JPH0322408B2 - - Google Patents

Info

Publication number
JPH0322408B2
JPH0322408B2 JP55039713A JP3971380A JPH0322408B2 JP H0322408 B2 JPH0322408 B2 JP H0322408B2 JP 55039713 A JP55039713 A JP 55039713A JP 3971380 A JP3971380 A JP 3971380A JP H0322408 B2 JPH0322408 B2 JP H0322408B2
Authority
JP
Japan
Prior art keywords
polymer
drying
aqueous solution
water
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55039713A
Other languages
Japanese (ja)
Other versions
JPS56135524A (en
Inventor
Osamu Kamata
Kenzo Watanabe
Kenji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP3971380A priority Critical patent/JPS56135524A/en
Publication of JPS56135524A publication Critical patent/JPS56135524A/en
Publication of JPH0322408B2 publication Critical patent/JPH0322408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はアクリルアミド系重合䜓氎溶液を也燥
する方法に関するものであり、その目的ずするず
ころは、高濃床の高分子量の重合䜓氎溶液を䞍溶
解物を生じさせない様に、堎合によ぀おは现断す
るこずなく、短時間に効率よく也燥するにある。 曎に本発明によ぀お埗られた、氎溶性アクリル
アミド系重合䜓は、極めお倚孔性であり、そのた
め嵩高く、粉砕による粉末化が容易である。 アクリルアミドを䞻成分ずする重合䜓は、埓来
から玙力増匷剀、氎性向䞊剀、テン料歩留向䞊
剀、衚面サむズ剀、玙及び䞍織垃抄造甚粘剀、増
粘剀、排氎凊理甚凝集剀、過脱氎助剀等に広く
䜿甚されおいる。凝集剀、特に補玙廃氎凊理甚ず
しおの凝集剀においおは、高分子量でか぀氎溶性
の良い重合䜓が芁求されおいる。又近幎石油資源
の有限性がよく認識され、そのため石油の二次、
䞉次回収が本栌的に行われ぀぀あり、そこで䜿甚
されるアクリルアミド系重合䜓が脚光を济びる様
にな぀お来た。 この石油採掘甚の重合䜓も、高分子量であるこ
ず、氎溶性が極めお良いこずが芁求されおいる。 アクリルアミド系単量䜓の重合は、通垞のラゞ
カル開始剀のほか、光、光増感、攟射線、熱など
によ぀お、逆盞懞濁重合、逆盞乳化重合、沈殿重
合、塊状重合、溶液重合等が行われるが、単量䜓
及び生成する重合䜓がいずれも氎に可溶なので、
氎溶液重合がも぀ずも広く採甚されおいる。近幎
凝集剀、その他の分野で取り扱いの容易さ、茞送
の合理化等から粉末補品の甚途が広が぀おおり、
ほずんどが粉末ずしお䟛絊されおいる。曎にアク
リルアミド系重合䜓氎溶液は、埗られた重合䜓が
高分子量である堎合あるいは高濃床である堎合
は、流動性が極めお小さいか、粘着性及び粘匟性
を有する含氎ゲル状物ずなる。このゲル状物のた
たでは氎に溶解させようずしおも溶解速床は極め
お小さく実甚的ではない。そのためにも重合埌こ
のような含氎ゲルは也燥し粉末もしくは粒状の商
品ずしお出荷され䜿われおいる。 埓来数倚く採甚されおいたアクリルアミド系単
重䜓の䜎濃床床での氎溶液重合は、也燥の゚ネル
ギヌがより倚く必芁であり、奜たしくない。その
ためより高濃床のアクリルアミド系単量氎溶液を
重合し、重合䜓の含氎寒倩状ゲルを補造すれば、
これをそのたゝ補品ずし、也燥に芁する゚ネルギ
ヌを枛じおいる。しかし効率よく重合するするた
めに高濃床で重合した堎合前述の様に含氎ゲルは
硬く又粘匟性を瀺し、そのたたでは、切断、现断
がむ぀かしい。そしお、切断、现断せずに、熱也
燥しようずするず也燥に倚倧の時間を芁する。そ
のため工業的には切断、现断できる玄30皋床の
濃床以䞋で補造されおいる。曎にアクリルアミド
系重合䜓氎溶液を加熱し、也燥しようずするず架
橋反応を起こし、䞍溶化するこずはよく知られお
いる珟象である。そしおこのような傟向は分子量
が倧きい皋倧である。䞍溶性重合䜓の生成を避け
るために䜎枩床での颚也、枛圧也燥などを行おう
ずすれば、極めお長い時間を芁し工業的に有利で
はない。曎にメタノヌルやアセトンなどによる脱
氎也燥を行おうずすれば、それらの䜿甚量は莫倧
ずなり、か぀溶媒の回収のための付垯装眮を必芁
ずし、やはり䞍郜合である。 このような状況䞋で本発明者等は、経枈的に有
利で、工業化が可胜な高濃床の高分子量の重合䜓
氎溶液を氎䞍溶性重合䜓を生成させず短時間に也
燥する方法に぀いお、鋭意怜蚎した結果、本発明
を完成した。 すなわち、本発明は氎溶性アクリルアミド系重
合䜓に察し0.5〜30重量の炭酞塩およびたた
は重炭酞塩化合物を含有しおなる、30重量以䞊
の濃床のアクリルアミド系重合䜓氎溶液にマむク
ロり゚ヌブを照射しお、䞊蚘化合物を120℃以䞋
の枩床で分解させ発生する二酞化炭玠で䞊蚘氎溶
液を発泡させお、氎を蒞発させるこずを特城ずす
るアクリルアミド系重合䜓氎溶液の也燥法に存す
る。 以䞋本発明を詳现に説明する。 本発明における氎溶性アクリルアミド系重合䜓
ずは、アクリルアミドのホモ重合䜓ずその倉性物
及びアクリルアミドず他の共重合可胜な皮又は
皮以䞊の単量䜓ずの共重合䜓を蚀う。共重合䜓
の堎合コモノマヌずしおは䟋えば、メタクリルア
ミド、−眮換メタアクリルアミド、
−眮換メタアクリルアミド、メタアクリ
ルニトリル、メタアクリル酞、メタアクリ
ル酞塩、−メタアクリルアミド−メチル
プロパンスルホン酞及びその塩、メタアクリ
ル酞メチル、メタアクリル酞゚チル、メタ
アクリル酞ブチル、メタアクリル酞ゞメチル
アミノ゚チル及びその皮の塩及び玚アンモニり
ム塩、メタアクリル酞ゞ゚チルアミノ゚チル
及びその各皮の塩及び玚アンモニりム塩、−
ゞメチルアミノメチルメタアクリルアミド及
びその塩及び玚アンモニりム塩、−ゞメチル
アミノプロピルメタアクリルアミド及びその
塩及び玚アンモニりム塩、スチレン、ビニルピ
リゞン及びその各皮の塩及び玚化物、ビニルピ
ロリドン、酢酞ビニルヒドロキシ゚チルメタ
アクリレヌト等が挙げられる。共重合䜓䞭のコモ
ノマヌの割合は〜50が適圓である。 30重量以䞊の濃床のアクリルアミド系重合䜓
氎溶液を埗るには公知の方法によればよい。重合
開始剀ずしおは䞀般に知られおいるものを䜿甚す
るこずが可胜であるが、奜しくは、過硫酞塩類、
過酞化氎玠、過酢酞等の過酞化物の単独又は、こ
れらず亜硫酞塩やアミドやアミドノアルコヌルな
どの還元剀を䜵甚するレドツクス系開始剀、
2′−アゟビス−アミゞノプロパン塩酞塩、
アゟビスN′−ゞメチレンむ゜ブチルアミゞ
ン硫酞塩、アゟビスむ゜ブチロニトリルなどのア
ゟ化合物又はこれらの組合せ、さらに還元剀ずア
ゟ化合物ずの組合せ等を䜿甚するのが良い。又攟
射線や光増感剀添加系の光による開始も可胜であ
る。連鎖移動剀やゲル化防止剀の䜵甚も勿論可胜
である。 本発明においお、炭酞塩又は重炭酞塩化合物を
䜿甚する目的は、マむクロり゚ヌブを重合䜓氎溶
液に照射しお加熱し、その際発生する熱で該化合
物を分解させ発生する二酞化炭玠で該重合䜓氎溶
液を発泡させるこずにあり、均䞀に重合䜓氎溶液
内においお分解発泡するこずが望たしい。埓぀お
重合䜓氎溶液䞭で均䞀に混合されおいるこずが望
たれる。そのため氎に察する溶解床の倧きい物が
良奜である。曎に氎䞭における分解枩床の䜙り高
い物は望たしくない。氎に察する溶解床の倧きい
炭酞塩及び重炭酞塩ずしおは、アンモニアやアル
カリ金属の塩が挙げられるが、その内でも分解枩
床等による効果の面や経枈性から炭酞アンモニり
ム、重炭酞アンモニりム、炭酞ナトリりム、重炭
酞ナトリりム、炭酞カリりム、重炭酞カリりムが
特に有甚である。 これら炭酞塩たたは重炭酞塩化合物はその皮類
により、又重合䜓濃床により倚少異なるが氎溶性
アクリルアミド系重合䜓に察しお、0.5〜30重量
望たしくは〜20重量存圚させるのが良く、
0.5重量以䞋では、充分な効果を瀺さず、又30
重量以䞊を越えおも本発明の目的ずする以䞊の
効果は埗られず経枈的にも䞍利である。 これら炭酞塩たたは重炭酞塩化合物をマむクロ
り゚ヌブ也燥時に重合䜓氎溶液䞭に存圚させる方
法ずしおは、重合埌の重合䜓氎溶液䞭に必芁量添
加し、混合埌、マむクロり゚ヌブを照射する方
法、もしくは、重合前に添加し、重合䞭に分解、
発泡させない様に重合枩床を調節し重合を完結さ
せた埌マむクロり゚ヌブを照射する方法等があ
る。 いずれの方法においおも重合䜓氎溶液のPHは炭
酞塩及び重炭酞塩化合物が酞性偎においお、炭酞
ガスを発生しお、マむクロり゚ヌブの照射前に分
解しおしたう可胜性があるのでPH7.5以䞊のアル
カリ性で望たしくはPH以䞊で行うのが良い。 たた、炭酞塩たたは重炭酞塩化合物ず䜎沞点の
有機溶媒を䜵甚するず曎に也燥効果が良くなる。
䜿甚する溶媒は氎溶液䞭に実質的に溶解しおいる
必芁があり、氎に察する溶解床の倧きい氎溶性の
有機溶媒あるいは氎に察する溶解床が倚少小さく
おも、単量䜓に察する溶解床が倧きなもの、すな
わち芪氎性溶媒も有効である。この有機溶媒は、
炭酞塩、重炭酞塩化合物ず同様、也燥䞭に発泡し
お也燥速床を早める効果がある。 有機溶媒は、沞点たたは氎ずの共沞枩床の少く
ずも䞀方が100℃以䞋のものを甚いるのが奜たし
い。双方ずも100℃以䞊ずなるずマむクロり゚ヌ
ブで脱氎也燥する際、含氎ゲル内郚の枩床が高く
なりすぎお氎䞍溶化物の生成や分子量の䜎䞋等の
望たしくない反応が起こり易くなる傟向がある。 䜿甚される有機溶媒ずしおは炭玠数〜のケ
トン類䟋えばアセトン、メチル゚チルケトン、ゞ
゚チルケトンなど、炭玠数〜のアルコヌル類
䟋えばメタノヌル、゚タノヌル、各皮のプロパノ
ヌル、各皮のブタノヌル、各皮のアミルアルコヌ
ルなど、炭玠数〜の酢酞゚ステル䟋えば酢酞
メチル、酢酞゚チルなどが良奜である。その他に
ギ酞プロピル、アセトニトリル、メチルプロピル
゚ヌテル、各皮のメルカプタン、メルカプトアル
コヌルなども良奜である。これら有機溶媒の二皮
以䞊の䜵甚も有効である。 沞点又は共沞枩床の極めお䜎い溶媒は重合時に
沞隰しおしたい奜たしくない。 溶媒を重合䜓氎溶液䞭に存圚させる方法ずしお
は重合埌の重合䜓氎溶液に混緎するこずも出来る
が、重合前に添加するのが奜たしい。溶媒の添加
量は倚い皋効果は良いが、経枈性、重合䜓ずの芪
和性などから溶媒により異なるが重合䜓に察し
0.5〜50重量奜たしくは〜30重量が適圓で
ある。 本発明では、重合䜓濃床を30重量以䞊ずした
が、これ以䞋では蒞発させる氎の量が倚くなりす
ぎ、゚ネルギヌ消費の面でも工皋の簡玠化の面で
も䞍利である。 本発明では、以䞊の様にしお埗られた炭酞塩た
たは重炭酞塩を含有するアクリルアミド系重合䜓
氎溶液を必芁であれば適圓な倧きさに切断した埌
マむクロり゚ヌブを照射しお、脱氎也燥する。マ
むクロり゚ヌブの照射に際しおは、重合䜓氎溶液
のマむクロり゚ヌブの吞収効率䞊びに重合䜓氎溶
液䞭よりの氎の蒞散効果を考慮し、その照射時間
等を調節するこずが必芁である。甚いるマむクロ
り゚ヌブの呚波数ずしおは、皮々の呚波数のもの
が利甚し埗るが、通垞は2450MHzのものを甚いる
こずによ぀お、本発明の目的を充分達成するこず
ができる。たた必芁に応じお、加熱也燥法を䜵甚
するこずもできる。 本発明の方法によれば、これらの炭酞塩や重炭
酞塩化合物がマむクロり゚ヌブの照射䞭に分解発
泡し、重合䜓氎溶液䞭に倚数の现孔が生成し、そ
のために氎の蒞発、蒞散は極めお円滑に進み、重
合䜓氎溶液の枩床は抌えられる。そのため、氎䞍
溶物の生成するむミド化反応等は起こらずに短時
間で也燥できる。 䞀般に塩を加えない堎合140℃以䞊にも枩床が
䞊昇するが、本発明の方法では120℃以䞋に抌え
られる。曎に也燥に芁する時間も効率よく也燥で
きるため短瞮される。特に氎䞍溶化物を生成しや
すい高分子量重合䜓の也燥には適した方法であ
る。 又本発明による也燥法は、その機構䞊重合䜓氎
溶液の内郚の氎を盎接加熱蒞発させるこずから特
に重合䜓氎溶液を现かく切断する必芁はなく、重
合䜓の高濃床氎溶液の様に含氎ゲル状の匷じんで
粘匟性があり现断がむ぀かしい堎合に適甚でき、
工業的に有利である。加熱也燥では、现かく切断
しないで䟋えばシヌト状物を也燥しようずする
ず、衚面に也いたポリマヌの皮膜ができ、氎が拡
散しにくくなり、極めお也燥に時間がかかり、そ
のため重合䜓の劣化や䞍溶化が起こる。 さらに本発明の也燥法によれば也燥容噚の熱容
量を考慮する必芁は党くなく、又゚ネルギヌ源が
電力であるため、空気汚染などのおそれもなく、
埓来法に比べ極めお優れた方法である。 以䞋実斜䟋によ぀お本発明をさらに詳现に説明
するが、本発明は、その芁旚を越えない限り、䞋
蚘実斜䟋によ぀お限定されるものではない。 実斜䟋及び 比范䟋〜 容量100mlの共栓付䞉角フラスコにアクリルア
ミド35及び脱塩氎22.36をずり均䞀に溶解さ
せた埌15重量炭酞アンモニりム氎溶液又は50
炭酞カリりム氎溶液11.67を加えた。次に重
量過硫酞アンモニりム氎溶液0.53を添加埌曎
に20重量ゞ゚タノヌルアミン氎溶液0.44を加
えた埌、内容物を内埄94のステンレス補セ
パラブル平底フラスコに移し、窒玠雰囲気䞋で30
℃の恒枩氎槜䞭においお1.5時間重合を行぀た。 埗られた厚さ玄10のゎム状含氎ゲル氎
溶液10を束䞋電気株匏䌚瀟補家庭甚電子レン
ã‚žNE−6360型を甚い、2450MHz、600Wのマむ
クロり゚ヌブで1.5分間の照射を行぀た。マむク
ロり゚ヌブ照射盎埌の重合䜓枩床及び重合䜓の也
燥固型分を枬定した。又、䞀芏定食塩氎で0.1
ずした重合䜓溶液を25℃恒枩氎槜䞭でオ
ストワルド粘床蚈により還元粘床を枬定した。 比范䟋は、炭酞アンモニりム無添加の堎合で
あり、比范䟋〜は含氎ゲルを玄立方に
裁断し、120℃の熱颚也燥噚で時間熱颚也燥を
行぀たものである。結果を衚−に瀺した。
The present invention relates to a method for drying an acrylamide-based polymer aqueous solution, and its purpose is to dry a highly concentrated high molecular weight polymer aqueous solution into pieces in order to prevent the formation of insoluble matter. It allows for efficient drying in a short period of time. Furthermore, the water-soluble acrylamide polymer obtained by the present invention is extremely porous and therefore bulky, and can be easily pulverized into powder. Polymers containing acrylamide as a main component have traditionally been used as paper strength agents, aqueous properties improvers, tenner retention improvers, surface sizing agents, viscosity agents for paper and nonwoven fabric manufacturing, thickeners, flocculants for wastewater treatment, Widely used as a super-dehydration aid. BACKGROUND ART A polymer having a high molecular weight and good water solubility is required for a flocculant, especially a flocculant for treating paper manufacturing wastewater. In addition, in recent years, the finiteness of oil resources has been well recognized, and as a result, secondary oil,
Tertiary recovery is being carried out in earnest, and the acrylamide-based polymers used there are now in the spotlight. This oil mining polymer is also required to have a high molecular weight and extremely good water solubility. Polymerization of acrylamide monomers can be carried out by reverse-phase suspension polymerization, reverse-phase emulsion polymerization, precipitation polymerization, bulk polymerization, and solution polymerization using ordinary radical initiators as well as light, photosensitization, radiation, heat, etc. etc., but since both the monomer and the resulting polymer are soluble in water,
Aqueous solution polymerization has also been widely adopted. In recent years, the use of powder products has been expanding in coagulants and other fields due to ease of handling and rationalization of transportation.
Most are supplied as powders. Furthermore, when the obtained polymer has a high molecular weight or a high concentration, the acrylamide polymer aqueous solution has extremely low fluidity or becomes a hydrogel-like material having adhesiveness and viscoelasticity. Even if an attempt is made to dissolve this gel-like substance in water, the dissolution rate is extremely low and is not practical. For this reason, after polymerization, such hydrogels are dried and shipped as powder or granular products for use. Aqueous solution polymerization of acrylamide monopolymers at low concentrations, which has been widely employed in the past, requires more energy for drying, which is not preferable. Therefore, if a higher concentration acrylamide monomer aqueous solution is polymerized to produce a hydrous agar-like gel of the polymer,
This is used as a product, reducing the energy required for drying. However, when polymerizing at a high concentration for efficient polymerization, the hydrous gel becomes hard and exhibits viscoelasticity as described above, and it is difficult to cut or shred it as it is. If you try to heat dry it without cutting or shredding it, it will take a lot of time to dry it. For this reason, it is manufactured industrially at a concentration below about 30%, which allows it to be cut and shredded. Furthermore, it is a well-known phenomenon that when an acrylamide polymer aqueous solution is heated and dried, a crosslinking reaction occurs and the polymer becomes insolubilized. This tendency is greater as the molecular weight becomes larger. If air drying at low temperature, drying under reduced pressure, etc. are attempted to avoid the formation of insoluble polymers, it takes a very long time and is not industrially advantageous. Furthermore, if dehydration and drying using methanol, acetone, etc. is attempted, the amount of these materials used will be enormous, and additional equipment for recovering the solvent will be required, which is still inconvenient. Under these circumstances, the present inventors have conducted intensive studies on an economically advantageous and industrially possible method for drying a high-concentration, high-molecular-weight polymer aqueous solution in a short time without producing water-insoluble polymers. As a result, the present invention was completed. That is, the present invention involves microwaving an aqueous solution of an acrylamide polymer containing 0.5 to 30% by weight of a carbonate and/or bicarbonate compound with a concentration of 30% by weight or more based on the water-soluble acrylamide polymer. The present invention relates to a method for drying an acrylamide polymer aqueous solution, which comprises irradiating the acrylamide polymer aqueous solution to decompose the compound at a temperature of 120° C. or less, foaming the aqueous solution with carbon dioxide generated and evaporating water. The present invention will be explained in detail below. The water-soluble acrylamide-based polymer in the present invention refers to an acrylamide homopolymer, a modified product thereof, and a copolymer of acrylamide and one or more other copolymerizable monomers. In the case of copolymers, examples of comonomers include methacrylamide, N-substituted (meth)acrylamide, N,N
-Substituted (meth)acrylamide, (meth)acrylonitrile, (meth)acrylic acid, (meth)acrylate, 2-(meth)acrylamide-2methylpropanesulfonic acid and its salts, methyl (meth)acrylate, ( meth)ethyl acrylate, (meth)
Butyl acrylate, dimethylaminoethyl (meth)acrylate and its salts and quaternary ammonium salts, diethylaminoethyl (meth)acrylate and its various salts and quaternary ammonium salts, N-
Dimethylaminomethyl (meth)acrylamide and its salts and quaternary ammonium salts, N-dimethylaminopropyl (meth)acrylamide and its salts and quaternary ammonium salts, styrene, vinylpyridine and its various salts and quaternized products, vinylpyrrolidone , vinyl hydroxyethyl acetate (meth)
Examples include acrylate. The proportion of comonomer in the copolymer is suitably 3 to 50%. A known method may be used to obtain an acrylamide polymer aqueous solution having a concentration of 30% by weight or more. Generally known polymerization initiators can be used, but persulfates,
Redox initiators using peroxides such as hydrogen peroxide and peracetic acid alone or in combination with reducing agents such as sulfites, amides, and amidonoalcohols; 2.
2'-azobis(2-amidinopropane) hydrochloride,
It is preferable to use azo compounds such as azobisN,N'-dimethyleneisobutyramidine sulfate, azobisisobutyronitrile, or combinations thereof, as well as combinations of reducing agents and azo compounds. In addition, initiation by radiation or light in a photosensitizer-added system is also possible. Of course, it is also possible to use a chain transfer agent or a gelling inhibitor in combination. In the present invention, the purpose of using a carbonate or bicarbonate compound is to irradiate an aqueous polymer solution with microwaves and heat it, and the heat generated at that time decomposes the compound, and the carbon dioxide generated is used to dissolve the aqueous polymer solution. It is desirable to decompose and foam uniformly within the aqueous polymer solution. Therefore, it is desirable that they be uniformly mixed in the aqueous polymer solution. Therefore, substances with high solubility in water are preferable. Furthermore, substances whose decomposition temperature in water is too high are undesirable. Carbonates and bicarbonates with high solubility in water include ammonia and alkali metal salts, but among these, ammonium carbonate, ammonium bicarbonate, sodium carbonate, bicarbonate, Particularly useful are sodium carbonate, potassium carbonate, and potassium bicarbonate. These carbonate or bicarbonate compounds are preferably present in an amount of 0.5 to 30% by weight, preferably 1 to 20% by weight, based on the water-soluble acrylamide polymer, depending on the type and polymer concentration.
If it is less than 0.5% by weight, it will not show sufficient effect, and 30
Even if it exceeds the weight percentage, the effect beyond the objective of the present invention cannot be obtained and it is economically disadvantageous. Methods for making these carbonate or bicarbonate compounds present in the polymer aqueous solution during microwave drying include adding the necessary amount to the polymer aqueous solution after polymerization, mixing, and irradiating with microwaves, or added before and decomposed during polymerization,
There is a method in which the polymerization temperature is adjusted so as not to cause foaming, and after the polymerization is completed, irradiation with microwaves is performed. In either method, the pH of the polymer aqueous solution should be 7.5 or higher because carbonate and bicarbonate compounds may generate carbon dioxide gas on the acidic side and decompose before microwave irradiation. It is best to carry out the process under alkaline conditions, preferably pH=8 or higher. Further, if a carbonate or bicarbonate compound and a low boiling point organic solvent are used in combination, the drying effect will be further improved.
The solvent used must be substantially dissolved in the aqueous solution, and must be a water-soluble organic solvent that has a high solubility in water, or a solvent that has a high solubility for the monomer even if the solubility in water is low, that is, a hydrophilic solvent. Solvents are also effective. This organic solvent is
Like carbonate and bicarbonate compounds, it foams during drying and has the effect of accelerating the drying speed. It is preferable to use an organic solvent that has at least one of its boiling point or azeotropic temperature with water of 100°C or less. If the temperature in both cases is 100°C or higher, the temperature inside the hydrous gel becomes too high during dehydration drying using a microwave, and undesirable reactions such as the formation of water-insolubilized substances and a decrease in molecular weight tend to occur. Organic solvents used include ketones with 3 to 6 carbon atoms, such as acetone, methyl ethyl ketone, and diethyl ketone, alcohols with 1 to 5 carbon atoms, such as methanol, ethanol, various propanols, various butanols, and various amyl alcohols. , acetic esters having 3 to 5 carbon atoms, such as methyl acetate and ethyl acetate, are preferred. In addition, propyl formate, acetonitrile, methyl propyl ether, various mercaptans, mercapto alcohols, etc. are also good. A combination of two or more of these organic solvents is also effective. Solvents with extremely low boiling points or azeotropic temperatures are undesirable because they boil during polymerization. As a method for making the solvent present in the polymer aqueous solution, it is possible to knead it into the polymer aqueous solution after polymerization, but it is preferable to add it before polymerization. The larger the amount of solvent added, the better the effect, but it varies depending on the solvent due to economic efficiency, affinity with the polymer, etc.
A suitable amount is 0.5 to 50% by weight, preferably 2 to 30% by weight. In the present invention, the polymer concentration is set to 30% by weight or more, but if it is less than this, the amount of water to be evaporated becomes too large, which is disadvantageous in terms of energy consumption and process simplification. In the present invention, the carbonate- or bicarbonate-containing acrylamide polymer aqueous solution obtained as described above is cut into appropriate sizes, if necessary, and then irradiated with microwaves to dehydrate and dry. When irradiating with microwaves, it is necessary to adjust the irradiation time, etc. in consideration of the microwave absorption efficiency of the aqueous polymer solution and the evaporation effect of water from the aqueous polymer solution. Although various microwave frequencies can be used, the purpose of the present invention can usually be fully achieved by using a microwave of 2450 MHz. Further, if necessary, a heat drying method can also be used in combination. According to the method of the present invention, these carbonate and bicarbonate compounds decompose and foam during microwave irradiation, creating many pores in the aqueous polymer solution, which makes water evaporation and transpiration extremely difficult. The process proceeds smoothly and the temperature of the aqueous polymer solution is kept low. Therefore, drying can be performed in a short time without causing imidization reactions that produce water-insoluble substances. Generally, when no salt is added, the temperature rises to over 140°C, but with the method of the present invention, it can be kept below 120°C. Furthermore, the time required for drying can be shortened because drying can be done efficiently. This method is particularly suitable for drying high molecular weight polymers that tend to produce water-insolubilized substances. Furthermore, since the drying method according to the present invention directly heats and evaporates the water inside the polymer aqueous solution, it is not necessary to cut the polymer aqueous solution into small pieces, and it is not necessary to cut the polymer aqueous solution into small pieces. It is tough and viscoelastic and can be used in cases where it is difficult to shred.
Industrially advantageous. When drying by heating, for example, if you try to dry a sheet-like material without cutting it into small pieces, a film of dry polymer will form on the surface, making it difficult for water to diffuse, and drying will take an extremely long time, resulting in polymer deterioration and insolubilization. happen. Furthermore, according to the drying method of the present invention, there is no need to consider the heat capacity of the drying container, and since the energy source is electricity, there is no risk of air pollution.
This method is extremely superior to conventional methods. The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited by the Examples unless the gist of the invention is exceeded. Examples 1 and 2 Comparative Examples 1 to 4 35 g of acrylamide and 22.36 g of demineralized water were taken into a 100 ml Erlenmeyer flask with a stopper and dissolved uniformly, followed by a 15% by weight aqueous ammonium carbonate solution or 50% ammonium carbonate aqueous solution.
11.67 g of potassium carbonate aqueous solution was added. Next, after adding 0.53 g of a 1% by weight ammonium persulfate aqueous solution and further adding 0.44 g of a 20% by weight diethanolamine aqueous solution, the contents were transferred to a stainless steel separable flat-bottomed flask with an inner diameter of 94 m/m, and heated under a nitrogen atmosphere for 30 min.
Polymerization was carried out for 1.5 hours in a constant temperature water bath at ℃. 10 g of the obtained rubbery hydrogel (aqueous solution) with a thickness of about 10 m/m was irradiated with microwaves at 2450 MHz and 600 W for 1.5 minutes using a household microwave oven model NE-6360 manufactured by Matsushita Electric Co., Ltd. Immediately after microwave irradiation, the polymer temperature and dry solid content of the polymer were measured. Also, 0.1 in normal saline solution
The reduced viscosity of the polymer solution (g/d) was measured using an Ostwald viscometer in a constant temperature water bath at 25°C. Comparative Example 1 is a case in which ammonium carbonate is not added, and Comparative Examples 2 to 4 are cases in which a hydrous gel is cut into approximately m/m cubes and hot air dried for 3 hours in a hot air dryer at 120°C. The results are shown in Table-1.

【衚】 実斜䟋〜 比范䟋〜11 実斜䟋ず同様にアクリル酞゜ヌダずアクリル
アミドの配合モル比を30察70ずし、各皮の炭酞塩
たたは重炭酞塩を単量䜓に察し重量加えお共
重合しお埗た含氎ゲルを甚い、マむクロり゚ヌブ
也燥を行぀た。 比范䟋は炭酞塩、無添加の堎合であり、比范
䟋〜11はゲルを玄立方に裁断し120℃
の熱颚也燥噚で時間熱颚也燥を行぀たものであ
る。以䞋、実斜䟋に準ずる。たた也燥埌のみか
けのカサ密床mlも枬定した。結果を衚−
に瀺した。
[Table] Examples 3 to 8 Comparative Examples 5 to 11 As in Example 1, the blending molar ratio of sodium acrylate and acrylamide was 30:70, and various carbonates or bicarbonates were added by weight of 5 weight to monomer. Using the hydrogel obtained by copolymerizing with the addition of %, microwave drying was performed. Comparative Example 5 is a case in which no carbonate is added, and in Comparative Examples 6 to 11, the gel is cut into approximately 2 m/m cubes and heated at 120°C.
Hot air drying was performed for 3 hours in a hot air dryer. The following description is based on Example 1. The apparent bulk density (g/ml) after drying was also measured. Display the results -
Shown in 2.

【衚】 実斜䟋  容量100mlの共栓付䞉角フラスコにアクリルア
ミド24.28及び36重量アクリル酞゜ヌダ氎溶
液29.77を採り、曎に脱塩氎9.56を加えお均
䞀に溶解させた。次に炭酞アンモニりム1.75及
びアセトン3.5を加え、曎に重量過硫酞ア
ンモニりム氎溶液0.53及び20重量ゞ゚タノヌ
ルアミン氎溶液0.61を加えた埌、内容物を内埄
94のステンレス補セパラブル平底フラスコ
に移し、30℃の恒枩氎槜䞭で窒玠雰囲気䞋におい
お1.5時間重合を行぀た。 埗られた厚さ玄10のゎム状含氎ゲル10
を甚いお実斜䟋ず同様にマむクロり゚ヌブ也燥
を1.5分間行぀た。 也燥前の含氎ゲルの固型分は59.3であり、也
燥埌は95.8ずな぀た。たた、也燥速床はアセト
ン無添加の堎合よりも速く也燥による共重合䜓の
劣化は認められなか぀た。 埗られた也燥重合䜓はカサ密床0.11の発泡䜓で
粉砕が容易である。
[Table] Example 9 24.28 g of acrylamide and 29.77 g of a 36% by weight aqueous sodium acrylate solution were placed in a 100 ml Erlenmeyer flask with a stopper, and further 9.56 g of demineralized water was added to dissolve them uniformly. Next, 1.75 g of ammonium carbonate and 3.5 g of acetone were added, and then 0.53 g of a 1 wt% ammonium persulfate aqueous solution and 0.61 g of a 20 wt% diethanolamine aqueous solution were added, and the contents were
The mixture was transferred to a 94 m/m stainless steel separable flat bottom flask, and polymerization was carried out for 1.5 hours in a constant temperature water bath at 30°C under a nitrogen atmosphere. 10 g of the obtained rubbery hydrogel with a thickness of about 10 m/m
Microwave drying was performed for 1.5 minutes in the same manner as in Example 1. The solid content of the hydrogel before drying was 59.3%, and after drying it was 95.8%. Furthermore, the drying rate was faster than in the case without acetone, and no deterioration of the copolymer due to drying was observed. The obtained dry polymer is a foam with a bulk density of 0.11 and is easily pulverized.

Claims (1)

【特蚱請求の範囲】  氎溶性アクリルアミド系重合䜓に察し、0.5
〜30重量の炭酞塩およびたたは重炭酞塩化合
物を含有しおなる、30重量以䞊の濃床のアクリ
ルアミド系重合䜓氎溶液にマむクロり゚ヌブを照
射しお、䞊蚘化合物を120℃以䞋の枩床で分解さ
せ、発生する二酞化炭玠で䞊蚘氎溶液を発泡させ
お、氎を蒞発させるこずを特城ずするアクリルア
ミド系重合䜓氎溶液の也燥法。  アクリルアミド系重合䜓氎溶液が、氎溶性ア
クリルアミド系重合䜓に察し、0.5〜30重量の
炭酞塩およびたたは重炭酞塩化合物ならびに氎
溶液性たたは芪氎性有機溶媒を含有しおいるこず
を特城ずする特蚱請求の範囲第項蚘茉の也燥
法。
[Claims] 1.0.5 for water-soluble acrylamide polymer
An aqueous acrylamide polymer solution containing ~30% by weight of carbonate and/or bicarbonate compounds with a concentration of 30% by weight or more is irradiated with microwaves to decompose the above compounds at a temperature of 120°C or less. A method for drying an acrylamide-based polymer aqueous solution, which comprises: bubbling the aqueous solution with generated carbon dioxide to evaporate water. 2. The acrylamide polymer aqueous solution contains 0.5 to 30% by weight of a carbonate and/or bicarbonate compound and an aqueous or hydrophilic organic solvent based on the water-soluble acrylamide polymer. A drying method according to claim 1.
JP3971380A 1980-03-28 1980-03-28 Drying of aqueous solution of acrylamide type polymer Granted JPS56135524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3971380A JPS56135524A (en) 1980-03-28 1980-03-28 Drying of aqueous solution of acrylamide type polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3971380A JPS56135524A (en) 1980-03-28 1980-03-28 Drying of aqueous solution of acrylamide type polymer

Publications (2)

Publication Number Publication Date
JPS56135524A JPS56135524A (en) 1981-10-23
JPH0322408B2 true JPH0322408B2 (en) 1991-03-26

Family

ID=12560624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3971380A Granted JPS56135524A (en) 1980-03-28 1980-03-28 Drying of aqueous solution of acrylamide type polymer

Country Status (1)

Country Link
JP (1) JPS56135524A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415803B1 (en) * 2001-01-08 2004-01-24 한국에너지Ʞ술연구원 Microwave Applied Adsorptive Ethanol Drying Apparatus and Its Operation Method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974729A (en) * 1972-11-20 1974-07-18
JPS4983729A (en) * 1972-12-18 1974-08-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974729A (en) * 1972-11-20 1974-07-18
JPS4983729A (en) * 1972-12-18 1974-08-12

Also Published As

Publication number Publication date
JPS56135524A (en) 1981-10-23

Similar Documents

Publication Publication Date Title
JP3103754B2 (en) Modified water-absorbing resin particles and method for producing the same
US4154910A (en) Method for producing acrylamide polymers
JPS6025045B2 (en) Method for producing acrylic acid polymer with excellent salt water absorption ability
JPS6024122B2 (en) Method for producing bead-like polymer
US4134871A (en) Method for reducing the adhesiveness of hydrogel-like polymer by adding polyethylene glycol
EP1957188B2 (en) A method of drying an absorbent polymer with a surfactant
CN104231144A (en) Polyacrylic water-absorbent resin powder and method for producing the same
Omidian et al. Modifying acrylic‐based superabsorbents. I. Modification of crosslinker and comonomer nature
KR101384322B1 (en) Method for preparation of water absorbent resin
JPS5916563B2 (en) Production method of water-soluble cationic polymer
JPH02153903A (en) Production of highly hygroscopic resin
JPS6017328B2 (en) Production method of alkali metal salt crosslinked polyacrylic acid
JPH03115313A (en) Production of water-absorptive resin
JPH0322408B2 (en)
EP0206808A2 (en) Continuous method for preparing polyacrylate resins
JPH0214925B2 (en)
CA1279437C (en) Continuous method for preparing polyacrylate resins
JPS6352662B2 (en)
JPS6343409B2 (en)
JPH0229085B2 (en) KANSOSHITAKYUSUISEIJUSHINOSEIZOHOHO
JP2745703B2 (en) Method for producing water-absorbing polymer
JPS58154708A (en) Production of highly water-absorptive resin
JPS608681B2 (en) cohesive polymer
JP3792330B2 (en)   Method for modifying water absorbent resin and method for producing water absorbent resin
JPH0326205B2 (en)