JPH0322398B2 - - Google Patents

Info

Publication number
JPH0322398B2
JPH0322398B2 JP53052901A JP5290178A JPH0322398B2 JP H0322398 B2 JPH0322398 B2 JP H0322398B2 JP 53052901 A JP53052901 A JP 53052901A JP 5290178 A JP5290178 A JP 5290178A JP H0322398 B2 JPH0322398 B2 JP H0322398B2
Authority
JP
Japan
Prior art keywords
phe
gly
tyr
production
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP53052901A
Other languages
Japanese (ja)
Other versions
JPS54144333A (en
Inventor
Masahiko Fujino
Susumu Shinagawa
Kyohisa Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP5290178A priority Critical patent/JPS54144333A/en
Priority to HUTA001518 priority patent/HU182051B/en
Priority to EP19790101282 priority patent/EP0005248B1/en
Priority to DE7979101282T priority patent/DE2962325D1/en
Priority to CA000326646A priority patent/CA1144542A/en
Priority to DK178279A priority patent/DK149064C/en
Publication of JPS54144333A publication Critical patent/JPS54144333A/en
Publication of JPH0322398B2 publication Critical patent/JPH0322398B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鎮痛作用を有する新規テトラペプチ
ド誘導体に関する。 ヒユーゲス(Hughes)ら〔Nature,258巻,
577頁(1975年)〕によつて豚の脳から、脳内投与
によつてモルフイン様作用を示すエンケフアリン
と呼ばれる2種のペンタペプチド、すなわちH−
Tyr−Gly−Gly−Phe−Met−OHおよびH−
Tyr−Gly−Gly−Phe−Leu−OHが分離され、
その化学構造が決定されたが、これらの物質は脳
内直接投与ではモルフイン様作用を示すにもかゝ
わらず、静脈投与では鎮痛作用を示さない。一
方、β−リポトロフインのカルボキシ末端に由来
すると見なされるβ−エンドルフインは静脈投与
によつても明らかに鎮痛作用を示すが、この物質
は31個のアミノ酸残基よりなるポリペプチドであ
り、その有機化学的合成による製造は非常に困難
であり、医薬品として大量に供給することは非常
に困難である。 本発明者らは経済的に有利で、化合物として安
定であり、かつ静脈内や皮下投与でも充分な鎮痛
効果のある化合物を得るべく種々検討を重ねたと
ころ、テトラペプチド・ヒドラジド誘導体の特定
な化合物が上記の目的に適合することを知見し、
該知見に基づいてさらに研究した結果、本発明を
完成した。 すなわち本発明は、(1)一般式() 〔式中、R1は水素を表わす。R2はD−α−ア
ミノ酸の側鎖を表わす。R3は水素または炭素数
1ないし2のアルキルを表わす。R4は水素、水
酸基で置換された炭素数1ないし8の直鎖状また
は分岐状のアルキル、または水酸基、アミノ基、
炭素数1ないし4のアルコキシもしくはハロゲン
で置換されていてもよい直鎖状もしくは分枝状の
炭素数1ないし8の飽和脂肪族アシルを表わす。〕
で表わされるテトラペプチド誘導体およびその薬
理的に許容され得る酸付加塩、および(2)一般式
() 〔式中、R1は水素を表わす。R′2は保護基を有
していてもよいD−α−アミノ酸の側鎖を表わ
す。R3は水素または炭素数1ないし2のアルキ
ルを表わす。R′4は水素、水酸基で置換された直
鎖状もしくは分枝状の炭素数1ないし8のアルコ
キル、または水酸基、アミノ基、炭素必1ないし
4のアルコキシもしくはハロゲンで置換されてい
てもよい直鎖状もしくは分枝状の炭素数1ないし
8の飽和脂肪族アシルであつて保護基を有してい
てもよいものを表わす。〕で表わされる化合物を
保護基脱離反応に付すことを特徴とする一般式
()で表わされるテトラペプチド誘導体の製造
法、である。 本明細書において、アミノ酸およびペプチドは
当該分野で慣用されているか、あるいはIUPAC
−IUBの命名委員会で採用された略字で表示され
るたとえば下記の略号が使用される。 Ala:アラニン Gly:グリシン Leu:ロイシン Phe:フエニルアラニン Me−Phe:N−メチル−フエニルアラニン Tyr:チロシン また本文中では常用される化合物を下記の略号
で表示する。 DCC:N,N′−ジシクロヘキシルカルボジイ
ミド HONB:N−ハイドロキシ−5−ノルボルネ
ン−2,3−ジカルボキシイミド ONB:HONBエステル Z:ベンジルオキシカルボニル BOC:t−ブトキシカルボニル But:t−ブチル DMF:ジメチルホルムアミド Bzl:ベンジル HOBT:N−ハイドロキシベンツトリアゾール MeOH:メチルアルコール AcOEt:酢酸エチルエステル TEA:トリエチルアミン THF:テトラハイドロフラン 本明細書でアミノ酸またはその残基を上記略記
法で表示する場合、特に明記しないかぎりL−体
を意味し、D−体については(D)−あるいはD
−を明記する。 上記一般式()および()において、R1
で表わされる炭素数1ないし6の直鎖状もしくは
分枝状のアルキルとしては、たとえばメチル,エ
チル、プロピル,イソプロピル,n−ブチル,イ
ソブチル,sec−ブチル,tert−ブチル,n−ベ
ペチル,イソペンチルsec−アミル,tert−アミ
ル,n−ヘキサン,イソヘキサン,3−メチルペ
ンタン,ネオヘキサン,2,3−ジメチルブタン
などが挙げられる。 R2およびR′2で表わされるD−α−アミノ酸の
側鎖としては、たとえばD−Len,D−Ala,D
−メチオニン,D−セリン,D−スレオニン,D
−フエニルアラニン,D−α−アミノ−酪酸,D
−バリン,D−ノルバリン,D−ノルロイシン,
D−イソロイシンなどの側鎖が挙げられる。 R3で表わされる炭素数1または2のアルキル
としてはメチル,エチルが挙げられる。 R4で表わされる炭素数1ないし8の直鎖状も
しくは分枝状のアルキルとしては、たとえばメチ
ル,エチル,プロピル,イソプロピル、n−ブチ
ル,イソブチル、sec−ブチル,tert−ブチル、
n−ペンチル,イソペンチル,sec−アミル,
tert−アミル,n−ヘキシル,イソヘキシル,3
−メチルペンチル,ネオヘキシル,2,3−ジメ
チルブチル,n−ヘプチル,イソ−ヘプチル,
tert−ヘプチル,n−オクチル,イソオクチル、
tert−オクチルなどが挙げられる。 R4で表わされる炭素数1ないし8の直鎖状も
しくは分枝状の飽和脂肪族アシルとしては、たと
えば、ホルミル,アセチル,プロピオニル,イソ
プロピオニル,ブチリル,イソブチリル,バレリ
ル,イソバレリル,ヘキサノイル,イソヘキサノ
イル,ヘプタノイル,オクタノイルなどが挙げら
れ、なかでも、炭素数3から6のものが特に好ま
しい。 上記の基に置換されていてもよいハロゲンとし
ては、たとえば塩素フツ素が挙げられる。また、
上記の基に置換されていてもよい炭素数1ないし
4のアルコキシとしては、たとえばメトキシ,エ
トキシ,n−プロポキシ,イソプロポキシ,n−
ブトキシ,イソブトキシ,tert−ブトキシなどが
挙げられる。なかでもメトキシ,エトキシ,n−
プロポキシが特に好ましい。 上記一般式中、Y1で表わされる保護基として
は、たとえばベンジルオキシカルボニル,t−ブ
トキシカルボニル,t−アミルオキシカルボニ
ル,イソニボルルオキシカルボニル,アダマンチ
ルオキシカルボニル,クロル−またはニトロ−置
換ベンジルオキシカルボニル,o−フエニルチ
オ,ジフエニルホスフイノチオイルなどが挙げら
れる。Y2で表わされる保護基としては、たとえ
ば、ベンジル,t−ブチルなどが挙げられる。 R′2およびR′4における保護基については、それ
ぞれの基本の基の水酸基および/またはカルボキ
シル基を保護する場合の保護基としては上記Y2
と同意義のものが挙げられ、基本の基のアミノ基
を保護する場合の保護基としては上記Y1と同意
義のものが挙げられる。Y3で表わされる保護基
としては、Y1と同意義のものが挙げられる。 本発明のテトラペプチド誘導体()の化学構
造を有するペプチド誘導体を製造するには、目的
物()のポリペプチドを構成しうる部分アミノ
酸またはそのペプチドとその残部を構成しうる化
合物をペプチド合成手段により縮合させることに
より行なう。該ペプチド合成手段は、任意の公知
の方法に従えばよく、例えばM.Bodansky及び
M.A.Ondetti著,ペプチド・シンセシス
(Peptide Synthesis),Intef science,NeW
York,1966年;F.M.Finn及びK.Hofmann著
ザ・プロテインズ(The Proteins),第2巻,H.
Nenrath,R.L.Hill編集,Academic Press Inc.
NeW York,1976年;泉屋信夫他著″ペプチド合
成″丸善(株)1975年などに記載された方法、たとえ
ばアジド法,クロライド法,酸無水物法,混酸無
水物法、DCC法,活性エステル法,ウツドワー
ド試薬Kを用いる方法,カルボジイミダゾール
法,酸化還元法,DCC/HONB法などが挙げら
れる。場合によつては、NCA法(N−カルボキ
シアンハイドライド;保護基を使用せずにアミノ
酸に対応する分子内環状カルボニル化合物を使用
する方法)を適用してもよい。 本縮合反応を行なう前に、それ自体公知の手段
により原料の反応に関与しないカルボキシル基,
アミノ基を保護したり、また反応に関与するカル
ボキシル基,アミノ基を活性化させてもよい。原
料の保護基としては、上記した保護基が挙げられ
る。原料のカルボキシル基は、たとえば金属塩
(例、ナトリウム,カリウム塩等),t−アルキル
アミン塩(例、トリエチルアミン,N−メチルモ
ルホリン等)あるいはエステル(例、メチル,エ
チル,ベンジル,p−ニトロベンジル,t−ブチ
ル,t−アミル等のエステル)の形で保護するこ
ともできる。原料のアミノ基の保護基としては、
たとえばベンジルオキシカルボニル基,t−ブト
キシカルボニル基,イソボルニルオキシカルボニ
ル基等が、ヒスチジンのイミノ基の保護基として
は、たとえばベンジル,トシル,2,4−ジニト
ロフエニル,t−ブチルオキシカルボニル,カル
ボベンゾキシ等があげられる。チロシンの水酸基
の保護基としては、たとえばベンジル,t−ブチ
ル等のエーテル等が、アルギニンのグアニジノ基
の保護基としては、たとえばニトロ基,トシル
基,カルボベンゾキシ,イソボニルオキシカルボ
ニル,アダマンチルオキシカルボニル等が例示さ
れる。原料のカルボキシル基の活性化されたもの
としては、たとえば対応する酸無水物,アジド,
活性エステル〔アルコール(例、ベンタクロロフ
エノール,2,4,5−トリクロロフエノール,
2,4−ジニトロフエノール,ジアノメチルアル
コール,p−ニトロフエノール,N−ハイドロキ
シ−5−ノルボルネン−2,3−ジカルボキシイ
ミド,N−ハイドロキシサクシンイミド,N−ハ
イドロキシフタルイミド,N−ハイドロキシベン
ズトリアゾール)とのエステル〕などがあげられ
る。原料のアミノ基の活性化されたものとして、
たとえば対応するリン酸アミドがあげられる。 原料を仮りにA,Bとすると、A,Bのカルボ
キシルおよびアミノ基の上記の如き状態の組み合
わせの例を下表に示す。
The present invention relates to novel tetrapeptide derivatives having analgesic activity. Hughes et al. [Nature, vol. 258,
577 (1975)], two types of pentapeptides called enkephalins, namely H-
Tyr-Gly-Gly-Phe-Met-OH and H-
Tyr−Gly−Gly−Phe−Leu−OH is separated,
Their chemical structures have been determined, and although these substances exhibit morphine-like effects when administered directly into the brain, they do not exhibit analgesic effects when administered intravenously. On the other hand, β-endorphin, which is considered to be derived from the carboxy terminus of β-lipotrophin, clearly shows analgesic effects even when administered intravenously, but this substance is a polypeptide consisting of 31 amino acid residues, and its organic chemical It is extremely difficult to manufacture by synthetic synthesis, and it is extremely difficult to supply large quantities as pharmaceuticals. The present inventors conducted various studies in order to obtain a compound that is economically advantageous, stable as a compound, and has sufficient analgesic effect even when administered intravenously or subcutaneously, and found that a specific compound of a tetrapeptide hydrazide derivative found that it is compatible with the above purpose,
As a result of further research based on this knowledge, the present invention was completed. That is, the present invention provides (1) general formula () [In the formula, R 1 represents hydrogen. R 2 represents the side chain of D-α-amino acid. R 3 represents hydrogen or alkyl having 1 or 2 carbon atoms. R 4 is hydrogen, a linear or branched alkyl having 1 to 8 carbon atoms substituted with a hydroxyl group, a hydroxyl group, an amino group,
It represents a linear or branched saturated aliphatic acyl having 1 to 8 carbon atoms which may be substituted with alkoxy having 1 to 4 carbon atoms or halogen. ]
Tetrapeptide derivatives represented by and pharmacologically acceptable acid addition salts thereof, and (2) general formula () [In the formula, R 1 represents hydrogen. R'2 represents a side chain of D-α-amino acid which may have a protecting group. R 3 represents hydrogen or alkyl having 1 to 2 carbon atoms. R' 4 is hydrogen, a linear or branched alkokyl having 1 to 8 carbon atoms substituted with a hydroxyl group, or a straight chain which may be substituted with a hydroxyl group, an amino group, an alkoxy having 1 to 4 carbon atoms, or a halogen. It represents a chain or branched saturated aliphatic acyl having 1 to 8 carbon atoms, which may have a protecting group. This is a method for producing a tetrapeptide derivative represented by the general formula (), which comprises subjecting the compound represented by the formula () to a protecting group elimination reaction. Amino acids and peptides as used herein are those commonly used in the art or IUPAC
- The abbreviations adopted by the IUB Nomenclature Committee are used, for example, the following abbreviations: Ala: Alanine Gly: Glycine Leu: Leucine Phe: Phenylalanine Me-Phe: N-methyl-phenylalanine Tyr: Tyrosine In addition, commonly used compounds are indicated by the following abbreviations in the text. DCC: N,N'-dicyclohexylcarbodiimide HONB: N-hydroxy-5-norbornene-2,3-dicarboximide ONB: HONB ester Z: benzyloxycarbonyl BOC: t-butoxycarbonyl But: t-butyl DMF: dimethylformamide Bzl: Benzyl HOBT: N-Hydroxybenztriazole MeOH: Methyl alcohol AcOEt: Ethyl acetate TEA: Triethylamine THF: Tetrahydrofuran When amino acids or their residues are expressed in the above abbreviations herein, unless otherwise specified, L - means D- body, (D)- or D
- Specify. In the above general formulas () and (), R 1
Examples of straight-chain or branched alkyl having 1 to 6 carbon atoms represented by include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-bepyl, isopentyl sec -amyl, tert-amyl, n-hexane, isohexane, 3-methylpentane, neohexane, 2,3-dimethylbutane and the like. Examples of side chains of D-α-amino acids represented by R 2 and R′ 2 include D-Len, D-Ala, D
-methionine, D-serine, D-threonine, D
-phenylalanine, D-α-amino-butyric acid, D
-valine, D-norvaline, D-norleucine,
Examples include side chains such as D-isoleucine. Examples of the alkyl having 1 or 2 carbon atoms represented by R 3 include methyl and ethyl. The linear or branched alkyl having 1 to 8 carbon atoms represented by R 4 is, for example, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl,
n-pentyl, isopentyl, sec-amyl,
tert-amyl, n-hexyl, isohexyl, 3
-methylpentyl, neohexyl, 2,3-dimethylbutyl, n-heptyl, iso-heptyl,
tert-heptyl, n-octyl, isooctyl,
Examples include tert-octyl. The linear or branched saturated aliphatic acyl having 1 to 8 carbon atoms represented by R 4 is, for example, formyl, acetyl, propionyl, isopropionyl, butyryl, isobutyryl, valeryl, isovaleryl, hexanoyl, isohexanoyl. , heptanoyl, octanoyl, etc. Among them, those having 3 to 6 carbon atoms are particularly preferred. Examples of the halogen which may be substituted with the above groups include chlorine fluorine. Also,
Examples of C1-C4 alkoxy which may be substituted with the above groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-
Examples include butoxy, isobutoxy, tert-butoxy and the like. Among them, methoxy, ethoxy, n-
Propoxy is particularly preferred. In the above general formula, examples of the protecting group represented by Y 1 include benzyloxycarbonyl, t-butoxycarbonyl, t-amyloxycarbonyl, isoniboryloxycarbonyl, adamantyloxycarbonyl, chloro- or nitro-substituted benzyloxy Examples include carbonyl, o-phenylthio, diphenylphosphinothioyl, and the like. Examples of the protecting group represented by Y 2 include benzyl and t-butyl. Regarding the protecting groups for R′ 2 and R′ 4 , the above Y 2
Examples of the protecting group for protecting the amino group of the basic group include those having the same meaning as Y 1 above. Examples of the protecting group represented by Y 3 include those having the same meaning as Y 1 . In order to produce a peptide derivative having the chemical structure of the tetrapeptide derivative () of the present invention, partial amino acids that may constitute the polypeptide of the object () or the peptide and a compound that may constitute the remainder thereof are synthesized by peptide synthesis means. This is done by condensation. The peptide synthesis means may follow any known method, for example M. Bodansky and
Written by MAOndetti, Peptide Synthesis, Intef science, NeW
York, 1966; FMFinn and K. Hofmann, The Proteins, Volume 2, H.
Edited by Nenrath, RL Hill, Academic Press Inc.
NeW York, 1976; methods described in "Peptide Synthesis" by Nobuo Izumiya et al., Maruzen Co., Ltd., 1975, such as azide method, chloride method, acid anhydride method, mixed acid anhydride method, DCC method, active ester method. , a method using Woodward's reagent K, a carbodiimidazole method, a redox method, a DCC/HONB method, and the like. In some cases, the NCA method (N-carboxyanhydride; a method using an intramolecular cyclic carbonyl compound corresponding to an amino acid without using a protecting group) may be applied. Before carrying out the main condensation reaction, carboxyl groups that do not participate in the reaction of the raw materials are removed by means known per se.
The amino group may be protected, or the carboxyl group or amino group involved in the reaction may be activated. Examples of the protecting group for the raw material include the above-mentioned protecting groups. The carboxyl group of the raw material is, for example, a metal salt (e.g., sodium, potassium salt, etc.), a t-alkylamine salt (e.g., triethylamine, N-methylmorpholine, etc.), or an ester (e.g., methyl, ethyl, benzyl, p-nitrobenzyl). , t-butyl, t-amyl, etc.). As a protecting group for the amino group of the raw material,
For example, benzyloxycarbonyl group, t-butoxycarbonyl group, isobornyloxycarbonyl group, etc. are used as protecting groups for the imino group of histidine. Kishi etc. are mentioned. Examples of protective groups for the hydroxyl group of tyrosine include ethers such as benzyl and t-butyl; examples of protective groups for the guanidino group of arginine include nitro group, tosyl group, carbobenzoxy, isobonyloxycarbonyl, and adamantyloxycarbonyl. etc. are exemplified. Examples of raw materials with activated carboxyl groups include corresponding acid anhydrides, azides,
Active esters [alcohols (e.g., bentachlorophenol, 2,4,5-trichlorophenol,
2,4-dinitrophenol, dianomethyl alcohol, p-nitrophenol, N-hydroxy-5-norbornene-2,3-dicarboximide, N-hydroxysuccinimide, N-hydroxyphthalimide, N-hydroxybenztriazole) and esters]. As raw material with activated amino groups,
Examples include the corresponding phosphoamides. Assuming that the raw materials are A and B, examples of combinations of the above-mentioned states of the carboxyl and amino groups of A and B are shown in the table below.

【表】【table】

【表】 本反応は溶媒の存在下に行うことができる。溶
媒としては、ペプチド縮合反応に使用しうること
が知られているものから適宜選択されうる。たと
えば無水または含水のジメチルホルムアミド,ジ
メチルスルホキサイド,ピリジン,クロロホル
ム,ジオキサン,ジクロルメタン,テトラハイド
ロフランあるいはこれらの適宜の混合物などがあ
げられる。 反応温度は、ペプチド結合形成反応に使用され
うることが知られている範囲から適宜選択され、
通常約−20℃〜約30℃の範囲から適宜選択され
る。また本出願化合物の前駆物質(保護ペプチ
ド)は固相合成法によつても容易に製造すること
ができる。 このようにして得られた式()で表わされる
保護された化合物を保護基脱離反応に付す。該反
応は、使用する保護基の種類によつて異なるが、
いづれにしてもペプチド結合に影響を与えず一工
程で全保護基が除かれることが工業的に有利であ
る。従つて、あらかじめ、保護基の採用は、その
点を考慮して行われる。保護基の種類の組み合せ
と、脱離条件の代表的な例を下の表1に示す。
[Table] This reaction can be carried out in the presence of a solvent. The solvent can be appropriately selected from those known to be usable in peptide condensation reactions. Examples include anhydrous or hydrous dimethylformamide, dimethyl sulfoxide, pyridine, chloroform, dioxane, dichloromethane, tetrahydrofuran, or a suitable mixture thereof. The reaction temperature is appropriately selected from the range known to be usable for peptide bond forming reactions,
Usually, the temperature is appropriately selected from the range of about -20°C to about 30°C. The precursor (protected peptide) of the compound of the present invention can also be easily produced by solid phase synthesis. The thus obtained protected compound represented by formula () is subjected to a protecting group elimination reaction. The reaction varies depending on the type of protecting group used, but
In any case, it is industrially advantageous to remove all protecting groups in one step without affecting peptide bonds. Therefore, this point should be taken into consideration beforehand when employing a protecting group. Typical examples of combinations of protecting group types and elimination conditions are shown in Table 1 below.

【表】 脱離条件として表1に示したものは、例えば、
パラジウム黒,パラジウム炭素,白金等を触媒と
する接触還元,トリフルオロ酢酸,希塩酸,メタ
ンスルホン酸による酸分解等であるが、この他に
も液体アンモニア中ナトリウムによる還元、ある
いはトリフルオロメタンスルホン酸や、臭化水素
酸の氷酢酸溶液,弗化水素等による酸分解もあげ
られる。これらの反応は一般に−20℃から40℃の
適温で行われるが、酸分解においてはアニソー
ル,フエノール,チオアニソールの如きカチオン
捕足剤の添加が有効である。 この様にして製造されたペプチド誘導体()
は反応終了後、ペプチドの分離手段、たとえば抽
出,分配,再沈殿,再結晶,カラムクロマトグラ
フイーなどによつて採取される。 ペプチド()は有機酸,無機酸などと常法に
より塩を形成したものとして得ることが出来る
が、一般的には酢酸塩,クエン酸塩,酒石酸塩,
塩酸塩,硫酸塩などが好ましい。 以下に、本発明の化合物()の薬理実験例を
挙げる。 熱板法: 生後4週令,体重18〜22gのTa:CF1マウス
を用いた。55±0.5℃に保持した銅板上に動物を
おくと、熱刺激のため後足裏をなめたり、跳び上
つて逃れようとする反応を示す。20秒以内にこの
ような反応を示すマウスをえらび、1群10匹とし
て実験を行つた。検体を静脈内あるいは皮下に注
射して、5,10,20,30,45,60分後に上記同
様、反応時間の測定を行ない非治療群(対照群)
の反応時間と比較した。なお、非可逆的な足裏損
傷を避けるために、反応時間測定は60秒を限度と
した。次式により鎮痛作用(延長率%)を求める
と共に、有意差検定(t−test)を行ない効果を
判定した。 鎮痛作用(%)=投与後の反応時間(秒)−
投与前の反応時間(秒)/60−投与前の反応時間(秒)
×100 本願の化合物()は上記テストに於いて
200μg以下の用量で5〜20分をピークとする延
長率が40%以上の鎮痛作用が認められ、特に効果
の大きな化合物では20μg以下の微量でも明瞭な
鎮痛作用が認められる。 本発明の化合物()は、上記したように、マ
ウスを使用する熱板法によつて、静脈内投与で約
1〜10mg/Kgの範囲の用量で明確な鎮痛効果を示
し、β−エンドルフインより優れた効果を示すこ
とから鎮痛薬として有用なものである。したがつ
て、本発明の化合物()およびその薬理的に許
容され得る酸付加塩は、たとえば哺乳動物(例、
マウス,ラツト,ウサギ,イヌ,サル,人など)
の末期ガンその他の激痛に対して鎮痛薬として使
用し得る。 本発明の化合物()およびその酸付加塩の毒
性はきわめて低く、薬効有効量をはるかに上まわ
る200mg/Kgでも死亡例はない。 本発明の化合物は、遊離体としてあるいはその
酸付加塩として投与され得る。その投与量は、化
合物()の遊離体の場合は、一般に体重1Kgあ
たり0.1mgないし50mgの範囲の適量である。本発
明の化合物()の酸付加塩の投与量は、化合物
()の遊離体の量として、一般に体重1Kg当り
0.1mg〜50mgの範囲の適量である。本化合物は主
として非経口的に投与(例、静脈あるいは皮下注
射,直腸投与)されるが、場合によつては経口投
与されることもある。また、手術時の連続注入,
点滴は特に有用である。 剤型としては、たとえば注射剤,坐剤,散剤な
どがあげられるが、点滴用剤も有用である。本化
合物は物質として安定であるため生理食塩水の溶
液として保存できるが、マニトール,ソルビトー
ルを添加して凍結乾燥アンプルとし、使用時に溶
解することもできる。静脈注射又は皮下注射の場
合、たとえば生理食塩水に濃度が12.5〜25mg/ml
となるように溶解したものを用いると好ましい。 以下に実施例を挙げて本発明をさらに具体的に
説明する。最終物の精製に用いたセフアデツクス
LH−20は、フアーマシア社(スエーデン)の製
品である。製造した化合物の純度はメルク社キー
ゼルゲル60F−254を用い薄層クロマトで調べた。
展開溶媒は次に示す。 Rf1:クロロホルム−メタノール−酢酸(9:
1:0.5) Rf2:酢酸エチルエステル−ピリジン−酢酸−
水(60:20:6:10) 実施例1H−Tyr−(D)−Leu−Gly−Phe−NH
−NH−(CH22−OHの製造 () Z−(D)−Leu−Gly−OHの製造 グリシン3.3gを20mlの水にとかし、重たん酸
ソーダ3.4gを加えかきまぜながらZ−(D)Leu
−ONB17.0g(40ミリモル)のDMF溶液(100
ml)を加える。室温で終夜かきまぜてのちDMF
を留去し、残留物にAcOEt200mlとN−塩酸水50
mlを加える。AcOEt層を水洗してのち無水硫酸
ナトリウムで乾燥する。AcOEtを留去して残留
物を石油ベンジンで結晶化する。 AcOEt−石油ベンジンで再結晶する;9.8g
(75%)。融点110−111℃,〔α〕27 D+24.3゜(C=
1.0,MeOH),Rf1=0.42。 元素分析 C16H22O5N2として 計算値:C59.61,H:6.88,N8.69 実測値:C59.59,H6.85,N8.74 () Z−Tyr−(D)−Leu−Gly−OHの製造 Z−(D)−Leu−Gly−OH7.0g(22ミリモル)
をMeOH100mlにとかし、パラジウム黒を触媒と
して、接触還元を行う。触媒をろ去してMeOH
を留去し残留物をTHF−水(100ml−10ml)の混
合溶媒にけんだくし冷却してTEA3mlを滴下して
溶かす。これにZ−Tyr−ONB10.5gを加え室温
で終夜かきまぜる。THFを留去して残留物に
AcOEt200mlとN−塩酸水25mlを加え、AcOEt層
を水洗して無水硫酸ソーダで乾燥する。AcOEt
を留去して残留物をエーテルでかためる。
AcOEtより再結晶する;8.2g(78%)。融点179
−181℃,〔α〕27 D+45.2゜(C=0.5,MeOH),Rf1
=0.38 元素分析 C25H31O7N3として 計算値:C61.68,H6.51,N8.64 実測値:C61.84,H6.44,N8.66 () Z−Phe−NH−NH−CH2−CH2−OH
の製造 Z−Phe−ONB6.9g(15mmoles)と2−ヒド
ラジノエタノール1.14gをジオキサン50mlに加え
てとかし、室温で3時間かきまぜる。ジオキサン
を留去して析出した結晶をエーテルで洗いろ取す
る。エタノールより再結晶する;4.3g(81%)。
融点149−150℃,〔α〕20 D−8.8゜(C=0.5,
MeOH),Rf1=0.57。 元素分析 C19H23O4N3として 計算値:C63.85,H6.48,N11.76 実測値:C63.93,H6.48,N11.61 () Z−Tyr−(D)−Leu−Gly−Phe−NH
−NH−CH2−CH2−OHの製造 Z−Phe−NH−NH−CH2−CH2−OH570mg
(1.6mmoles)をMeOH50mlにとかし、パラジウ
ム黒を触媒として接触還元を行う。触媒をろ去し
てMeOHを留去し残留物をTHF5mlにとかす。
他方Z−Tyr−(D)−Leu−Gly−OH727mg
(1.5mmoles)をTHF20mlにとかし0℃に冷却し
てHONB295mgとDCC340mgを加え0℃で3時間
かきまぜる。不溶物をろ去してろ液を先に調製し
たアミンコンポーネントのTHF溶液に合し、室
温で終夜かきまぜる。THFを留去して残留物を
AcOEt100mlで抽出し、水洗する。AcOEtを留去
して析出したゲル状物質をろ取する。エタノール
〜エーテルで再沈澱する;850mg(83%)。融点
151℃,〔α〕20 D+14.8゜(C=0.5,MeOH),Rf1
0.28。 元素分析 C36H46O8N6として 計算値:C62.59,H6.71,N12.17 実測値:C61.96,H6.99,N11.81 () H−Tyr−(D)−Leu−Gly−Phe−NH
−NH−CH2−CH2−OHの製造 Z−Tyr−(D)−Leu−Gly−Phe−NH−NH
−CH2−CH2−OH500mgをMeOH50mlにとかし
パラジウム黒を触媒として接触還元を行う。触媒
をろ去してMeOHを留去し残留物にN−酢酸50
mlを加え、不溶物をろ別する。ろ液を凍結乾燥し
て得た粉末を少量のN−酢酸水にとかしセフアデ
ツクスLH−20のカラム(2.5×120cm)に付し、
N−酢酸水で溶出する。307mlから340mlまでの溶
出画分をあつめて凍結乾燥する;310mg(62%),
〔α〕20 D+16.7゜(C=0.35,MeOH),Rf2=0.41,ア
ミノ酸分析値(酸水解物):Gly1.05(1),Leu1.00
(1),Tyr0.71(1),Phe0.92(1),平均回収率75%。 実施例2H−Tyr−(D)−Leu−Gly−Phe−NH
−NH2の製造 () Z−Tyr−(D)−Leu−Gly−Phe−
OMeの製造 Z−Tyr−(D)−Leu−Gly−OH1.45gと
HONB590mgをTHF50mlにとかし0℃に冷却し
てDCC680mgを加え4時間かきまぜる。析出した
尿素体をろ去してろ液にH−Phe−OMe・塩酸塩
750mgとTEA0.5mlを加え室温で終夜かきまぜる。
THFを留去して残留物をAcOEt100mlで抽出し、
5%重そう水で洗い無水硫酸ナトリウムで乾燥す
る。AcOEtを留去して石油ベンジンでかためる。
AcOEt−エーテルで再沈澱;1.73g(89%)。融
点100〜101℃,〔α〕22 D−2.6゜(C=0.5,DMF),
Rf1=0.68。 元素分析 C35H42O8N4として 計算値:C65.00,H6.55,N8.66 実測値:C64.97,H6.95,N8.62 () Z−Tyr−(D)−Leu−Gly−Phe−NH
−NH2の製造 Z−Tyr−(D)−Leu−Gly−Phe−OMe517mg
をDMF5mlにとかしNH2−NH2・H2O 0.1mlを加
えて室温で3日間放値する。DMFを留去して残
留物に水を加えてかためろ取する。MeOH−エ
ーテルで再沈澱する;410mg(80%)。融点176−
177℃(分解),〔α〕22 D−22.7゜(C=0.4,DMF),
Rf1=0.20。 元素分析 C34H42O7N6・1/2H2Oとして 計算値:C62.27;H6.45,N12.82 実測値:C62.03,H6.57,N12.64 () H−Tyr−(D)−Leu−Gly−Phe−NH
−NH2の製造 Z−Tyr−(D)−Leu−Gly−Phe−NH−
NH2350mgをMeOH50mlにとかし酢酸0.1mlを加
えパラジウム黒を触媒として接触還元する。触媒
をろ去してろ液を濃縮し残留物を少量のN−酢酸
水にとかしてセフアデツクスLH−20のカラム
(2.5×120cm)に付し、N−酢酸水で溶出する。
320mlから340mlまでの溶出画分をあつめて凍結乾
燥する;210mg(60%),〔α〕22 D+22.6゜(C−0.38

MeOH),Rf2=0.34。アミノ酸分析値(酸水解
物):Gly1.00(1),Leu1.00(1),Tyr0.90(1),
Phe1.02(1)(平均回収率70%)。 実施例3 H−Tyr−(D)−Ala−Gly−Phe−
NH−NH2の製造 () Z−Tyr−(D)−Ala−Gly−OHの製造 Z−(D)−Ala−Gly−OBut8.2gをMeOH200
mlにとかしパラジウム黒を触媒として接触還元を
行う。触媒をろ去してMeOHほ留去し残留物を
トリフルオロ酢酸70mlにとかし室温に40分間放置
する。トリフルオロ酢酸を留去して残留物をエー
テルでかためろ取する。この粉末を水50mlにけん
だくし重炭酸ソーダ4.7gを加えとかす。この溶
液にZ−Tyr−ONB13.3g(28ミリモル)の
THF溶液100mlを加え室温で終夜かきまぜる。反
応液にN−塩酸水を加えて中和し、AcOEt150ml
で抽出する。水洗して無水硫酸ナトリウムで乾燥
する。AcOEtを留去してエーテルでかためろ取
する。AcOEtより再結晶する;8.5g(69%)。融
点184−185℃,〔α〕22 D+25.6゜(C=0.5,MeOH),
Rf1=0.16。 元素分析 C22H25O7N3として 計算値:C59.58,H5.68,N9.48 実測値:C59.29,H5.81,N9.32 () Z−Phe−NHNH−BOCの製造 Z−Phe−ONB18.4gとNH2−NH−BOC5.3
gをTHF100mlにとかし室温で終夜かきまぜる。
THFを留去して残留物をAcOEt150mlで抽出し、
クエン酸水と5%重そう水で洗う。無水Na2SO4
で乾燥し、AcOEtを留去する。石油ベンジンで
かためろ取する。AcOEt−石油ベンジンで再結
晶する;13.2g(80%)。融点107−109℃,〔α〕
19D−23.4゜(C=0.5,MeOH),Rf1=0.71。 元素分析 C22H27O5N3として 計算値:C63.90,H6.58,N10.16 実測値:C64.18,H6.61,N9.88 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−BOCの製造 Z−Phe−NH−NH−BOC3.6gをMeOH100
mlにとかし酢酸0.5mlを加えパラジウム黒を触媒
として接触還元を行う。触媒をろ去してろ液に
DMF10mlを加えMeOHを留去する。他方Z−
Tyr−(D)−Ala−Gly−OH3.5gとHONB1.56
gをTHF50mlにとかし0℃に冷却してDCC1.80
gを加え0℃で6時間かきまぜる。不溶物をろ別
してろ液をアミンコンポーネントに合し室温で終
夜かきまぜる。THFを留去して残留物を
AcOEt150mlで抽出し、5%重そう水,クエン酸
水で洗う。無水硫酸ナトリウムで乾燥し、
AcOEtを留去して石油ベンジンでかためる。 AcOEt−石油ベンジンで再結晶する;3.7g
(67%)。融点143−146℃(分解),〔α〕22 D−25.4

(C=0.5,DMF),Rf1=0.38。 元素分析 C36H44O9N6として 計算値:C61:35,H6.29,N11.93 実測値:C61.05,H6.42,N11.58 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH2の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−BOC3.5gをトリフルオロ酢酸30mlにとかし室
温で20分間放置する。トリフルオロ酢酸を留去し
て残留物をエーテルでかためろ取する。この粉末
をDMF10mlにとかしTEA1.4mlを加えてかきま
ぜる。DMFを留去して残留物を水でかためろ取
する。メタノール〜エーテルで再沈澱する;2.8
g(96%)。融点182〜184℃(分解),〔α〕22 D
23.0(C=0.5,DMF),Rf1=0.17 元素分析 C31H36O7N6として 計算値:C61.58,H6.00,N13.90 実測値:C61.32,H5.91,N13.72 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH2の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−
NH2250mgをMeOH50mlにとかし酢酸0.1mlを加
えてパラジウム黒の存在下接触還元を行う。触媒
をろ去して残留物を少量のN−酢酸水にとかしセ
フアデツクスLH−20のカラム(2.5×120cm)に
付しN−酢酸水で溶出する。310mlから335mlまで
の溶出画分をあつめて凍結乾燥する;95mg(38
%),〔α〕22 D+20.5゜(C=0.2,MeOH),Rf2
0.22,アミノ酸分析値(塩酸水解物):Gly1.00
(1),Ala1.05(1),Tyr0.89(1),Phe1.01(1)(平均回
収率81%)。 実施例4H−Tyr−(D)−Leu−Gly−Phe−NH
−NH−CO−CH3の製造 () Z−Phe−NH−NH−CO−CH3の製造 Z−Phe−NH−NH22.03g(6.5ミリモル)を
THF50mlにとかし、冷却して無水酢酸1.4mlと
TEA0.9mlを滴下する。室温で2時間かきまぜ
る。析出した結晶をろ取してエーテルで洗う。
AcOEtより再結晶する;1.9g(83%)。融点205
−206℃,〔α〕23 D−16.4゜(C=0.5,DMF),Rf1
0.60 元素分析 C20H23O5N3として 計算値:C62.32,H6.02,N10.90 実測値:C62.38,H6.09,N10.49 () Z−Tyr−(D)−Leu−Gly−Phe−NH
−NH−CO−CH3の製造 Z−Phe−NH−NH−CO−CH3700mgを
MeOH50mlにとかし、酢酸0.2mlを加えパラジウ
ム黒を触媒として接触還元を行う。触媒をろ去し
MeOHを留去して残渣をTHF20mlにとかす。他
方Z−Tyr−(D)−Leu−Gly−OH680mg(1.4ミ
リモル)とHONB300mgをTHF20mlにとかし冷
却してDCC330mgを加え0℃で5時間かきまぜ
る。不溶物をろ去してろ液を先に調製したアミン
コンポーネントに合し室温で終夜かきまぜる。
THFを留去して残渣にAcOEtを加えかためてろ
取する。メタノール〜AcOEtで再沈澱する;0.71
g(74%)。融点184−185℃,〔α〕23 D−13.4゜(C

0.50mlにとかし酢酸0.1mlを加えてパラジウム黒
の存在下接触還元を行う。触媒をろ去して残留物
を少量のN−酢酸水にとかしセフアデツクスLH
−20のカラム(2.5×120cm)に付しN−酢酸水で
溶出する。310mlから335mlまでの溶出画分をあつ
めて凍結乾燥する;95mg(38%),〔α〕22 D+20.5゜
(C=0.2,MeOH),Rf2=0.22,アミノ酸分析値
(塩酸水解物):Gly1.00(1),Ala1.05(1),Tyr0.89
(1),Phe1.01(1)(平均回収率81%)。 実施例4H−Tyr−(D)−Leu−Gly−Phe−NH
−NH−CO−CH3の製造 () Z−Phe−NH−NH−CO−CH3の製造 Z−Phe−NH−NH22.03g(6.5ミリモル)を
THF50mlにとかし、冷却して無水酢酸1.4mlと
TEA0.9mlを滴下する。室温で2時間かきまぜ
る。析出した結晶をろ取してエーテルで洗う。
AcOEtより再結晶する;1.9g(83%)。融点205
−206℃,〔α〕23 D−16.4゜(C=0.5,DMF),Rf1
0.60 元素分析 C20H23O5N3として 計算値:C62.32,H6.02,N10.90 実測値:C62.38,H6.09,N10.49 () Z−Tyr−(D)−Leu−Gly−Phe−NH
−NH−CO−CH3の製造 Z−Phe−NH−NH−CO−CH3700mgを
MeOH50mlにとかし、酢酸0.2mlを加えパラジウ
ム黒を触媒として接触還元を行う。触媒をろ去し
MeOHを留去して残渣をTHF20mlにとかす。他
方Z−Tyr−(D)−Leu−Gly−OH680mg(1.4ミ
リモル)とHONB300mgをTHF20mlにとかし冷
却してDCC330mgを加え0℃で5時間かきまぜ
る。不溶物をろ去してろ液を先に調製したアミン
コンポーネントに合し室温で終夜かきまぜる。
THFを留去して残渣にAcOEtを加えかためてろ
取する。メタノール〜AcOEtで再沈澱する;0.71
g(74%)。融点184−185℃,〔α〕23 D−13.4゜(C

0.5,DMF),Rf1=0.28 元素分析 C36H44O8N6として 計算値:C62.77,H6.44,N12.20 実測値:C62.52,H6.81,N12,04 () H−Tyr−(D)−Leu−Gly−Phe−NH
−NH−CO−CH3の製造 Z−Tyr−(D)−Leu−Gly−Phe−NH−NH
−CO−CH3500mgをMeOH50mlにとかし酢酸1
mlを加えてパラジウム黒を触媒として接触還元を
行う。触媒をろ去してろ液を留去し残渣に水を加
えて不溶物をろ去する。ろ液を凍結乾燥して得た
粉末を少量のN−酢酸水にとかしセフアデツクス
LH−20のカラム(2.5×120cm)に付し、N−酢
酸水で溶出する。320mlから345mlまでの溶出画分
をあつめて凍結乾燥する;245mg(50%)。〔α〕23 D
+26.7゜(C=0.3,MeOH),Rf2=0.41,アミノ酸
分析値(塩酸水解物):Gly1.00(1),Leu1.05(1),
Tyr0.93(1),Phe1.02(1)(平均回収率82%)。 実施例5 H−Tyr−(D)−Ala−Gly−Phe−
NH−NH−CO−(CH23−CH3の製造 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−(CH23−CH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−
NH2604mg(1ミリモル)とHOBT297mg,CH3
(CH23COOH0.2mlをDMF5mlにとかし0℃に冷
却してDCC454mgを加え0℃で4時間室温で終夜
かきまぜる。不溶物をろ去しDMFを留去し、残
留物をAcOEt100mlで抽出し、5%重そう水で洗
う。無水硫酸ナトリウムで乾燥し、AcOEtを留
去して析出したゲル状物質をエーテルでろ取す
る。メタノール〜AcOEtで再沈澱する;480mg
(70%)。融点178−179℃,〔α〕23 D−22.4゜(C=
0.16,DMF),Rf1=0.46 元素分析 C36H44O8N6として 計算値:C62.77,H6.44,N12.20 実測値:C62.71,H6.77,N11.98 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−(CH23−CH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−(CH23−CH3430mgをMeOH50mlにとか
し1mlの酢酸を加えてパラジウム黒を触媒とし、
接触還元を行う。触媒をろ去してMeOHを留去
し残留物を少量のN−酢酸水にとかしセフアデツ
クスLH−20のカラム(2.5×120cm)に付し、N
−酢酸水で溶出する。325mlから340mlまでの溶出
画分をあつめて凍結乾燥する;240mg(56%)。
〔α〕23 D+24.5゜(C=0.2,MeOH),Rf2=0.47,ア
ミノ酸分析値(塩酸水解物):Gly1.00(1),
Ala0.95(1),Tyr0.88(1),Phe1.01(1)(平均回収率
82%) 実施例6 H−Tyr−(D)−Ala−Gly−Phe−
NH−NH−CO−CH2−CH−(CH32の製造 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH−(CH32の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−
NH2530mg(0.88ミリモル)と(CH32−CH−
CH2−COOH0.15mlを用い実施例5の()の場
合と同様にして調製する;320mg(53%)。融点
228−230℃,〔α〕23 D−23.9゜(C=0.28,DMF),
Rf1=0.46 元素分析 C36H44O8N6として 計算値:C62.77,H6.44,N12.20 実測値:C62.58,H6.35,N11.95 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH−(CH32の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−CH2−CH−(CH32170mgを用い実施例5
の()の場合と同様にして調製する;105mg
(62%)。〔α〕23 D+21.1゜(C=0.18,MeOH),Rf2
=0.49,アミノ酸分析値(塩酸水解物):Gly1.00
(1),Ala1.02(1),Tyr0.96(1),Phe1.02(1)(平均回
収率80%)。 実施例7H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−(CH22−Clの製造 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−(CH22−Clの製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−
NH2513mg(0.85ミリモル)とCl−CH2−CH2
COOH120mgを用い実施例5の()と同様にし
て調製する;360mg(59%)。融点169−170℃,
〔α〕23 D−21.1゜(C=0.37,DMF) 元素分析 C34H39O8N6・Cl 計算値:C58.74,H5.65,N12.09,Cl5.10 実測値:C58.61,H5.59,N11.81,Cl4.92 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−(CH22−Clの製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−(CH22−Cl250mgを実施例5の()の
場合と同様にして調製する;150mg(60%)。〔α〕
23 D+20.5゜(C=0.2,MeOH),Rf2=0.42。アミノ
酸分析値(酸水解物):Gly1.01(1),Ala0.95(1),
Tyr0.88(1),Phe0.98(1)(平均回収率79%)。 実施例8H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH2−OHの製造 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH2−OHの製造 Z−Tyr−(D)−Ala−Gly−PheNH−−NH2
540mgとHO−CH2−CH2−COOH0.12mlを用い、
実施例5の()と同様にして調製する;320mg
(53%)。融点178−179℃,〔α〕23 D−22.3゜(C=
0.3,DMF),Rf1=0.10 元素分析 C34H40O9N6として 計算値:C60.34,H5.96,N12.42 実測値:C59.98,H5.85,N12.18 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH2−OHの製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−CH2−CH2−OH250mgより実施例5の
()と同様にして目的物をうる;100mg(40%),
〔α〕23 D+19.5゜(C=0.21,MeOH),Rf2=0.32アミ
ノ酸分析値(酸水解物):Gly1.00(1),Ala1.05(1),
Tyr0.92(1),Phe1.00(1)(平均回収率79%)。 実施例9H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH3の製造 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH2
495mg(0.82ミリモル)とCH3−CH2−COOH0.1
mlを用い、実施例5の()と同様にして調製す
る;350mg(65%)融点190−191℃,〔α〕23 D
20.5゜(C=0.3,DMF),Rf1=0.26。 元素分析 C34H40O8N6として 計算値:C61.80,H6.10,N12.72 実測値:C61.53,H6.02,N12.65 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−H3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−CH2−CH3250mgを実施例5の()と同
様にして目的物をうる。;130mg(52%),〔α〕23 D
+25.5゜(C=0.23,MeOH),Rf2=0.42。アミノ
酸分析値(酸水解物):Gly1.00(1),Ala0.95(1),
Phe1.01(1),Tyr0.95(1)(平均回収率81%)。 実施例10H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH2−NH2の製造 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH2−NH−Zの製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH2
495mg(0.82mmols)とZ−β−Ala−ONB390mg
をDMF10mlにとかし冷却してTEA0.14mlを加え
室温で終夜かきまぜる。DMFを留去して残留物
をAcOEt100mlで抽出し、5%重そう水で洗い無
水硫酸ナトリウムで乾燥する。AcOEtを留去し
て残留物をエーテルでかためろ取する。メタノー
ル〜AcOEtで再沈澱する;370mg(56%)。融点
231−233℃,〔α〕23 D−21.5゜(C=0.27,DMF),
Rf1=0.26。 元素分析 C42H47O10N7 計算値:C62.28,H5.85,N12,10 実測値:C61,99,H5.94,N11.95 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2CH2−NH2の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−CH2−CH2−NH−Z280mgを実施例5の
()と同様に処理して目的物をうる;160mg(61
%)。 〔α〕23 D+16.7゜(C=0.27,MeOH),Rf2=0.07,
アミノ酸分析値:Gly1.00(1),Ala0.95(1),β−
Ala0.99(1),Tyr0.89(1),Phe1.00(1)(平均回収率
79%)。 実施例11H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−(CH22−CH3の製造 () の製造 Z−Phe−NH−NH2 2.5g(8mmoles)を
DMF30mlにとかし冷却してCH3CH2CH2COCl0.9
mlとTEA1.1mlを加え室温で5時間かきまぜる。
反応液に水を加えて析出する結晶をろ取して乾燥
する。AcOEt−石油ベンジンより再結晶する;
2.6g(85%)。融点150−156℃,〔α〕23 D−27.2゜
(C=0.5,MeOH),Rf1=0.71。 元素分析 C21H25O4N3として 計算値:C65.46,H6.48,N10.87 実測値:C65.78,H6.57,N10.96 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2−CH2−CH3の製造 Z−Phe−NH−NH−CO−CH2−CH2−CH3
505mgをMeOH50mlにとかしパラジウム黒を触媒
として接触還元を行う。触媒をろ去してMeOH
を留去し残留物をTHF20mlにとかす。他方Z−
Tyr−(D)−Ala−Gly−OH530mgとHONB237
mgをTHF50mlにとかし0℃に冷却してDCC271mg
を加え0℃で4時間かきまぜる。析出した尿素体
をろ去し、ろ液を先に調製したアミンコンポーネ
ントに合し、室温で終夜かきまぜる。THFを留
去して残留物をAcOEt100mlで抽出し、5%重そ
う水で洗い無水硫酸ナトリウムで乾燥する。
AcOEtを留去して残留物をエーテルでかためろ
取する。AcOEtより再沈澱する;420mg(50%)。
融点203〜206℃,〔α〕23 D−0.4゜(C=0.5,
MeOH),Rf1=0.28。 元素分析 C35H42O8N6として 計算値:C62.30,H6.27,N12.46 実測値:C62.60,H6.52,N12.18 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH2CH2CH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−CH2−CH2−CH3 250mgをMeOH50mlに
とかし、0.2mlの酢酸を加えてパラジウム黒を触
媒として接触還元を行う。触媒をろ去して、ろ液
を濃縮し残留物を少量のN−酢酸水にとかしセフ
アデツクスLH−20のカラム(2.5×125cm)に付
し、N−酢酸水で溶出する。320mlから340mlまで
の溶出画分をあつめて凍結乾燥する;110mg(44
%)。〔α〕23 D+23.2゜(C=0.25,MeOH),Rf2
0.40,アミノ酸分析(塩酸水解物):Gly1.06(1),
Ala1.00(1),0.93(1),Phe0.93(1)(平均回収率90
%)。 実施例12H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−OCH2−CH3の製造 () Z−Phe−NH−NH−CO−OCH2
CH3の製造 Z−Phe−NH−NH2 1.8g(5.7ミリモル)と
クロル炭酸エチル0.7mlを用い実施例11の()
と同様にして合成する;1.5g(69%)。融点134
℃,〔α〕23 D−20.6゜(C=0.5,DMF),Rf1=0.69。 元素分析 C20H23O5N3として 計算値:C62.32,H6.02,N10.90 実測値:C62.38,H6.09,N10.49 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−OCH2−CH3の製造 Z−Tyr−(D)−Ala−Gly−OH580mg(1.3ミ
リモル)とZ−Phe−NH−NH−CO−OCH2
CH3 620mgを用い実施例11の()と同様にして
合成する;820mg(93%),融点154−155℃,〔α〕
23 D−24.2゜(C=0.45,DMF),Rf1=0.40。 元素分析 C34H40O9N6として 計算値:C60.34,H5.96,N12.42 実測値:C60.09,H5.87,H12.21 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−OCH2−CH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−OCH2−CH3 450mgを実施例11の()
と同様の方法で処理して目的物をうる;240mg
(53%),〔α〕23 D+18.1゜(C=0.2,MeOH),Rf2

0.49。アミノ酸分析値:Gly1.00(1),Ala0.98(1),
Tyr0.88(1),Phe1.02(1),(平均回収率78%)。 実施例13 H−Tyr−(D)−Ala−Gly−MePhe−NH−
NH2の製造 () Z−Tyr−(D)−Ala−Gly−MePhe−
OCH3の製造 Z−MePhe−OH1.8g(5.7ミリモル)を
MeOH20mlにとかし、5N−塩酸/ジオキサン2
mlを加えて室温で終夜放置する。溶媒を留去して
残留物をAcOEt100mlで抽出し水洗して無水硫酸
ナトリウムで乾燥する。AcOEtを留去して1.5g
の油状物をうる。このうち1.1gをMeOH50mlに
とかしパラジウム黒を触媒として接触還元を行
う。触媒をろ去してMeOHを留去し、残留物を
DMF20mlにとかす。これにZ−Tyr−(D)−Ala
−Gly−OH1.55g(3.5ミリモル)とHONB0.75
gを加え、0℃に冷却してDCC0.80gを加え0℃
で5時間室温で終夜かきまぜる。析出した尿素体
をろ去しDMFを留去する。残留物をAcOEt100
mlで抽出し、5%重そう水で洗う。無水硫酸ナト
リウムで乾燥し、AcOEtを留去してエーテルで
かためる。MeOH−エーテルで再沈澱する;1.2
g(56%)。融点103−104℃,〔α〕23 D−17.2゜(C

0.31,MeOH),Rf1=0.68。 元素分析 C33H38O8N4として 計算値:C64.06,H6.19,N9.06 実測値:C63.91,H6.05,N8.89 () Z−Tyr−(D)−Ala−Gly−MePhe−
NH−NH2の製造 Z−Tyr−(D)−Ala−Gly−MePhe−
OCH31.0g(1.6ミリモル)を実施例2の()
と同様にNH2−NH2−H2O 0.5mlで処理して目
的物をうる;820mg(82%)。融点95〜96℃(分
解),〔α〕23 D−26.8゜(C=0.5,DMF),Rf1=0.29
。 元素分析 C32H38O7N6として 計算値:C62.12,H6.19,N13.59 実測値:C61.85,H6.28,N13.09 () H−Tyr−(D)−Ala−Gly−MePhe−
NH−NH2の製造 Z−Tyr−(D)−Ala−Gly−MePhe−NH−
NH2 300mgを実施例5の()と同様に処理し
て目的物をうる;155mg(52%),〔α〕23 D+12.0゜
(C=0.2,MeOH),Rf2=0.46,アミノ酸分析値
(酸水解物):Gly1.00(1),Ala0.98(1),Tyr0.91(1)
(平均回収率79%)。 実施例14 H−Tyr−(D)−Ala−Gly−Phe−NHNH−
COCH2−CH2−CH2−Clの製造 () Z−Phe−NHNH−COCH2−CH2
CH2−Clの製造 Z−Phe−NHNH2 3.13g(10mmoles)とγ
−クロル酪酸1.27g(10mmoles)をDMF40mlに
溶かし、0℃に冷却してDCC2.2gを加えて20時
間室温でかきまぜる。反応液をろ過して後、減圧
乾固し、残留物を酢酸エチル150mlに溶かし、水、
N−塩酸水、4%炭酸水素ナトリウム溶液で洗つ
て、無水硫酸ナトリウムで乾燥した後、減圧乾固
する。酢酸エチル−石油エーテルで結晶化すると
針状晶3,6g(85.7%)を得る。融点185−186
℃。Rf1=0.32 元素分析 C21H24O4N2Clとして 計算値:C60.35,H5.79,N10.06,Cl 8.49 実測値:C60.51,H5.60,N10.15,Cl 8.27 () H−Tyr−(D)−Ala−Gly−Phe−
NHNH−COCH2CH2・Clの製造 Z−Phe−NHNHCOCH2−CH2−CH2−Cl
420mgをメタノール50ml中でパラジウム黒を触媒
として接触還元する。触媒をろ去して、ろ液を減
圧乾固し、残留物とZ−Tyr−(D)−Ala−Gly
−OH445mgをDMF10mlにとかし、これに
HONB180mgを加えてO℃に冷却しながら
DCC250mgを加える。0℃で3時間、室温で12時
間かきまぜた後、不溶物をろ去して減圧でDMF
を留去する。これにn−ブタノールと酢酸エチル
の1:2の混合液100mlにとかし、N−塩酸と4
%炭酸水素ナトリウム水で洗浄する。水洗して減
圧で溶媒を留去し、メタノール50mlに溶解し、1
mlの氷酢酸を加えてパラジウム黒を触媒として接
触還元する。触媒をろ去して減圧乾固し、残留物
をN−酢酸水10mlに溶解する。不溶物をろ去して
セフアデツクスLH−20のカラム(3×45cm)に
流し込み、N−酢酸水で流すと、215ml〜236mlの
区分に目的物が流出して来るので、これを集め凍
結乾燥すると360mgの目的物を得る。Rf2=0.485,
〔α〕23 D+18.2゜(C=0.28,MeOH),アミノ酸分
析:Gly1.00(1),Ala1.02(1),Tyr0.89(1),Phe1.00
(1),平均回収率78%。 実施例15 H−Tyr−(D)−Ala−Gly−Phe−
NH−NH−CO−CH(OH)−CH3の製造 () Z−Tyr−(D)−Ala−Gly−Phe−NH
−NH−CO−CH(OH)−CH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NHNH2
510mgと乳酸0.1mlを用い実施例5の()と同様
の方法で目的物を得る;420mg(73%)。融点134
−135℃,Rf1=0.24,〔α〕24 D−21.7゜(C=
0.7DMF)。 元素分析 C34H40O9N6・1/2H2Oとして 計算値:C=59.55,H6.02,N12.25 実測値:C59.74,H6.29,N12,47 () H−Tyr−(D)−Ala−Gly−Phe−NH
−NH−COCH(OH)−CH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NH−NH
−CO−CH(OH)−CH3 300mgを実施例5の
()と同様な方法で脱保護し精製して目的物160
mgを得る。Rf2=0.34,〔α〕24 D+16.7゜(C=
0.45MeOH)。 アミノ酸分析:Gly0.91(1),Ala 1.00(1),Tyr0.97
(1),Phe1.03(1)(平均回収率81%) 実施例16 H−Tyr−(D)−Thr−Gly−Phe−
NH−NH−CO−(CH23−CH3の製造(Thr=
スレオニン) () Z−(D)−Thr−Gly−OButの製造 Z−(D)−Thr−OH5.06g(20ミリモル)と
H−Gly−OBut3.60gをTHF50mlにとかし0℃
に冷却してHONB3.94gとDCC4.54gを加えて0
℃で3時間室温で終夜かきまぜる。不溶物をろ去
してTHFを留去し残留物をAcOEt100mlで抽出
し、5%重そう水で洗い、無水硫酸ナトリウムで
乾燥する。AcOEtを留去して石油ベンジンで結
晶化する。 AcOEt〜石油ベンジンで再結晶する;5.0g
(69%)。融点56−57℃,〔α〕23 D+13.8゜(C=
0.5MeOH),Rf1=0.69 元素分析 C18H26O6N2として 計算値:C59.00,H7.15,N7.65 実測値:C58.73,H7.11,N7.87 () Z−Tyr−(D)−Thr−Gly−OHの製造 Z−(D)−Thr−Gly−OBut4.6g(12.5ミリモ
ル)をMeOH100mlにとかしパラジウム黒を触媒
として接触還元を行う。触媒をろ去してMeOH
を留去し残留物をTHF50mlにとかす。これにZ
−Tyr−ONB5.9gを加え室温で終夜かきまぜる。
THFを留去して残留物をAcOEt100mlで抽出し、
5%重そう水で洗い無水硫酸ナトリウムで乾燥す
る。AcOEtを留去して析出したゲル状物質をろ
取して乾燥する(3.9g)。このうち3.7gをトリ
フルオロ酢酸40mlにとかし室温で40分間放置す
る。トリフルオロ酢酸を留去して残留物をエーテ
ルでかためろ取する。AcOEtより再結晶する;
2.9g(87%)。融点143−144℃,〔α〕23 D+18.2゜
(C=0.5MeOH),Rf2=0.49 元素分析 C23H27O8N3・1/2H2Oとして 計算値 C57.25,H5.85,N8.87 実測値 C57.57,H5.92,N8.55 () Z−Tyr−(D)−Thr−Gly−Phe−
OCH3の製造 Z−Tyr−(D)−Thr−Gly−OH1.5g(3.1ミ
リモル)とHONB0.63gをTHF50mlにとかし0
℃に冷却してDCC0.72gを加えて0℃で3時間か
きまぜる。反応液にH−Phe−OCH3・塩酸塩
0.73gとTEA0.49mlを加え室温で終夜かきまぜ
る。不溶物をろ去し、THFを留去して残留物を
AcOEt100mlで抽出し、5%重そう水、N−塩酸
水で洗い無水硫酸ナトリウムで乾燥する。
AcOEtを留去してエーテルでかためる。AcOEt
−エーテルで再沈澱;1.7g(87%)。融点102〜
103℃,〔α〕23 D+20.3゜(C=0.33MeOH),Rf1
0.44 元素分析 C33H38O9N4として 計算値 C62.45,H6.04,N8.83 実測値 C62.31,H6.28,N8.59 () Z−Tyr−(D)−Thr−Gly−Phe−NH
−NH2の製造 Z−Tyr−(D)−Thr−Gly−Phe−OCH31.5g
(2.3ミリモル)をMeOH30mlにとかし冷却して
NH2・NH2・H2O 0.5mlを加えて室温で2日間
放置する。析出する結晶をろ取し、MeOHから
再結晶する;1.4g(93%)。融点212〜213℃,
〔α〕23 D−25.9゜(C=0.32DMF),Rf1=0.12 元素分析 C32H38O8N6として 計算値 C60.55,H6.04,N13.24 実測値 C60.31,H6.25,N12.98 () Z−Tyr−(D)−Thr−Gly−Phe−NH
−NH−CO−(CH23−CH3の製造 Z−Tyr−(D)−Thr−Gly−Phe−NH−NH2
540mgとn−吉草酸0.14mlを用い実施例5の()
と同様の方法で目的物を得る;420mg(69%)。融
点172〜173℃,Rf1=0.45。〔α〕24 D−17.5゜(C=
0.39DMF)。 元素分析 C37H46O9N6として 計算値 C61.82,H6.45,N11.69 実測値 C61.66,H6.44,N11.43 () H−Tyr−(D)−Thr−Gly−Phe−NH
−NH−CO−(CH23−CH3の製造 Z−Tyr−(D)−Thr−Gly−Phe−NH−NH
−CO−(CH23−CH3 250mgを実施例5の()
と同様な方法で脱保護し精製して目的物105mgを
得る。Rf2=0.50,〔α〕24 D+10.8゜(C=
0.31MeOH)。 アミノ酸分析:Thr0.97(1),Gly1.00(1),Tyr1.10
(1),Phe1.15(1)平均回収率78%。 実施例17 H−Tyr−(D)−Ala−Gly−Phe−
NH−NH−CO−CH3の製造 () Z−Tyr−(D)−Ala−Gly−Phe−
NHNH−CO−CH3の製造 Z−Tyr−(D)−Ala−Gly−OH(0.66g)と
Z−Phe−NHNH−CO−CH3(0.59g)を用い実
施例11の()と同様にして合成する;0.82g,
融点210−211℃,〔α〕23 D−22.9゜(C=0.31,
DMF),Rf1=0.20 元素分析 C33H38O8N6・H2Oとして 計算値 C59.63,H6.07,N12.64 実測値 C59.99,H6.28,N12.62 () H−Tyr−(D)−Ala−Gly−Phe−
NHNH−COCH3の製造 Z−Tyr−(D)−Ala−Gly−Phe−NHNH−
CO−CH3(0.35g)を用いて実施例11の()と
同様の方法で処理して目的物0.16gを得る。〔α〕
23 D+21.6゜(C=0.30,MeOH),Rf2=0.40,アミノ
酸分析値:Gly1.00,Ala0.90,Tyr0.95,Phe0.97
(平均回収率82%) 実施例18 H−Tyr−(D)−Nva−Gly−Phe−
NHNH−CO−CH3の製造(Nva=ノルバリン) () Z−Gly−Phe−NHNH−CO−CH3
製造 Z−Phe−NHNH−CO−CH3(42.6g)を
MeOH(400ml)に溶かし、パラジウム黒を触媒
として接触還元を行う。触媒をろ別してMeOH
を留去し、残留物をDMF(100ml)に溶かす。こ
れにZ−Gly−ONB(44g)を加えて室温で10時
間かきまぜる。DMFを留去して残留物にエーテ
ルを加え粉末としてろ取する。含水アセトニトリ
ルより結晶化する;45.2g,融点154−155℃,
〔α〕23 D−0.9゜(C=0.50,DMF),Rf1=0.52。 元素分析 C21H24O5N4として 計算値 C61.15,H5.87,N13.59 実測値 C61,09,H5.69,N13.18 () Z−(D)−Nva−Gly−Phe−NHNH−
CO−CH3の製造 Z−Gly−Phe−NHNH−CO−CH3(5g)を
MeOH(100ml)に溶かしパラジウム黒を触媒と
して接触還元を行う。触媒をろ去してMeOHを
留去して析出した結晶をろ取する。この結晶(H
−Gly−Phe−NHNH−CO−CH3)3.5gのうち
0.89gとZ−(D)−Nva−ONB(Z−(D)−Nva
−OH0.80gとHONB0.63gよりDCC法で合成し
た)をDMF(10ml)に溶かし室温で10時間かきま
ぜる。DMFを留去し残留物にエーテルを加え析
出した沈澱をろ取する。アセトニトリルより結晶
化する;1.3g。融点235−237℃,〔α〕23 D+3.4゜
(C=0.45,DMF),Rf1=0.44 元素分析 C26H33O6N5として 計算値 C61.04,H6.50,N13.69 実測値 C61.33,H6.62,N13.66 () Z−Tyr−(D)−Nva−Gly−Phe−
NHNH−CO−CH3の製造 Z−(D)−Nva−Gly−Phe−NHNH−CO−
CH3(0.92g)をMeOH(50ml)に溶かし、パラジ
ウム黒を触媒として接触還元を行う。触媒をろ別
してMeOHを留去し、残留物をDMF(10ml)に
溶解する。これにZ−Tyr−ONB(0.86g)を加
え室温で10時間かきまぜる。DMFを留去して残
留物にエーテルを加え析出した沈澱物をろ取す
る。アセトニトリルで結晶化する;0.85g。融点
210〜211℃,〔α〕23 D−18.3゜(C=0.48,DMF),
Rf1=0.38。 元素分析 C35H42O8N6・1/2H2Oとして 計算値 C61.48,H6.33,N12.29 実測値 C61.39,H6.34,N12.09 () H−Tyr−(D)−Nva−Gly−Phe−
NHNH−CO−CH3の製造 Z−Tyr−(D)−Nva−Gly−Phe−NHNH−
CO−CH3(0.40g)をMeOH(50ml)に溶かしパ
ラジウム黒を触媒として接触還元を行う。触媒を
ろ去してMeOHを留去し、残留物を少量の0.1N
−酢酸水に溶かしてセフアデツクスLH−20のカ
ラム(2.5×120cm)に付す。0.1N−酢酸水で溶出
し、320mlから335mlまでの画分をあつめて凍結乾
燥すると、160mgの目的物を得る。〔α〕23 D+22.6゜
(C=0.30,MeOH),Rf2=0.44、アミノ酸分析
値:Gly1.00,Nva1.10,Tyr0.99,Phe1.07(平均
回収率83%)。 実施例19 H−Tyr−(D)−Ser−Gly−Phe−
NHNH−CO−CH3の製造(Ser=セリン) () Z−(D)−Ser−Gly−Phe−NHNH−
CO−CH3の製造 実施例18の()で得たH−Gly−Phe−
NHNH−CO−CH3(0.69g)とZ−(D)−Ser−
ONB(1.1g)を用いて、実施例18の()と同
様にして目的物1.2gを得る。 融点168−169℃,〔α〕23 D+3.4゜(C=0.5,DMF),
Rf1=0.25。 元素分析 C24H29O7N5として 駆動値 C57.72,H5.85,N14.02 実測値 C57.33,H5.95,N13.50 () Z−Tyr−(D)−Ser−Gly−Phe−
NHNH−CO−CH3の製造 Z−(D)−Ser−Gly−Phe−NHNH−CO−
CH3(0.75g)とZ−Tyr−ONB(0.72g)を用い
実施例18の()と同様の方法で目的物0.86gを
得る。 融点184−186℃,〔α〕23 D−18.3゜(C=0.30,
DMF),Rf1=0.19。 元素分析 C33H38O9N6として 計算値 C59.81,H5.78,N12.68 実測値 C59.69,H5.82,N12.51 () H−Tyr−(D)−Ser−Gly−Phe−
NHNH−CO−CH3の製造 Z−Tyr−(D)−Ser−Gly−Phe−NHNH−
CO−CH3(0.40g)を用いて実施例18の()と
同様の方法で目的物0.21gを得る。〔α〕23 D+11.4゜
(C=0.31,MeOH),Rf2=0.21。アミノ酸分析
値:Ser0.85,Gly1.00,Tyr0.90,Phe0.92。 実施例20 H−Tyr−(D)−Thr−Gly−Phe−
NHNH−CO−CH3の製造 () Z−(D)−Thr−Gly−Phe−NHNH−
CO−CH3の製造 実施例18の()で得たH−Gly−Phe−
NHNH−CO−CH3(0.50g)とZ−(D)−Thr−
OH(0.48g)を用い、実施例18の()と同様に
して目的物0.71gを得る。融点193−195℃,〔α〕
25 D+5.3゜(C=0.41,DMF),Rf1=0.41 元素分析 C25H31O7N5として 計算値 C58.47,H6.08,N13.64 実測値 C58,13,H6.13,N13.25 () Z−Tyr−(D)−Thr−Gly−Phe−
NHNH−CO−CH3の製造 Z−(D)−Thr−Gly−Phe−NHNH−CO−
CH3(0.46g)とZ−Tyr−ONB(0.43g)を用い
実施例18の()と同様の方法で目的物0.51gを
得る。融点208−209℃,〔α〕25 D−19.0゜(C=0.50

DMF),Rf1=0.28。 元素分析 C34H40O9N6・1/2H2Oとして 計算値 C59.55,H6.03,N12.25 実測値 C59.79,H6.11,N12.40 () H−Tyr−(D)−Thr−Gly−Phe−
NHNH−CO−CH3の製造 Z−Tyr−(D)−Thr−Gly−Phe−NHNH−
CO−CH3(0.30g)を用い実施例18の()と同
様の方法で目的物0.11gを得る。〔α〕25 D+12.0゜
(C=0.26,MeOH),Rf2=0.24、アミノ酸分析
値:Thr1.02,Gly1.00,Tyr0.98,Phe1.04 実施例21 H−Tyr−(D)−Met−Gly−Phe−
NHNH−CO−CH2−CH3の製造(Met=メチオ
ニオン) () Z−Phe−NHNH−CO−CH2CH3の製
造 Z−Phe−NHNH2(12.5g)と無水プロピオン
酸(5.8ml)を用い実施例4の()と同様にし
て9.8gの目的物を得る。融点203−204℃,〔α〕
21 D−17.6゜(C=0.46,DMF),Rf1=0.60 元素分析 C20H23O4N3として 計算値 C65.92,H6.27,N10.25 実測値 C65.87,H6.72,N9.93 () Z−Gly−Phe−NHNH−CO−
CH2CH3の製造 Z−Phe−NHNH−CO−CH2CH3(2.2g)と
Z−Gly−ONB(2.2g)を用い、実施例18の
()と同様の方法で目的物1.8gを得る。融点
151−152℃,〔α〕21 D−1.2゜(C=0.50,DMF),
Rf1=0.46。 元素分析 C22H26O5N4として 計算値 C61.96,H6.15,N13.14 実測値 C62.25,H6.23,N12.85 () BOC−(D)−Met−Gly−Phe−NHNH
−CO−CH2−CH3の製造 Z−Gly−Phe−NHNH−CO−CH2CH3(0.77
g)とBOC−(D)−Met−OH(0.45g)を用い、
実施例18の()と同様にして目的物0.75gを得
る。融点172−173℃,〔α〕24 D+6.9゜(C=0.33,
DMF),Rf1=0.50。 元素分析 C24H37O6N5S 計算値C55.04,H7.12,N13.37,S6.12 実測値C55.05,H6.94,N13.52,S6.02 () BOC−Tyr−(D)−Met−Gly−Phe−
NHNH−CO−CH2CH3の合成 BOC−(D)−Met−Gly−Phe−NHNH−CO
−CH2−CH3(0.50g)をTFA(5ml)に溶かし室
温で20分間放置する。TFAを留去して残留物に
エーテルを加えて沈澱をろ取し乾燥する。この粉
末をDMF(10ml)に溶かし冷却してTEA(0.14
ml)とBOC−Tyr−ONB(0.44g)を加え室温で
終夜かきまぜる。DMFを留去して、残留物を
AcOEt(100ml)で抽出し水洗後無水硫酸ナトリ
ウムで乾燥する。AcOEtを留去して析出したゲ
ル状物質をろ取する。AcOEtより再結晶する;
0.45g.融点159−160℃,〔α〕24 D+0.9゜(C=0.46

DMF),Rf1=0.29。 元素分析 C33H46O8N6Sとして 計算値C57.70,H6.75,N12.23,S4.67 実測値C57.92,H6.85,N11.99,S4.49 () H−Tyr−(D)−Met−Gly−Phe−
NHNH−CO−CH2CH3の製造 BOC−Tyr−(D)−Met−Gly−Phe−NHNH
−CO−CH2CH3(0.40g)をTFA(4ml)に溶か
し室温で20分間放置する。TFAを留去して残留
物にエーテルを加え析出するゲル状物質をろ取し
て乾燥する。この粉末を50mlの水に溶かしアンバ
ーライトIRA−410(酢酸型)のカラム(2×5
cm)に通す。通過液と洗液を合して凍結乾燥す
る。得た粉末を少量の0.1N−酢酸水に溶かし、
セフアデツクスLH−20のカラム(2.5×120cm)
につける。0.1N−酢酸水で溶出し、315mlから
330mlまでの画分をあつめて凍結乾燥すると0.25
gの目的物を得る。〔α〕21 D+20.0゜(C=0.20,
MeOH),Rf2=0.46 アミノ酸分析値:Gly1.00,Met0.77,Tyr0.80,
Phe1.02 実施例22 H−Tyr−(D)−Phe−Gly−Phe−
NHNH−CO−CH3の製造 () BOC−(D)−Phe−Gly−Phe−NHNH
−COCH3の製造 H−Gly−Phe−NHNH−CO−CH3(0.44g)
とBOC−(D)−Phe−ONB(0.68g)を用いて実
施例18の()と同様の方法で目的物(0.68g)
を得る。融点208−209℃,〔α〕23 D+3.3゜(C=
0.45,DMF),Rf1=0.51 元素分析 C27H35O6N5として 計算値 C61.70,H6.71,N13.33 実測値 C61.45,H6.65,N13.46 () Z−Tyr−(D)−Phe−Gly−Phe−
NHNH−CO−CH3の製造 BOC−(D)−Phe−Gly−Phe−NHNH−CO
−CH3(0.51g)とZ−Tyr−ONB(0.46g)を用
いて実施例21の()と同様にして目的物(0.51
g)を得る。融点203−204℃,〔α〕23 D−13.0゜(C
=0.44,DMF),Rf1=0.38 元素分析 C39H42O8N6として 計算値 C64.80,H5.86,N11.63 実測値 C64.70,H5.95,N11.40 () H−Tyr−(D)−Phe−Gly−Phe−
NHNH−CO−CH3の製造 Z−Tyr−(D)−Phe−Gly−Phe−NHNH−
CO−CH3(0.45g)をMeOH(50ml)に溶かしパ
ラジウム黒を触媒として接触還元を行う。触媒を
ろ去し、MeOHを留去する。残留物にエーテル
を加えて粉末とし、ろ取する。アセトニトリルよ
り結晶化する;0.22g.〔α〕23 D−11.4゜(C=0.35

MeOH),Rf2=0.37. アミノ酸分析:Gly1.00,Tyr0.98,Phe1.95。
[Table] The desorption conditions shown in Table 1 are, for example,
Catalytic reduction using palladium black, palladium carbon, platinum, etc. as a catalyst, acid decomposition using trifluoroacetic acid, dilute hydrochloric acid, methanesulfonic acid, etc. In addition, reduction using sodium in liquid ammonia, trifluoromethanesulfonic acid, etc. Acid decomposition using a glacial acetic acid solution of hydrobromic acid, hydrogen fluoride, etc. can also be mentioned. These reactions are generally carried out at an appropriate temperature of -20°C to 40°C, but in acid decomposition it is effective to add a cation scavenger such as anisole, phenol, or thioanisole. Peptide derivatives produced in this way ()
After the reaction is completed, the peptide is collected by peptide separation means such as extraction, distribution, reprecipitation, recrystallization, column chromatography, etc. Peptide () can be obtained by forming a salt with organic acid, inorganic acid, etc. by conventional methods, but it is generally obtained as a salt with acetate, citrate, tartrate, etc.
Hydrochloride, sulfate, etc. are preferred. Examples of pharmacological experiments using the compound () of the present invention are listed below. Hot plate method: Ta:CF 1 mice, 4 weeks old and weighing 18 to 22 g, were used. When animals are placed on a copper plate maintained at 55 ± 0.5°C, they respond by licking their hind paw soles and attempting to escape by jumping up due to the thermal stimulation. Mice that showed such a reaction within 20 seconds were selected and experiments were conducted with 10 mice per group. The sample was injected intravenously or subcutaneously, and 5, 10, 20, 30, 45, and 60 minutes later, the reaction time was measured in the same manner as above, and the non-treated group (control group)
compared with the reaction time of In order to avoid irreversible damage to the sole of the foot, the reaction time measurement was limited to 60 seconds. The analgesic effect (prolongation rate %) was calculated using the following formula, and a significant difference test (t-test) was performed to determine the effect. Analgesic effect (%) = reaction time after administration (seconds) -
Reaction time before administration (seconds) / 60 - reaction time before administration (seconds)
×100 The compound () of the present application was tested in the above test.
An analgesic effect with a prolongation rate of 40% or more with a peak duration of 5 to 20 minutes was observed at a dose of 200 μg or less, and in the case of particularly effective compounds, a clear analgesic effect was observed even at a minute dose of 20 μg or less. As mentioned above, the compound () of the present invention shows a clear analgesic effect at a dose in the range of about 1 to 10 mg/Kg by intravenous administration by the hot plate method using mice, and has a more pronounced analgesic effect than β-endorphin. It is useful as an analgesic because it shows excellent effects. Therefore, the compound () of the present invention and its pharmacologically acceptable acid addition salts are suitable for use in mammals, e.g.
mice, rats, rabbits, dogs, monkeys, humans, etc.)
It can be used as an analgesic for terminal cancer patients and other severe pain. The toxicity of the compound () of the present invention and its acid addition salts is extremely low, and there have been no cases of death even at doses of 200 mg/Kg, which are far higher than the medicinally effective dose. The compounds of the invention may be administered as free forms or as acid addition salts thereof. In the case of the free form of the compound (), the dosage is generally an appropriate amount in the range of 0.1 mg to 50 mg per kg of body weight. The dosage of the acid addition salt of the compound () of the present invention is generally determined as the amount of the free form of the compound () per 1 kg of body weight.
The appropriate amount ranges from 0.1mg to 50mg. The compound is primarily administered parenterally (eg, intravenous or subcutaneous injection, rectal administration), but may also be administered orally in some cases. In addition, continuous injection during surgery,
Intravenous fluids are particularly useful. Examples of dosage forms include injections, suppositories, and powders, but infusion preparations are also useful. Since this compound is stable as a substance, it can be stored as a solution in physiological saline, but it can also be prepared into a lyophilized ampoule by adding mannitol and sorbitol and dissolved at the time of use. For intravenous or subcutaneous injection, for example, in physiological saline at a concentration of 12.5 to 25 mg/ml.
It is preferable to use a solution dissolved so that The present invention will be explained in more detail with reference to Examples below. Cephadex used to purify the final product
LH-20 is a product of Pharmacia (Sweden). The purity of the produced compound was examined by thin layer chromatography using Merck Kieselgel 60F-254.
The developing solvent is shown below. Rf 1 : Chloroform-methanol-acetic acid (9:
1:0.5) Rf 2 : Acetate ethyl ester-pyridine-acetic acid-
Water (60:20:6:10) Example 1H-Tyr-(D)-Leu-Gly-Phe-NH
Production of -NH-(CH 2 ) 2 -OH () Production of Z-(D)-Leu-Gly-OH Dissolve 3.3 g of glycine in 20 ml of water, add 3.4 g of sodium biphosphate, and mix with Z-( D) Leu
−ONB17.0g (40mmol) in DMF solution (100
ml). Stir overnight at room temperature, then add DMF
was distilled off, and 200 ml of AcOEt and 50 ml of N-hydrochloric acid were added to the residue.
Add ml. The AcOEt layer is washed with water and then dried with anhydrous sodium sulfate. AcOEt is distilled off and the residue is crystallized with petroleum benzine. AcOEt - recrystallized with petroleum benzine; 9.8g
(75%). Melting point 110-111℃, [α] 27 D +24.3゜(C=
1.0, MeOH), Rf 1 =0.42. Elemental analysis As C 16 H 22 O 5 N 2 Calculated value: C59.61, H: 6.88, N8.69 Actual value: C59.59, H6.85, N8.74 () Z−Tyr−(D)−Leu -Production of Gly-OH Z-(D)-Leu-Gly-OH7.0g (22 mmol)
Dissolve in 100ml of MeOH and perform catalytic reduction using palladium black as a catalyst. Filter off the catalyst and MeOH
is distilled off, the residue is suspended in a mixed solvent of THF-water (100ml-10ml), cooled, and 3ml of TEA is added dropwise to dissolve. Add 10.5 g of Z-Tyr-ONB to this and stir overnight at room temperature. Distill THF to residue
Add 200 ml of AcOEt and 25 ml of N-hydrochloric acid, wash the AcOEt layer with water, and dry with anhydrous sodium sulfate. AcOEt
is distilled off and the residue is solidified with ether.
Recrystallize from AcOEt; 8.2 g (78%). Melting point 179
−181°C, [α] 27 D +45.2° (C=0.5, MeOH), Rf 1
=0.38 Elemental analysis As C 25 H 31 O 7 N 3 Calculated value: C61.68, H6.51, N8.64 Actual value: C61.84, H6.44, N8.66 () Z−Phe−NH−NH −CH 2 −CH 2 −OH
Production of Z-Phe-ONB 6.9 g (15 mmoles) and 2-hydrazinoethanol 1.14 g are dissolved in 50 ml of dioxane and stirred at room temperature for 3 hours. Dioxane is distilled off and the precipitated crystals are washed with ether and collected by filtration. Recrystallize from ethanol; 4.3 g (81%).
Melting point 149-150℃, [α] 20 D -8.8゜(C=0.5,
MeOH), Rf 1 = 0.57. Elemental analysis As C 19 H 23 O 4 N 3 Calculated values: C63.85, H6.48, N11.76 Actual values: C63.93, H6.48, N11.61 () Z−Tyr−(D)−Leu −Gly−Phe−NH
Production of -NH-CH 2 -CH 2 -OH Z-Phe-NH-NH-CH 2 -CH 2 -OH570mg
(1.6 mmoles) is dissolved in 50 ml of MeOH, and catalytic reduction is performed using palladium black as a catalyst. The catalyst was filtered off, MeOH was distilled off, and the residue was dissolved in 5 ml of THF.
On the other hand Z-Tyr-(D)-Leu-Gly-OH727mg
Dissolve (1.5 mmoles) in 20 ml of THF, cool to 0°C, add 295 mg of HONB and 340 mg of DCC, and stir at 0°C for 3 hours. Insoluble materials are removed by filtration, and the filtrate is combined with the previously prepared THF solution of the amine component, and stirred overnight at room temperature. Distill the THF and remove the residue
Extract with 100ml of AcOEt and wash with water. AcOEt is distilled off and the precipitated gel-like substance is collected by filtration. Reprecipitate with ethanol-ether; 850 mg (83%). melting point
151°C, [α] 20 D +14.8° (C = 0.5, MeOH), Rf 1 =
0.28. Elemental analysis As C 36 H 46 O 8 N 6 Calculated values: C62.59, H6.71, N12.17 Actual values: C61.96, H6.99, N11.81 () H-Tyr-(D)-Leu −Gly−Phe−NH
Production of -NH-CH 2 -CH 2 -OH Z-Tyr-(D)-Leu-Gly-Phe-NH-NH
500 mg of -CH 2 -CH 2 -OH is dissolved in 50 ml of MeOH and catalytic reduction is performed using palladium black as a catalyst. The catalyst was filtered off, MeOH was distilled off, and the residue was diluted with 50% N-acetic acid.
ml and filter out insoluble matter. The powder obtained by freeze-drying the filtrate was dissolved in a small amount of N-acetic acid water and applied to a Sephadex LH-20 column (2.5 x 120 cm).
Elute with aqueous N-acetic acid. Collect the elution fractions from 307 ml to 340 ml and freeze-dry; 310 mg (62%),
[α] 20 D +16.7° (C = 0.35, MeOH), Rf 2 = 0.41, Amino acid analysis value (acid hydrolyzate): Gly1.05(1), Leu1.00
(1), Tyr0.71(1), Phe0.92(1), average recovery rate 75%. Example 2H-Tyr-(D)-Leu-Gly-Phe-NH
-Manufacture of NH2 () Z-Tyr-(D)-Leu-Gly-Phe-
Production of OMe Z-Tyr-(D)-Leu-Gly-OH1.45g
Dissolve 590 mg of HONB in 50 ml of THF, cool to 0°C, add 680 mg of DCC, and stir for 4 hours. The precipitated urea body is filtered off and H-Phe-OMe hydrochloride is added to the filtrate.
Add 750 mg and 0.5 ml of TEA and stir overnight at room temperature.
THF was distilled off and the residue was extracted with 100ml of AcOEt.
Wash with 5% deionized water and dry with anhydrous sodium sulfate. AcOEt is distilled off and hardened with petroleum benzine.
AcOEt - reprecipitated with ether; 1.73 g (89%). Melting point 100-101℃, [α] 22 D -2.6゜ (C=0.5, DMF),
Rf1 =0.68. Elemental analysis As C 35 H 42 O 8 N 4 Calculated values: C65.00, H6.55, N8.66 Actual values: C64.97, H6.95, N8.62 () Z−Tyr−(D)−Leu −Gly−Phe−NH
-Production of NH2 Z-Tyr-(D)-Leu-Gly-Phe-OMe517mg
Dissolve in 5 ml of DMF, add 0.1 ml of NH 2 -NH 2 .H 2 O, and let stand at room temperature for 3 days. DMF is distilled off, water is added to the residue, and filtered. Reprecipitate with MeOH-ether; 410 mg (80%). Melting point 176−
177°C (decomposition), [α] 22 D −22.7° (C=0.4, DMF),
Rf1 =0.20. Elemental analysis C 34 H 42 O 7 N 6・1/2H 2 O Calculated value: C62.27; H6.45, N12.82 Actual value: C62.03, H6.57, N12.64 () H-Tyr -(D)-Leu-Gly-Phe-NH
-Production of NH2 Z-Tyr-(D)-Leu-Gly-Phe-NH-
Dissolve 350 mg of NH 2 in 50 ml of MeOH, add 0.1 ml of acetic acid, and perform catalytic reduction using palladium black as a catalyst. The catalyst was filtered off, the filtrate was concentrated, and the residue was dissolved in a small amount of aqueous N-acetic acid, applied to a Sephadex LH-20 column (2.5 x 120 cm), and eluted with aqueous N-acetic acid.
Collect the elution fractions from 320 ml to 340 ml and freeze-dry; 210 mg (60%), [α] 22 D + 22.6° (C - 0.38

MeOH), Rf2 = 0.34. Amino acid analysis value (acid hydrolyzate): Gly1.00(1), Leu1.00(1), Tyr0.90(1),
Phe1.02(1) (average recovery rate 70%). Example 3 H-Tyr-(D)-Ala-Gly-Phe-
Production of NH- NH2 () Production of Z-Tyr-(D)-Ala-Gly-OH Z-(D)-Ala-Gly-OBu t 8.2g was added to MeOH200
ml and perform catalytic reduction using palladium black as a catalyst. The catalyst was filtered off, MeOH was distilled off, and the residue was dissolved in 70 ml of trifluoroacetic acid and left at room temperature for 40 minutes. Trifluoroacetic acid was distilled off and the residue was filtered with ether. Dissolve this powder in 50ml of water and add 4.7g of bicarbonate of soda. 13.3 g (28 mmol) of Z-Tyr-ONB was added to this solution.
Add 100 ml of THF solution and stir overnight at room temperature. Add N-hydrochloric acid to the reaction solution to neutralize it, and add 150ml of AcOEt.
Extract with Wash with water and dry with anhydrous sodium sulfate. AcOEt is distilled off and filtered with ether. Recrystallize from AcOEt; 8.5 g (69%). Melting point 184-185℃, [α] 22 D +25.6゜(C=0.5, MeOH),
Rf1 =0.16. Elemental analysis As C 22 H 25 O 7 N 3 Calculated values: C59.58, H5.68, N9.48 Actual values: C59.29, H5.81, N9.32 () Production of Z-Phe-NHNH-BOC Z-Phe-ONB18.4g and NH2 -NH-BOC5.3
Dissolve g in 100ml of THF and stir overnight at room temperature.
THF was distilled off and the residue was extracted with 150ml of AcOEt.
Wash with citric acid water and 5% dehydrated water. Anhydrous Na 2 SO 4
and evaporate AcOEt. Filter it with petroleum benzene. AcOEt - recrystallized with petroleum benzine; 13.2 g (80%). Melting point 107-109℃, [α]
19D −23.4° (C=0.5, MeOH), Rf 1 =0.71. Elemental analysis As C 22 H 27 O 5 N 3 Calculated values: C63.90, H6.58, N10.16 Actual values: C64.18, H6.61, N9.88 () Z−Tyr−(D)−Ala −Gly−Phe−NH
-Production of NH-BOC 3.6 g of Z-Phe-NH-NH-BOC was added to 100 MeOH
ml, add 0.5 ml of acetic acid, and perform catalytic reduction using palladium black as a catalyst. Filter off the catalyst and make the filtrate
Add 10 ml of DMF and evaporate MeOH. On the other hand Z-
Tyr-(D)-Ala-Gly-OH3.5g and HONB1.56
Dissolve g in THF50ml and cool to 0℃ to DCC1.80.
Add g and stir at 0℃ for 6 hours. Insoluble materials are filtered off, and the filtrate is combined with the amine component and stirred overnight at room temperature. Distill the THF and remove the residue
Extract with 150ml of AcOEt and wash with 5% deuterated water and citric acid water. Dry with anhydrous sodium sulfate,
AcOEt is distilled off and hardened with petroleum benzene. AcOEt - recrystallized with petroleum benzine; 3.7g
(67%). Melting point 143-146℃ (decomposition), [α] 22 D −25.4
° (C=0.5, DMF), Rf 1 =0.38. Elemental analysis As C 36 H 44 O 9 N 6 Calculated value: C61:35, H6.29, N11.93 Actual value: C61.05, H6.42, N11.58 () Z−Tyr−(D)−Ala −Gly−Phe−NH
-Production of NH2 Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
- Dissolve 3.5 g of BOC in 30 ml of trifluoroacetic acid and leave at room temperature for 20 minutes. Trifluoroacetic acid was distilled off and the residue was filtered with ether. Dissolve this powder in 10ml of DMF, add 1.4ml of TEA and stir. DMF is distilled off and the residue is collected by filtration with water. Reprecipitate with methanol to ether; 2.8
g (96%). Melting point 182-184℃ (decomposition), [α] 22 D
23.0 (C=0.5, DMF), Rf 1 = 0.17 Elemental analysis As C 31 H 36 O 7 N 6 Calculated value: C61.58, H6.00, N13.90 Actual value: C61.32, H5.91, N13 .72 () H-Tyr-(D)-Ala-Gly-Phe-NH
-Production of NH2 Z-Tyr-(D)-Ala-Gly-Phe-NH-
Dissolve 250 mg of NH 2 in 50 ml of MeOH, add 0.1 ml of acetic acid, and perform catalytic reduction in the presence of palladium black. The catalyst was filtered off, and the residue was dissolved in a small amount of N-acetic acid water, applied to a Sephadex LH-20 column (2.5 x 120 cm), and eluted with N-acetic acid water. Collect the elution fractions from 310 ml to 335 ml and freeze-dry; 95 mg (38
%), [α] 22 D +20.5° (C=0.2, MeOH), Rf 2 =
0.22, Amino acid analysis value (hydrochloric acid hydrolyzate): Gly1.00
(1), Ala1.05(1), Tyr0.89(1), Phe1.01(1) (average recovery rate 81%). Example 4H-Tyr-(D)-Leu-Gly-Phe-NH
-NH-CO-CH 3 production () Z-Phe-NH-NH-CO-CH 3 production Z-Phe-NH-NH 2 2.03g (6.5 mmol)
Dissolve in 50ml of THF, cool and add 1.4ml of acetic anhydride.
Drop 0.9ml of TEA. Stir at room temperature for 2 hours. The precipitated crystals are collected by filtration and washed with ether.
Recrystallize from AcOEt; 1.9 g (83%). melting point 205
−206°C, [α] 23 D −16.4° (C=0.5, DMF), Rf 1 =
0.60 Elemental analysis As C 20 H 23 O 5 N 3 Calculated value: C62.32, H6.02, N10.90 Actual value: C62.38, H6.09, N10.49 () Z−Tyr−(D)− Leu−Gly−Phe−NH
-NH-CO- CH3 production Z-Phe-NH-NH-CO- CH3 700mg
Dissolve in 50ml of MeOH, add 0.2ml of acetic acid, and perform catalytic reduction using palladium black as a catalyst. filter off the catalyst
Distill MeOH and dissolve the residue in 20 ml of THF. On the other hand, 680 mg (1.4 mmol) of Z-Tyr-(D)-Leu-Gly-OH and 300 mg of HONB were dissolved in 20 ml of THF, cooled, and 330 mg of DCC was added, followed by stirring at 0°C for 5 hours. Insoluble materials are removed by filtration, and the filtrate is combined with the amine component prepared earlier and stirred overnight at room temperature.
THF is distilled off, AcOEt is added to the residue, and the mixture is filtered. Reprecipitate with methanol to AcOEt; 0.71
g (74%). Melting point 184-185℃, [α] 23D -13.4゜(C
=
Dissolve to 0.50 ml, add 0.1 ml of acetic acid, and perform catalytic reduction in the presence of palladium black. Filter off the catalyst, dissolve the residue in a small amount of N-acetic acid water, and add Cephadex LH.
-20 column (2.5 x 120 cm) and elute with N-acetic acid water. Collect the elution fractions from 310 ml to 335 ml and freeze-dry; 95 mg (38%), [α] 22 D + 20.5° (C = 0.2, MeOH), Rf 2 = 0.22, amino acid analysis value (hydrochloric acid hydrolyzate) ): Gly1.00(1), Ala1.05(1), Tyr0.89
(1), Phe1.01(1) (average recovery rate 81%). Example 4H-Tyr-(D)-Leu-Gly-Phe-NH
-NH-CO-CH 3 production () Z-Phe-NH-NH-CO-CH 3 production Z-Phe-NH-NH 2 2.03g (6.5 mmol)
Dissolve in 50ml of THF, cool and add 1.4ml of acetic anhydride.
Drop 0.9ml of TEA. Stir at room temperature for 2 hours. The precipitated crystals are collected by filtration and washed with ether.
Recrystallize from AcOEt; 1.9 g (83%). melting point 205
−206°C, [α] 23 D −16.4° (C=0.5, DMF), Rf 1 =
0.60 Elemental analysis As C 20 H 23 O 5 N 3 Calculated value: C62.32, H6.02, N10.90 Actual value: C62.38, H6.09, N10.49 () Z−Tyr−(D)− Leu−Gly−Phe−NH
-NH-CO- CH3 production Z-Phe-NH-NH-CO- CH3 700mg
Dissolve in 50ml of MeOH, add 0.2ml of acetic acid, and perform catalytic reduction using palladium black as a catalyst. filter off the catalyst
Distill MeOH and dissolve the residue in 20 ml of THF. On the other hand, 680 mg (1.4 mmol) of Z-Tyr-(D)-Leu-Gly-OH and 300 mg of HONB were dissolved in 20 ml of THF, cooled, and 330 mg of DCC was added, followed by stirring at 0°C for 5 hours. Insoluble materials are removed by filtration, and the filtrate is combined with the previously prepared amine component and stirred overnight at room temperature.
THF is distilled off, AcOEt is added to the residue, and the mixture is filtered. Reprecipitate with methanol to AcOEt; 0.71
g (74%). Melting point 184-185℃, [α] 23D -13.4゜(C
=
0.5, DMF), Rf 1 = 0.28 Elemental analysis As C 36 H 44 O 8 N 6 Calculated value: C62.77, H6.44, N12.20 Actual value: C62.52, H6.81, N12, 04 () H-Tyr-(D)-Leu-Gly-Phe-NH
-NH-CO- CH3 production Z-Tyr-(D)-Leu-Gly-Phe-NH-NH
-CO-CH 3 500mg is dissolved in MeOH50ml and acetic acid 1
ml and perform catalytic reduction using palladium black as a catalyst. The catalyst is removed by filtration, the filtrate is distilled off, water is added to the residue, and insoluble matter is removed by filtration. The powder obtained by freeze-drying the filtrate is dissolved in a small amount of N-acetic acid water and then
Apply to LH-20 column (2.5 x 120 cm) and elute with N-acetic acid water. Elution fractions from 320 ml to 345 ml are collected and lyophilized; 245 mg (50%). [α] 23 D
+26.7° (C=0.3, MeOH), Rf 2 = 0.41, Amino acid analysis value (hydrochloric acid hydrolyzate): Gly1.00(1), Leu1.05(1),
Tyr0.93(1), Phe1.02(1) (average recovery rate 82%). Example 5 H-Tyr-(D)-Ala-Gly-Phe-
Production of NH-NH-CO-( CH2 ) 3 -CH3 () Z-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO-( CH2 ) 3 -CH3 Production Z-Tyr-(D)-Ala-Gly-Phe-NH-
NH 2 604 mg (1 mmol) and HOBT 297 mg, CH 3
Dissolve 0.2 ml of (CH 2 ) 3 COOH in 5 ml of DMF, cool to 0°C, add 454 mg of DCC, and stir at 0°C for 4 hours at room temperature overnight. Insoluble matter was filtered off, DMF was distilled off, and the residue was extracted with 100 ml of AcOEt and washed with 5% dehydrated water. Dry over anhydrous sodium sulfate, remove AcOEt, and filter the precipitated gel with ether. Reprecipitate with methanol to AcOEt; 480mg
(70%). Melting point 178-179℃, [α] 23 D -22.4゜(C=
0.16, DMF), Rf 1 = 0.46 Elemental analysis As C 36 H 44 O 8 N 6 Calculated value: C62.77, H6.44, N12.20 Actual value: C62.71, H6.77, N11.98 () H-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO-( CH2 ) 3- CH3 Production Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
Dissolve 430 mg of -CO-(CH 2 ) 3 -CH 3 in 50 ml of MeOH, add 1 ml of acetic acid, use palladium black as a catalyst,
Perform catalytic reduction. The catalyst was filtered off, MeOH was distilled off, and the residue was dissolved in a small amount of N-acetic acid water and applied to a Sephadex LH-20 column (2.5 x 120 cm).
- Elute with aqueous acetic acid. Elution fractions from 325 ml to 340 ml are collected and lyophilized; 240 mg (56%).
[α] 23 D +24.5° (C = 0.2, MeOH), Rf 2 = 0.47, Amino acid analysis value (hydrochloric acid hydrolyzate): Gly1.00(1),
Ala0.95(1), Tyr0.88(1), Phe1.01(1) (average recovery rate
82%) Example 6 H-Tyr-(D)-Ala-Gly-Phe-
Production of NH-NH-CO- CH2 -CH-( CH3 ) 2 () Z-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO- CH2 -CH-( CH3 ) 2 Production Z-Tyr-(D)-Ala-Gly-Phe-NH-
530 mg (0.88 mmol) of NH 2 and (CH 3 ) 2 −CH−
Prepared as in Example 5 () using 0.15 ml of CH 2 -COOH; 320 mg (53%). melting point
228−230°C, [α] 23 D −23.9° (C=0.28, DMF),
Rf 1 = 0.46 Elemental analysis As C 36 H 44 O 8 N 6 Calculated values: C62.77, H6.44, N12.20 Actual values: C62.58, H6.35, N11.95 () H−Tyr−( D) -Ala-Gly-Phe-NH
-NH-CO- CH2 -CH-( CH3 ) 2 Production Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
Example 5 using 170 mg of -CO-CH 2 -CH-(CH 3 ) 2
Prepare in the same manner as for (); 105mg
(62%). [α] 23 D +21.1° (C=0.18, MeOH), Rf 2
=0.49, Amino acid analysis value (hydrochloric acid hydrolyzate): Gly1.00
(1), Ala1.02(1), Tyr0.96(1), Phe1.02(1) (average recovery rate 80%). Example 7 H-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO-( CH2 ) 2 -Cl production () Z-Tyr-(D)-Ala-Gly-Phe-NH
Production of -NH-CO-( CH2 ) 2 -Cl Z-Tyr-(D)-Ala-Gly-Phe-NH-
513 mg (0.85 mmol) of NH2 and Cl− CH2CH2−
Prepared as in Example 5 () using 120 mg of COOH; 360 mg (59%). Melting point 169-170℃,
[α] 23 D −21.1° (C=0.37, DMF) Elemental analysis C 34 H 39 O 8 N 6・Cl Calculated value: C58.74, H5.65, N12.09, Cl5.10 Actual value: C58. 61, H5.59, N11.81, Cl4.92 () H-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO-( CH2 ) 2 -Cl production Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
250 mg of -CO-( CH2 ) 2 -Cl are prepared as in Example 5 (); 150 mg (60%). [α]
23 D +20.5° (C=0.2, MeOH), Rf 2 =0.42. Amino acid analysis value (acid hydrolyzate): Gly1.01(1), Ala0.95(1),
Tyr0.88(1), Phe0.98(1) (average recovery rate 79%). Example 8H-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO- CH2 - CH2 -OH production () Z-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO- CH2 - CH2 -OH Production Z-Tyr-(D)-Ala-Gly-PheNH-- NH2
Using 540 mg and 0.12 ml of HO−CH 2 −CH 2 −COOH,
Prepared in the same manner as in Example 5 (); 320 mg
(53%). Melting point 178-179℃, [α] 23 D -22.3゜(C=
0.3, DMF), Rf 1 = 0.10 Elemental analysis As C 34 H 40 O 9 N 6 Calculated values: C60.34, H5.96, N12.42 Actual values: C59.98, H5.85, N12.18 () H-Tyr-(D)-Ala-Gly-Phe-NH
Production of -NH-CO-CH 2 -CH 2 -OH Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
The desired product was obtained from 250 mg of -CO-CH 2 -CH 2 -OH in the same manner as in () of Example 5; 100 mg (40%),
[α] 23 D +19.5° (C = 0.21, MeOH), Rf 2 = 0.32 Amino acid analysis value (acid hydrolyzate): Gly1.00(1), Ala1.05(1),
Tyr0.92(1), Phe1.00(1) (average recovery rate 79%). Example 9H-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO- CH2 - CH3 production () Z-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO- CH2 - CH3 Production Z-Tyr-(D)-Ala-Gly-Phe-NH- NH2
495 mg (0.82 mmol) and CH3CH2 −COOH0.1
350 mg (65%) melting point 190-191°C, [α] 23 D
20.5° (C=0.3, DMF), Rf 1 =0.26. Elemental analysis C 34 H 40 O 8 N 6 Calculated values: C61.80, H6.10, N12.72 Actual values: C61.53, H6.02, N12.65 () H-Tyr-(D)-Ala −Gly−Phe−NH
-NH-CO-CH2- H3 Production Z-Tyr-( D )-Ala-Gly-Phe-NH-NH
The desired product was obtained using 250 mg of -CO-CH 2 -CH 3 in the same manner as in Example 5 (). ;130mg (52%), [α] 23 D
+25.5° (C=0.23, MeOH), Rf 2 =0.42. Amino acid analysis value (acid hydrolyzate): Gly1.00(1), Ala0.95(1),
Phe1.01(1), Tyr0.95(1) (average recovery rate 81%). Example 10H-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO- CH2 - CH2 - NH2 production () Z-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO- CH2 - CH2 -NH-Z Production Z-Tyr-(D)-Ala-Gly-Phe-NH- NH2
495 mg (0.82 mmols) and Z-β-Ala-ONB 390 mg
Dissolve in 10ml of DMF, cool, add 0.14ml of TEA, and stir overnight at room temperature. DMF is distilled off and the residue is extracted with 100 ml of AcOEt, washed with 5% deuterated water and dried over anhydrous sodium sulfate. AcOEt is distilled off and the residue is filtered off with ether. Reprecipitate with methanol to AcOEt; 370 mg (56%). melting point
231−233°C, [α] 23 D −21.5° (C=0.27, DMF),
Rf1 =0.26. Elemental analysis C 42 H 47 O 10 N 7 Calculated value: C62.28, H5.85, N12, 10 Actual value: C61, 99, H5.94, N11.95 () H-Tyr-(D)-Ala- Gly−Phe−NH
-NH-CO- CH2CH2 - NH2 Production Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
-CO-CH 2 -CH 2 -NH-Z 280 mg was treated in the same manner as in Example 5 () to obtain the target product; 160 mg (61
%). [α] 23 D +16.7° (C=0.27, MeOH), Rf 2 =0.07,
Amino acid analysis value: Gly1.00(1), Ala0.95(1), β-
Ala0.99(1), Tyr0.89(1), Phe1.00(1) (average recovery rate
79%). Example 11H-Tyr-(D)-Ala-Gly-Phe-NH
Production of −NH−CO−(CH 2 ) 2 −CH 3 () Production of Z-Phe-NH-NH 2 2.5g (8mmoles)
Dissolve in 30 ml of DMF and cool to CH 3 CH 2 CH 2 COCl0.9
ml and TEA1.1ml and stir at room temperature for 5 hours.
Water is added to the reaction solution, and the precipitated crystals are collected by filtration and dried. AcOEt - recrystallized from petroleum benzine;
2.6g (85%). Melting point 150-156°C, [α] 23 D -27.2° (C = 0.5, MeOH), Rf 1 = 0.71. Elemental analysis As C 21 H 25 O 4 N 3 Calculated values: C65.46, H6.48, N10.87 Actual values: C65.78, H6.57, N10.96 () Z−Tyr−(D)−Ala −Gly−Phe−NH
Production of -NH-CO-CH 2 -CH 2 -CH 3 Z-Phe-NH-NH-CO-CH 2 -CH 2 -CH 3
Dissolve 505 mg in 50 ml of MeOH and perform catalytic reduction using palladium black as a catalyst. Filter off the catalyst and MeOH
was distilled off and the residue was dissolved in 20 ml of THF. On the other hand Z-
Tyr-(D)-Ala-Gly-OH530mg and HONB237
Dissolve mg in THF50ml, cool to 0℃, and DCC271mg.
Add and stir at 0℃ for 4 hours. The precipitated urea body is removed by filtration, and the filtrate is combined with the previously prepared amine component and stirred overnight at room temperature. THF is distilled off and the residue is extracted with 100 ml of AcOEt, washed with 5% deuterated water and dried over anhydrous sodium sulfate.
AcOEt is distilled off and the residue is filtered off with ether. Reprecipitate from AcOEt; 420 mg (50%).
Melting point 203-206℃, [α] 23 D -0.4゜(C=0.5,
MeOH), Rf 1 = 0.28. Elemental analysis As C 35 H 42 O 8 N 6 Calculated values: C62.30, H6.27, N12.46 Actual values: C62.60, H6.52, N12.18 () H-Tyr-(D)-Ala −Gly−Phe−NH
-NH-CO-CH 2 CH 2 CH 3 production Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
Dissolve 250 mg of -CO-CH 2 -CH 2 -CH 3 in 50 ml of MeOH, add 0.2 ml of acetic acid, and perform catalytic reduction using palladium black as a catalyst. The catalyst was filtered off, the filtrate was concentrated, and the residue was dissolved in a small amount of N-acetic acid water, applied to a Sephadex LH-20 column (2.5 x 125 cm), and eluted with N-acetic acid water. Collect the elution fractions from 320 ml to 340 ml and freeze-dry; 110 mg (44
%). [α] 23 D +23.2° (C=0.25, MeOH), Rf 2 =
0.40, Amino acid analysis (hydrochloric acid hydrolyzate): Gly1.06(1),
Ala1.00(1), 0.93(1), Phe0.93(1) (average recovery rate 90
%). Example 12H-Tyr-(D)-Ala-Gly-Phe-NH
Production of −NH−CO−OCH 2 −CH 3 () Z−Phe−NH−NH−CO−OCH 2
Production of CH 3 Example 11 () using 1.8 g (5.7 mmol) of Z-Phe-NH-NH 2 and 0.7 ml of ethyl chlorocarbonate.
Synthesized in the same manner as; 1.5g (69%). melting point 134
°C, [α] 23 D −20.6° (C = 0.5, DMF), Rf 1 = 0.69. Elemental analysis As C 20 H 23 O 5 N 3 Calculated value: C62.32, H6.02, N10.90 Actual value: C62.38, H6.09, N10.49 () Z−Tyr−(D)−Ala −Gly−Phe−NH
-NH-CO- OCH2 - CH3 Production Z-Tyr-(D)-Ala-Gly-OH580mg (1.3 mmol) and Z-Phe-NH-NH-CO- OCH2-
Synthesize in the same manner as in Example 11 () using 620 mg of CH 3 ; 820 mg (93%), melting point 154-155°C, [α]
23 D −24.2° (C = 0.45, DMF), Rf 1 = 0.40. Elemental analysis C 34 H 40 O 9 N 6 Calculated values: C60.34, H5.96, N12.42 Actual values: C60.09, H5.87, H12.21 () H-Tyr-(D)-Ala −Gly−Phe−NH
Production of -NH-CO-OCH 2 -CH 3 Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
-CO-OCH 2 -CH 3 450 mg () of Example 11
Treat in the same manner as to obtain the desired product; 240mg
(53%), [α] 23 D +18.1° (C = 0.2, MeOH), Rf 2
=
0.49. Amino acid analysis value: Gly1.00(1), Ala0.98(1),
Tyr0.88(1), Phe1.02(1), (average recovery rate 78%). Example 13 H-Tyr-(D)-Ala-Gly-MePhe-NH-
Production of NH 2 () Z−Tyr−(D)−Ala−Gly−MePhe−
Production of OCH 3 Z-MePhe-OH1.8g (5.7 mmol)
Dissolve in 20ml of MeOH, 5N-hydrochloric acid/dioxane 2
ml and leave at room temperature overnight. The solvent was distilled off, and the residue was extracted with 100 ml of AcOEt, washed with water, and dried over anhydrous sodium sulfate. 1.5g after distilling off AcOEt
Remove the oily substance. 1.1 g of this was dissolved in 50 ml of MeOH and subjected to catalytic reduction using palladium black as a catalyst. Filter off the catalyst, distill off MeOH, and remove the residue.
Dissolve in 20ml of DMF. To this, Z-Tyr-(D)-Ala
-Gly-OH1.55g (3.5mmol) and HONB0.75
g, cooled to 0℃, added 0.80g of DCC, and cooled to 0℃.
Stir overnight at room temperature for 5 hours. The precipitated urea body is filtered off and DMF is distilled off. AcOEt100 residue
ml and wash with 5% dehydrated water. Dry over anhydrous sodium sulfate, distill off AcOEt, and solidify with ether. Reprecipitate with MeOH-ether; 1.2
g (56%). Melting point 103-104℃, [α] 23D -17.2゜(C
=
0.31, MeOH), Rf 1 =0.68. Elemental analysis As C 33 H 38 O 8 N 4 Calculated values: C64.06, H6.19, N9.06 Actual values: C63.91, H6.05, N8.89 () Z−Tyr−(D)−Ala −Gly−MePhe−
Production of NH- NH2 Z-Tyr-(D)-Ala-Gly-MePhe-
OCH 3 1.0 g (1.6 mmol) of Example 2 ()
Treat with 0.5 ml of NH 2 -NH 2 -H 2 O in the same manner as above to obtain the desired product; 820 mg (82%). Melting point 95-96℃ (decomposition), [α] 23 D −26.8゜ (C = 0.5, DMF), Rf 1 = 0.29
. Elemental analysis As C 32 H 38 O 7 N 6 Calculated values: C62.12, H6.19, N13.59 Actual values: C61.85, H6.28, N13.09 () H-Tyr-(D)-Ala −Gly−MePhe−
Production of NH- NH2 Z-Tyr-(D)-Ala-Gly-MePhe-NH-
300 mg of NH 2 was treated in the same manner as in Example 5 () to obtain the target product; 155 mg (52%), [α] 23 D +12.0° (C = 0.2, MeOH), Rf 2 = 0.46, amino acid. Analysis value (acid hydrolyzate): Gly1.00(1), Ala0.98(1), Tyr0.91(1)
(Average response rate 79%). Example 14 H-Tyr-(D)-Ala-Gly-Phe-NHNH-
Production of COCH 2 −CH 2 −CH 2 −Cl () Z−Phe−NHNH−COCH 2 −CH 2
Production of CH 2 -Cl Z-Phe-NHNH 2 3.13g (10mmoles) and γ
- Dissolve 1.27 g (10 mmoles) of chlorobutyric acid in 40 ml of DMF, cool to 0°C, add 2.2 g of DCC, and stir at room temperature for 20 hours. After filtering the reaction solution, it was dried under reduced pressure, and the residue was dissolved in 150 ml of ethyl acetate.
Wash with N-hydrochloric acid solution and 4% sodium bicarbonate solution, dry over anhydrous sodium sulfate, and dry under reduced pressure. Crystallization from ethyl acetate-petroleum ether gives 3.6 g (85.7%) of needles. Melting point 185−186
℃. Rf 1 = 0.32 Elemental analysis C 21 H 24 O 4 N 2 Cl Calculated value: C60.35, H5.79, N10.06, Cl 8.49 Actual value: C60.51, H5.60, N10.15, Cl 8.27 () H-Tyr-(D)-Ala-Gly-Phe-
Production of NHNH−COCH 2 CH 2・Cl Z−Phe−NHNHCOCH 2 −CH 2 −CH 2 −Cl
420 mg was catalytically reduced in 50 ml of methanol using palladium black as a catalyst. The catalyst was filtered off, the filtrate was dried under reduced pressure, and the residue and Z-Tyr-(D)-Ala-Gly
−Dissolve 445mg of OH in 10ml of DMF and add
Add 180mg of HONB and cool to O℃.
Add 250mg of DCC. After stirring at 0°C for 3 hours and at room temperature for 12 hours, insoluble materials were filtered off and DMF was added under reduced pressure.
to remove. This was dissolved in 100 ml of a 1:2 mixture of n-butanol and ethyl acetate, and mixed with N-hydrochloric acid and 4
Wash with % sodium bicarbonate water. Wash with water, remove the solvent under reduced pressure, dissolve in 50 ml of methanol,
ml of glacial acetic acid is added for catalytic reduction using palladium black as a catalyst. The catalyst was filtered off and dried under reduced pressure, and the residue was dissolved in 10 ml of N-acetic acid water. Filter off the insoluble matter and pour it into a Cephadex LH-20 column (3 x 45 cm), and flush with N-acetic acid water. The target substance flows out in the 215 ml to 236 ml section, which is collected and freeze-dried. You get 360mg of the desired product. Rf2 =0.485,
[α] 23 D +18.2° (C=0.28, MeOH), Amino acid analysis: Gly1.00(1), Ala1.02(1), Tyr0.89(1), Phe1.00
(1), average recovery rate 78%. Example 15 H-Tyr-(D)-Ala-Gly-Phe-
Production of NH-NH-CO-CH(OH) -CH3 () Z-Tyr-(D)-Ala-Gly-Phe-NH
-NH-CO-CH(OH) -CH3 Production Z-Tyr-(D)-Ala-Gly-Phe- NHNH2
The desired product was obtained in the same manner as in Example 5 () using 510 mg and 0.1 ml of lactic acid; 420 mg (73%). melting point 134
−135℃, Rf 1 =0.24, [α] 24 D −21.7゜(C=
0.7DMF). Elemental analysis C 34 H 40 O 9 N 6・1/2H 2 O Calculated value: C=59.55, H6.02, N12.25 Actual value: C59.74, H6.29, N12, 47 () H-Tyr -(D)-Ala-Gly-Phe-NH
Production of -NH-COCH(OH) -CH3 Z-Tyr-(D)-Ala-Gly-Phe-NH-NH
300 mg of -CO-CH(OH)-CH 3 was deprotected and purified in the same manner as in Example 5 () to obtain the desired product (160 mg).
Get mg. Rf 2 =0.34, [α] 24 D +16.7° (C=
0.45MeOH). Amino acid analysis: Gly0.91(1), Ala 1.00(1), Tyr0.97
(1), Phe1.03(1) (average recovery rate 81%) Example 16 H-Tyr-(D)-Thr-Gly-Phe-
Production of NH-NH-CO-( CH2 ) 3 - CH3 (Thr=
Threonine) () Production of Z-(D)-Thr-Gly-OBu t Dissolve 5.06 g (20 mmol) of Z-(D)-Thr-OH and 3.60 g of H-Gly-OBu t in 50 ml of THF and heat at 0°C.
Cool to 0. Add 3.94g of HONB and 4.54g of DCC to 0.
Stir at room temperature for 3 hours at °C overnight. Insoluble materials are filtered off, THF is distilled off, and the residue is extracted with 100 ml of AcOEt, washed with 5% deuterated water, and dried over anhydrous sodium sulfate. AcOEt is distilled off and crystallized with petroleum benzene. AcOEt ~ Recrystallize with petroleum benzine; 5.0g
(69%). Melting point 56-57℃, [α] 23 D +13.8゜(C=
0.5MeOH), Rf 1 = 0.69 Elemental analysis As C 18 H 26 O 6 N 2 Calculated values: C59.00, H7.15, N7.65 Actual values: C58.73, H7.11, N7.87 () Z Production of -Tyr-(D)-Thr-Gly-OH 4.6 g (12.5 mmol) of Z-(D)-Thr-Gly-OBu t is dissolved in 100 ml of MeOH and subjected to catalytic reduction using palladium black as a catalyst. Filter off the catalyst and MeOH
was distilled off and the residue was dissolved in 50 ml of THF. Z to this
Add 5.9 g of -Tyr-ONB and stir overnight at room temperature.
THF was distilled off and the residue was extracted with 100ml of AcOEt.
Wash with 5% deionized water and dry with anhydrous sodium sulfate. AcOEt is distilled off, and the precipitated gel-like substance is collected by filtration and dried (3.9 g). Dissolve 3.7 g of this in 40 ml of trifluoroacetic acid and leave at room temperature for 40 minutes. Trifluoroacetic acid was distilled off and the residue was filtered with ether. Recrystallize from AcOEt;
2.9g (87%). Melting point 143-144℃, [α] 23 D +18.2゜ (C = 0.5MeOH), Rf 2 = 0.49 Elemental analysis C 23 H 27 O 8 N 3・1/2H 2 O Calculated value C57.25, H5 .85, N8.87 Actual value C57.57, H5.92, N8.55 () Z−Tyr−(D)−Thr−Gly−Phe−
Production of OCH 3 Dissolve 1.5 g (3.1 mmol) of Z-Tyr-(D)-Thr-Gly-OH and 0.63 g of HONB in 50 ml of THF.
Cool to 0°C, add 0.72g of DCC, and stir at 0°C for 3 hours. H-Phe-OCH 3 hydrochloride in the reaction solution
Add 0.73g and 0.49ml of TEA and stir overnight at room temperature. Filter off the insoluble matter, distill off the THF, and remove the residue.
Extract with 100 ml of AcOEt, wash with 5% deuterated water and N-hydrochloric acid, and dry over anhydrous sodium sulfate.
AcOEt is distilled off and hardened with ether. AcOEt
- Reprecipitation with ether; 1.7 g (87%). Melting point 102~
103°C, [α] 23 D +20.3° (C = 0.33MeOH), Rf 1 =
0.44 Elemental analysis C 33 H 38 O 9 N 4 Calculated value C62.45, H6.04, N8.83 Actual value C62.31, H6.28, N8.59 () Z−Tyr−(D)−Thr− Gly−Phe−NH
-Production of NH 2 Z-Tyr-(D)-Thr-Gly-Phe-OCH 3 1.5g
(2.3 mmol) was dissolved in 30 ml of MeOH and cooled.
Add 0.5 ml of NH 2 .NH 2 .H 2 O and leave at room temperature for 2 days. The precipitated crystals were collected by filtration and recrystallized from MeOH; 1.4 g (93%). Melting point 212~213℃,
[α] 23 D −25.9° (C = 0.32DMF), Rf 1 = 0.12 Elemental analysis As C 32 H 38 O 8 N 6 Calculated value C60.55, H6.04, N13.24 Actual value C60.31, H6 .25, N12.98 () Z−Tyr−(D)−Thr−Gly−Phe−NH
-NH-CO-( CH2 ) 3 - CH3 Production Z-Tyr-(D)-Thr-Gly-Phe-NH- NH2
() of Example 5 using 540 mg and 0.14 ml of n-valeric acid.
The desired product was obtained in the same manner as; 420 mg (69%). Melting point 172-173°C, Rf 1 =0.45. [α] 24 D −17.5゜(C=
0.39DMF). Elemental analysis C 37 H 46 O 9 N 6 Calculated value C61.82, H6.45, N11.69 Actual value C61.66, H6.44, N11.43 () H−Tyr−(D)−Thr−Gly −Phe−NH
-NH-CO-( CH2 ) 3- CH3 Production Z-Tyr-(D)-Thr-Gly-Phe-NH-NH
-CO-(CH 2 ) 3 -CH 3 250 mg () of Example 5
Deprotect and purify in the same manner as above to obtain 105 mg of the desired product. Rf 2 =0.50, [α] 24 D +10.8゜(C=
0.31MeOH). Amino acid analysis: Thr0.97(1), Gly1.00(1), Tyr1.10
(1), Phe1.15(1) average recovery rate 78%. Example 17 H-Tyr-(D)-Ala-Gly-Phe-
Production of NH-NH-CO- CH3 () Z-Tyr-(D)-Ala-Gly-Phe-
Production of NHNH-CO-CH 3 Same as in Example 11 () using Z-Tyr-(D)-Ala-Gly-OH (0.66 g) and Z-Phe-NHNH-CO-CH 3 (0.59 g). Synthesize as; 0.82g,
Melting point 210-211℃, [α] 23D -22.9゜(C=0.31,
DMF), Rf 1 = 0.20 Elemental analysis C 33 H 38 O 8 N 6・H 2 O Calculated value C59.63, H6.07, N12.64 Actual value C59.99, H6.28, N12.62 () H-Tyr-(D)-Ala-Gly-Phe-
Production of NHNH-COCH 3 Z-Tyr-(D)-Ala-Gly-Phe-NHNH-
Using CO-CH 3 (0.35 g), the same procedure as in Example 11 () is carried out to obtain 0.16 g of the desired product. [α]
23 D +21.6゜(C=0.30, MeOH), Rf 2 =0.40, Amino acid analysis values: Gly1.00, Ala0.90, Tyr0.95, Phe0.97
(Average recovery rate 82%) Example 18 H-Tyr-(D)-Nva-Gly-Phe-
Production of NHNH-CO-CH 3 (Nva=Norvaline) () Production of Z-Gly-Phe-NHNH-CO-CH 3 Z-Phe-NHNH-CO-CH 3 (42.6g)
Dissolve in MeOH (400ml) and perform catalytic reduction using palladium black as a catalyst. Filter the catalyst and MeOH
was distilled off and the residue was dissolved in DMF (100ml). Add Z-Gly-ONB (44 g) to this and stir at room temperature for 10 hours. DMF is distilled off, ether is added to the residue, and the powder is collected by filtration. Crystallizes from aqueous acetonitrile; 45.2g, melting point 154-155℃,
[α] 23 D −0.9° (C=0.50, DMF), Rf 1 =0.52. Elemental analysis As C 21 H 24 O 5 N 4 Calculated value C61.15, H5.87, N13.59 Actual value C61, 09, H5.69, N13.18 () Z−(D)−Nva−Gly−Phe -NHNH-
Production of CO-CH 3 Z-Gly-Phe-NHNH-CO-CH 3 (5g)
Dissolve in MeOH (100ml) and perform catalytic reduction using palladium black as a catalyst. The catalyst is filtered off, MeOH is distilled off, and the precipitated crystals are collected by filtration. This crystal (H
−Gly−Phe−NHNH−CO−CH 3 ) out of 3.5g
0.89g and Z-(D)-Nva-ONB(Z-(D)-Nva
-Synthesized from 0.80 g of OH and 0.63 g of HONB by the DCC method) was dissolved in DMF (10 ml) and stirred at room temperature for 10 hours. DMF was distilled off, ether was added to the residue, and the precipitate was collected by filtration. Crystallize from acetonitrile; 1.3 g. Melting point 235-237℃, [α] 23 D + 3.4゜ (C = 0.45, DMF), Rf 1 = 0.44 Elemental analysis Calculated value as C 26 H 33 O 6 N 5 C61.04, H6.50, N13. 69 Actual value C61.33, H6.62, N13.66 () Z−Tyr−(D)−Nva−Gly−Phe−
Production of NHNH-CO- CH3 Z-(D)-Nva-Gly-Phe-NHNH-CO-
CH 3 (0.92 g) was dissolved in MeOH (50 ml) and catalytic reduction was performed using palladium black as a catalyst. The catalyst is filtered off, the MeOH is distilled off, and the residue is dissolved in DMF (10 ml). Add Z-Tyr-ONB (0.86 g) to this and stir at room temperature for 10 hours. DMF is distilled off, ether is added to the residue, and the precipitate is collected by filtration. Crystallize with acetonitrile; 0.85 g. melting point
210~211℃, [α] 23 D −18.3° (C=0.48, DMF),
Rf1 =0.38. Elemental analysis C 35 H 42 O 8 N 6・1/2H 2 O Calculated value C61.48, H6.33, N12.29 Actual value C61.39, H6.34, N12.09 () H−Tyr−( D) -Nva-Gly-Phe-
Production of NHNH-CO- CH3 Z-Tyr-(D)-Nva-Gly-Phe-NHNH-
Dissolve CO-CH 3 (0.40 g) in MeOH (50 ml) and perform catalytic reduction using palladium black as a catalyst. The catalyst was filtered off, MeOH was distilled off, and the residue was diluted with a small amount of 0.1N
- Dissolve in acetic acid water and apply to Sephadex LH-20 column (2.5 x 120 cm). Elute with 0.1N aqueous acetic acid, collect fractions from 320 ml to 335 ml, and freeze-dry to obtain 160 mg of the target product. [α] 23 D +22.6° (C = 0.30, MeOH), Rf 2 = 0.44, amino acid analysis values: Gly 1.00, Nva 1.10, Tyr 0.99, Phe 1.07 (average recovery rate 83%). Example 19 H-Tyr-(D)-Ser-Gly-Phe-
Production of NHNH-CO- CH3 (Ser=serine) () Z-(D)-Ser-Gly-Phe-NHNH-
Production of CO-CH 3 H-Gly-Phe- obtained in () of Example 18
NHNH-CO- CH3 (0.69g) and Z-(D)-Ser-
Using ONB (1.1 g), 1.2 g of the target product was obtained in the same manner as in Example 18 (). Melting point 168-169℃, [α] 23 D +3.4゜ (C=0.5, DMF),
Rf1 =0.25. Elemental analysis C 24 H 29 O 7 N As 5 Drive value C57.72, H5.85, N14.02 Actual value C57.33, H5.95, N13.50 () Z−Tyr−(D)−Ser−Gly −Phe−
Production of NHNH-CO- CH3 Z-(D)-Ser-Gly-Phe-NHNH-CO-
Using CH 3 (0.75 g) and Z-Tyr-ONB (0.72 g), 0.86 g of the desired product was obtained in the same manner as in Example 18 (). Melting point 184-186℃, [α] 23 D -18.3゜(C=0.30,
DMF), Rf 1 = 0.19. Elemental analysis C 33 H 38 O 9 N 6 Calculated value C59.81, H5.78, N12.68 Actual value C59.69, H5.82, N12.51 () H-Tyr-(D)-Ser-Gly −Phe−
Production of NHNH-CO- CH3 Z-Tyr-(D)-Ser-Gly-Phe-NHNH-
Using CO-CH 3 (0.40 g), 0.21 g of the target product was obtained in the same manner as in Example 18 (). [α] 23 D +11.4° (C = 0.31, MeOH), Rf 2 = 0.21. Amino acid analysis values: Ser0.85, Gly1.00, Tyr0.90, Phe0.92. Example 20 H-Tyr-(D)-Thr-Gly-Phe-
Production of NHNH-CO- CH3 () Z-(D)-Thr-Gly-Phe-NHNH-
Production of CO-CH 3 H-Gly-Phe- obtained in () of Example 18
NHNH-CO- CH3 (0.50g) and Z-(D)-Thr-
Using OH (0.48 g), 0.71 g of the desired product was obtained in the same manner as in Example 18 (). Melting point 193-195℃, [α]
25 D +5.3゜ (C = 0.41, DMF), Rf 1 = 0.41 Elemental analysis C 25 H 31 O 7 N 5 Calculated value C58.47, H6.08, N13.64 Actual value C58, 13, H6. 13, N13.25 () Z−Tyr−(D)−Thr−Gly−Phe−
Production of NHNH-CO- CH3 Z-(D)-Thr-Gly-Phe-NHNH-CO-
0.51 g of the target product was obtained in the same manner as in Example 18 () using CH 3 (0.46 g) and Z-Tyr-ONB (0.43 g). Melting point 208-209℃, [α] 25D -19.0゜(C=0.50

DMF), Rf 1 = 0.28. Elemental analysis C 34 H 40 O 9 N 6・1/2H 2 O Calculated value C59.55, H6.03, N12.25 Actual value C59.79, H6.11, N12.40 () H−Tyr−( D) -Thr-Gly-Phe-
Production of NHNH-CO- CH3 Z-Tyr-(D)-Thr-Gly-Phe-NHNH-
Using CO-CH 3 (0.30 g), 0.11 g of the desired product was obtained in the same manner as in Example 18 (). [α] 25 D +12.0° (C = 0.26, MeOH), Rf 2 = 0.24, amino acid analysis values: Thr1.02, Gly1.00, Tyr0.98, Phe1.04 Example 21 H-Tyr-(D ) −Met−Gly−Phe−
Production of NHNH-CO-CH 2 -CH 3 (Met = methionion) () Production of Z-Phe-NHNH-CO-CH 2 CH 3 Z-Phe-NHNH 2 (12.5g) and propionic anhydride (5.8ml) 9.8 g of the target product was obtained in the same manner as in Example 4 (). Melting point 203-204℃, [α]
21 D −17.6゜(C=0.46, DMF), Rf 1 =0.60 Elemental analysis As C 20 H 23 O 4 N 3 Calculated value C65.92, H6.27, N10.25 Actual value C65.87, H6.72 , N9.93 () Z−Gly−Phe−NHNH−CO−
Production of CH 2 CH 3 Using Z-Phe-NHNH-CO-CH 2 CH 3 (2.2 g) and Z-Gly-ONB (2.2 g), 1.8 g of the target product was prepared in the same manner as in () of Example 18. get. melting point
151−152°C, [α] 21 D −1.2° (C=0.50, DMF),
Rf1 =0.46. Elemental analysis As C 22 H 26 O 5 N 4 Calculated value C61.96, H6.15, N13.14 Actual value C62.25, H6.23, N12.85 () BOC−(D)−Met−Gly−Phe −NHNH
Production of −CO−CH 2 −CH 3 Z−Gly−Phe−NHNH−CO−CH 2 CH 3 (0.77
g) and BOC-(D)-Met-OH (0.45g),
0.75 g of the target product was obtained in the same manner as in Example 18 (). Melting point 172-173℃, [α] 24 D +6.9゜(C=0.33,
DMF), Rf 1 = 0.50. Elemental analysis C 24 H 37 O 6 N 5 S Calculated value C55.04, H7.12, N13.37, S6.12 Actual value C55.05, H6.94, N13.52, S6.02 () BOC−Tyr -(D)-Met-Gly-Phe-
Synthesis of NHNH-CO-CH 2 CH 3 BOC-(D)-Met-Gly-Phe-NHNH-CO
-CH 2 -CH 3 (0.50 g) is dissolved in TFA (5 ml) and left at room temperature for 20 minutes. TFA is distilled off, ether is added to the residue, and the precipitate is filtered and dried. This powder was dissolved in DMF (10 ml), cooled, and TEA (0.14
ml) and BOC-Tyr-ONB (0.44 g) and stir at room temperature overnight. Distill the DMF and remove the residue.
Extract with AcOEt (100 ml), wash with water, and dry with anhydrous sodium sulfate. AcOEt is distilled off and the precipitated gel-like substance is collected by filtration. Recrystallize from AcOEt;
0.45g. Melting point 159-160℃, [α] 24 D +0.9゜(C=0.46

DMF), Rf 1 = 0.29. Elemental analysis C 33 H 46 O 8 N 6 As S Calculated value C57.70, H6.75, N12.23, S4.67 Actual value C57.92, H6.85, N11.99, S4.49 () H- Tyr-(D)-Met-Gly-Phe-
Production of NHNH-CO-CH 2 CH 3 BOC-Tyr-(D)-Met-Gly-Phe-NHNH
-CO-CH 2 CH 3 (0.40 g) is dissolved in TFA (4 ml) and left at room temperature for 20 minutes. TFA is distilled off, ether is added to the residue, and the precipitated gel-like substance is collected by filtration and dried. Dissolve this powder in 50 ml of water and use a column of Amberlite IRA-410 (acetic acid type) (2 x 5
cm). The effluent and washing liquid are combined and freeze-dried. Dissolve the obtained powder in a small amount of 0.1N acetic acid water,
Sephadex LH-20 column (2.5 x 120cm)
Put it on. Elute with 0.1N-acetic acid water, from 315ml
0.25 when fractions up to 330ml are collected and freeze-dried.
Obtain the object g. [α] 21 D +20.0° (C=0.20,
MeOH), Rf 2 = 0.46 Amino acid analysis values: Gly1.00, Met0.77, Tyr0.80,
Phe1.02 Example 22 H-Tyr-(D)-Phe-Gly-Phe-
Production of NHNH-CO- CH3 () BOC-(D)-Phe-Gly-Phe-NHNH
-Production of COCH 3 H-Gly-Phe-NHNH-CO-CH 3 (0.44g)
and BOC-(D)-Phe-ONB (0.68g) in the same manner as in () of Example 18 to obtain the target product (0.68g).
get. Melting point 208-209℃, [α] 23 D +3.3゜(C=
0.45, DMF), Rf 1 = 0.51 Elemental analysis As C 27 H 35 O 6 N 5 Calculated value C61.70, H6.71, N13.33 Actual value C61.45, H6.65, N13.46 () Z- Tyr-(D)-Phe-Gly-Phe-
Production of NHNH-CO- CH3 BOC-(D)-Phe-Gly-Phe-NHNH-CO
-CH 3 (0.51 g) and Z-Tyr-ONB (0.46 g) were used to prepare the target product (0.51
g) is obtained. Melting point 203-204℃, [α] 23D -13.0゜(C
= 0.44, DMF), Rf 1 = 0.38 Elemental analysis C 39 H 42 O 8 N 6 Calculated value C64.80, H5.86, N11.63 Actual value C64.70, H5.95, N11.40 () H -Tyr-(D)-Phe-Gly-Phe-
Production of NHNH-CO- CH3 Z-Tyr-(D)-Phe-Gly-Phe-NHNH-
CO-CH 3 (0.45 g) was dissolved in MeOH (50 ml) and catalytic reduction was performed using palladium black as a catalyst. The catalyst is filtered off and MeOH is distilled off. Add ether to the residue to make a powder, and filter it. Crystallize from acetonitrile; 0.22 g. [α] 23 D −11.4゜(C=0.35

MeOH), Rf 2 = 0.37. Amino acid analysis: Gly 1.00, Tyr 0.98, Phe 1.95.

Claims (1)

【特許請求の範囲】 1 一般式 [式中、R1は水素を表わす。R2はD−α−ア
ミノ酸の側鎖を表わす。R3は水素または炭素数
1ないし2のアルキルを表わす。R4は水素、水
酸基で置換された炭素数1ないし8の直鎖状また
は分岐状のアルキル、または水酸基、アミノ基、
炭素数1ないし4のアルコキシもしくはハロゲン
で置換されていてもよい直鎖状もしくは分枝状の
炭素数1ないし8の飽和脂肪族アシルを表わ
す。] で表わされる鎮痛作用を有するテトラペプチド誘
導体およびその薬理的に許容され得る酸付加塩。 2 R4が炭素数3ないし6の直鎖状もしくは分
枝状の脂肪族アシルである特許請求の範囲第1項
記載のテトラペプチド誘導体およびその薬理的に
許容され得る酸付加塩。 3 一般式 [式中、R1は水素を表わす。R′2は保護基を有
していてもよいD−α−アミノ酸の側鎖を表わ
す。R3は水素または炭素数1ないし2のアルキ
ルを表わす。R′4は水素、水酸基で置換された直
鎖状もしくは分枝状の炭素数1ないし8のアルキ
ル、または水酸基、アミノ基、炭素数1ないし4
のアルコキシもしくはハロゲンで置換されていて
もよい直鎖状もしくは分枝状の炭素数1ないし8
の飽和脂肪族アシルであつて保護基を有していて
もよいものを表わす。Y1は保護基を表わす。Y2
およびY3は、それぞれ水素または保護基を表わ
す。] で表わされる化合物を保護基脱離反応に付するこ
とを特徴とする一般式 [式中、R1およびR3は前記と同意義を有する。
R2はD−α−アミノ酸の側鎖を表わす。R4は水
素、水酸基で置換された直鎖状もしくは分枝状の
炭素数1ないし8のアルキル、または水酸基、ア
ミノ基、炭素数1ないし4のアルコキシもしくは
ハロゲンで置換されていてもよい直鎖状もしくは
分枝状の炭素数1ないし8の飽和脂肪族アシルを
表わす。]で表わされる鎮痛作用を有するテトラ
ペプチド誘導体の製造法。
[Claims] 1. General formula [In the formula, R 1 represents hydrogen. R 2 represents the side chain of D-α-amino acid. R 3 represents hydrogen or alkyl having 1 to 2 carbon atoms. R 4 is hydrogen, a linear or branched alkyl having 1 to 8 carbon atoms substituted with a hydroxyl group, a hydroxyl group, an amino group,
It represents a linear or branched saturated aliphatic acyl having 1 to 8 carbon atoms which may be substituted with alkoxy having 1 to 4 carbon atoms or halogen. ] A tetrapeptide derivative having an analgesic effect and a pharmacologically acceptable acid addition salt thereof. 2. The tetrapeptide derivative and pharmacologically acceptable acid addition salt thereof according to claim 1, wherein R 4 is a linear or branched aliphatic acyl having 3 to 6 carbon atoms. 3 General formula [In the formula, R 1 represents hydrogen. R'2 represents a side chain of D-α-amino acid which may have a protecting group. R 3 represents hydrogen or alkyl having 1 to 2 carbon atoms. R'4 is hydrogen, a linear or branched alkyl group having 1 to 8 carbon atoms substituted with a hydroxyl group, or a hydroxyl group, an amino group, or a 1 to 4 carbon group;
A linear or branched chain having 1 to 8 carbon atoms which may be substituted with alkoxy or halogen.
represents a saturated aliphatic acyl which may have a protecting group. Y 1 represents a protecting group. Y 2
and Y 3 each represent hydrogen or a protecting group. ] A general formula characterized by subjecting a compound represented by to a protecting group elimination reaction [In the formula, R 1 and R 3 have the same meanings as above.
R 2 represents the side chain of D-α-amino acid. R 4 is hydrogen, a linear or branched alkyl having 1 to 8 carbon atoms substituted with a hydroxyl group, or a straight chain optionally substituted with a hydroxyl group, an amino group, an alkoxy having 1 to 4 carbon atoms, or a halogen represents a saturated or branched aliphatic acyl having 1 to 8 carbon atoms. ] A method for producing a tetrapeptide derivative having analgesic effect.
JP5290178A 1978-05-02 1978-05-02 Tetrapeptide derivative Granted JPS54144333A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5290178A JPS54144333A (en) 1978-05-02 1978-05-02 Tetrapeptide derivative
HUTA001518 HU182051B (en) 1978-05-02 1979-04-27 Process for preparing tetrapeptide-hydrazyde derivatives
EP19790101282 EP0005248B1 (en) 1978-05-02 1979-04-30 Tetrapeptidehydrazide derivatives and process for their preparation
DE7979101282T DE2962325D1 (en) 1978-05-02 1979-04-30 Tetrapeptidehydrazide derivatives and process for their preparation
CA000326646A CA1144542A (en) 1978-05-02 1979-04-30 Tetrapeptidehydrazide derivatives
DK178279A DK149064C (en) 1978-05-02 1979-05-01 METHOD OF ANALOGUE FOR THE PREPARATION OF ENKEFALIN ANALOGUE TETRAPEPTIDE HYDRAZIDE DERIVATIVES OR PHARMACEUTICAL ACCEPTABLE SALTS THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5290178A JPS54144333A (en) 1978-05-02 1978-05-02 Tetrapeptide derivative

Publications (2)

Publication Number Publication Date
JPS54144333A JPS54144333A (en) 1979-11-10
JPH0322398B2 true JPH0322398B2 (en) 1991-03-26

Family

ID=12927740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5290178A Granted JPS54144333A (en) 1978-05-02 1978-05-02 Tetrapeptide derivative

Country Status (1)

Country Link
JP (1) JPS54144333A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772950A (en) * 1980-10-24 1982-05-07 Takeda Chem Ind Ltd Tetrapeptide derivative, its preparation and analgesic agent

Also Published As

Publication number Publication date
JPS54144333A (en) 1979-11-10

Similar Documents

Publication Publication Date Title
US4277394A (en) Tetrapeptidehydrazide derivatives
FI56676C (en) FOERFARANDE FOER FRAMSTAELLNING AV NYA AMIDDERIVAT AV NONAPEPTID SOM BEFRAEMJAR LOESGOERANDET AV AEGGCELLER
FI60553C (en) FOERFARANDE FOER FRAMSTAELLNING AV OVULATIONSFRAMKALLANDE NONAPEPTIDAMIDDERIVAT
BG60740B2 (en) Polypeptide
US4337247A (en) Tetrapeptidesemicarbazide derivatives and their production and use
JPS6345398B2 (en)
JPS61197595A (en) Gastric juice secretion inhibitive esters of tripeptide and tetrapeptide and manufacture of drug composition containing same as active components
JPH075632B2 (en) Novel peptides
US4124703A (en) Luliberin analogs
JPH0745460B2 (en) Novel spagarin-related compound and method for producing the same
US4018912A (en) Tripeptide derivatives with central nervous system activity and preparation thereof
JPH0631314B2 (en) Novel gonadobereline derivative
JPH0330599B2 (en)
JPS6220200B2 (en)
US4018754A (en) Novel polypeptides having ACTH-like action
US4001199A (en) Novel polypeptides useful for treating diabetes and hypercholesteremia
JPH0322398B2 (en)
US4018753A (en) Polypeptides with ACTH-like activities
EP0005248B1 (en) Tetrapeptidehydrazide derivatives and process for their preparation
US4358440A (en) Polypeptide and its production and use
RU1124544C (en) Heptapeptide possessing properties of psychostimulator of prolonged action with immunotropic activity
JPS6257639B2 (en)
US4382923A (en) Tetrapeptide acylhydrazides, their production and use
US3812092A (en) Intermediates in the preparation of secretin
US3417072A (en) Intermediates in the synthesis of secretin