08-19 2011-02-24 Danisco A/S Variants of glucoamylase

Also Published As

Publication number Publication date
JP2733330B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
EP2558584B1 (en) Processes for producing fermentation products
CN105339494B (en) Pullulanase chimeras and polynucleotides encoding same
CN104334738A (en) Processes of producing fermentation products
JP2001524316A (en) Enzymatic saccharification of starch including a membrane separation step
US20020079268A1 (en) Process for preparing a fermentation medium from a renewable raw material
US3039936A (en) Production of dextrose from starch
CN112166197A (en) Method for enhancing yeast growth and productivity
EP2673368B1 (en) Process for liquefying starch in the presence of pyridoxamine
EP2640840B1 (en) Process for producing a fermentation product employing an amino acid oxidase, an arginase and/or an asparaginase
US4908311A (en) Process for enzymatic preparation of cellooligosaccharides
CN111148841A (en) Combined use of endoproteases of the M35 family and exoproteases of the S53 family in starch fermentation
EP0405283A2 (en) Novel thermoduric and aciduric pullulanase enzyme and method for its production
EP2799553B1 (en) Process for fermenting sugars containing oligomeric saccharides
JPS6246159B2 (en)
US7981639B2 (en) Starch-derived products
JPH03224493A (en) Production of starch sugar having high purity
EP0354828A1 (en) Process for the production of lactic acid
DD238305A3 (en) PROCESS FOR THE PREPARATION OF D-GLUCOSE AND STAERKEHYDROLYSATES
CA1178550A (en) Process for producing glucose/fructose syrups from unrefined starch hydrolysates
JPH10271992A (en) Purified alpha-amylase stable to acid and obtained from fungi
EP0341112B1 (en) Process for the production of itaconic acid
NZ205999A (en) Producing dextrose from starch hydrolysate using immobilised glucoamylase
JP3697671B2 (en) Panose liquid manufacturing method
JPS632997A (en) Removal of glucose
JPH062071B2 (en) Saccharide manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 12