JPH03223311A - Oxidatively modified isoprene rubber and its production - Google Patents

Oxidatively modified isoprene rubber and its production

Info

Publication number
JPH03223311A
JPH03223311A JP3503290A JP3503290A JPH03223311A JP H03223311 A JPH03223311 A JP H03223311A JP 3503290 A JP3503290 A JP 3503290A JP 3503290 A JP3503290 A JP 3503290A JP H03223311 A JPH03223311 A JP H03223311A
Authority
JP
Japan
Prior art keywords
isoprene
rubber
oxidized
isoprene rubber
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3503290A
Other languages
Japanese (ja)
Inventor
Yoshihiko Yagi
八木 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP3503290A priority Critical patent/JPH03223311A/en
Publication of JPH03223311A publication Critical patent/JPH03223311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain an oxidatively modified isoprene rubber which, when added to a rubber composition, can exhibit an effect of softening it before vulcanization and can increase the hardness of a vulcanized rubber article by dissolving an isoprene copolymer in a hydrocarbon organic solvent and irradiating the solution with sunlight or ultraviolet rays in the presence of oxygen. CONSTITUTION:At least one member selected from among an isoprene rubber having at least one polar functional group in the molecule, a cyclized polyisoprene and an isoprene copolymer produced from a starting monomer comprising isoprene is dissolved in a hydrocarbon organic solvent, and the solution is irradiated with sunlight or ultraviolet rays in the presence of oxygen to obtain an oxidatively modified isoprene rubber having characteristic absorptions near 3400cm<-1> and 1720cm<-1> in an infrared absorption spectrum and absorption bands in a temperature range of 0-120 deg.C in differential scanning calorimetry. When this product is added to a rubber composition as a softener, there is an advantage that the viscosity before vulcanization is as low as that attained when the conventional softener such as a process oil is used, and besides, the hardness after vulcanization is equivalent to or higher than that attained when no softener is added.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、新規のイソプレン系ゴム酸化変性物およびそ
の製造方法に関する。 さらに詳しくは、ゴム製品等の
原料として好適な新規のイソプレン系ゴム酸化変性物お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel oxidized and modified isoprene-based rubber and a method for producing the same. More specifically, the present invention relates to a novel oxidized isoprene-based rubber material suitable as a raw material for rubber products and a method for producing the same.

〈従来の技術〉 ゴム製品の製造分野では、従来より、未加硫ゴム組成物
の混線、成形時の作業性や加工性を改善する目的で、該
ゴム組成物中に各種の軟化剤を添加している。 軟化剤
には、プロセスオイル、石油樹脂、クマロン・インデン
樹脂等の石油系軟化剤、ひまし油、なたね油等の植物油
系軟化剤等があり、利用されている。
<Prior art> In the field of manufacturing rubber products, various softeners have traditionally been added to unvulcanized rubber compositions to improve workability and processability during molding and cross-contamination of unvulcanized rubber compositions. are doing. Examples of softeners that are used include process oils, petroleum resins, petroleum-based softeners such as coumaron/indene resin, and vegetable oil-based softeners such as castor oil and rapeseed oil.

しかしながら、これらの軟化剤は、未加硫ゴム組成物の
加工性は改善するが、加硫ゴム製品の物性、特に硬度を
低下させてしまうという欠点を有している。
However, although these softeners improve the processability of unvulcanized rubber compositions, they have the drawback of reducing the physical properties, particularly the hardness, of vulcanized rubber products.

そこで、加硫ゴム製品の硬度を低下させない軟化剤兼粘
着付与剤として、ロジンが提案されたが、ロジンを用い
ると、加硫速度が大幅に遅れる。
Therefore, rosin has been proposed as a softener and tackifier that does not reduce the hardness of vulcanized rubber products, but when rosin is used, the vulcanization rate is significantly delayed.

また、最近、未加硫ゴム組成物に対し、プロセスオイル
等と同等の軟化作用を示し、かつ加硫ゴム製品の物性を
低下させない反応性可塑剤として、液状天然ゴムおよび
イソプレンゴムが提案され、利用されているが、加硫ゴ
ム製品の硬度は、やはり該反応性可塑剤の配合量に比例
して低下する。
Recently, liquid natural rubber and isoprene rubber have been proposed as reactive plasticizers that exhibit a softening effect on unvulcanized rubber compositions equivalent to that of process oils and do not reduce the physical properties of vulcanized rubber products. However, the hardness of vulcanized rubber products still decreases in proportion to the amount of the reactive plasticizer blended.

〈発明が解決しようとする課題〉 本発明は、ゴムの軟化剤に於ける上記問題を解決すべ(
なされたものであり、ゴム組成物に添加すると、未加硫
時にはプロセスオイル等と同等の軟化作用を示し、かつ
加硫ゴム製品の硬度を高める新規のイソプレン系ゴム酸
化変性物とその製造方法の提供を目的とする。
<Problems to be Solved by the Invention> The present invention aims to solve the above-mentioned problems in rubber softeners.
This is a new isoprene-based rubber oxidation-modified product that, when added to a rubber composition, exhibits a softening effect equivalent to that of process oil etc. when unvulcanized, and increases the hardness of vulcanized rubber products, and a method for producing the same. For the purpose of providing.

〈課題を解決するための手段〉 本発明は、分子中に1個以上の極性官能基を有するイソ
プレンゴム、解重合イソプレンゴム、環化ポリイソプレ
ンおよびイソプレンを原料モノマーの1種として用いて
製造されたイソプレン系共重合体のうちの1種以上から
誘導される変性物であって、赤外吸収スペクトルにおい
て3400cm−’付近と1720cm−’付近に特性
吸収を有し、示差走査熱量計において0〜120℃の範
囲に吸収帯を有することを特徴とするイソプレン系ゴム
酸化変性物を提供するものである。
<Means for Solving the Problems> The present invention provides a rubber composition that is manufactured using isoprene rubber having one or more polar functional groups in the molecule, depolymerized isoprene rubber, cyclized polyisoprene, and isoprene as one type of raw material monomer. It is a modified product derived from one or more types of isoprene-based copolymers, and has characteristic absorption in the vicinity of 3400 cm-' and 1720 cm-' in the infrared absorption spectrum, and has a characteristic absorption of 0 to 1720 cm-' in the differential scanning calorimeter. The present invention provides an oxidized modified isoprene rubber characterized by having an absorption band in the range of 120°C.

また、本発明は、分子中に1個以上の極性官能基を有す
るイソプレンゴム、解重合イソプレンゴム、環化ポリイ
ソプレンおよびイソプレンを原料上ツマ−の1種として
用いて製造されたイソプレン系共重合体のうちの1種以
上を炭化水素系有機溶剤に溶解し、酸素の存在下、太陽
光もしくは紫外線を照射してイソプレン系ゴム酸化変性
物を製造することを特徴とするイソプレン系ゴム酸化変
性物の製造方法を提供するものである。
The present invention also provides isoprene rubber having one or more polar functional groups in the molecule, depolymerized isoprene rubber, cyclized polyisoprene, and isoprene copolymer produced using isoprene as a raw material. An oxidized and modified isoprene rubber product, which is produced by dissolving one or more of the combined compounds in a hydrocarbon organic solvent and irradiating it with sunlight or ultraviolet rays in the presence of oxygen. The present invention provides a method for manufacturing.

以下に、本発明について詳述する。The present invention will be explained in detail below.

本発明の第1の態様は、新規のイソプレン系ゴム酸化変
性物を提供することである。
A first aspect of the present invention is to provide a novel oxidized and modified isoprene-based rubber.

本発明の新規のイソプレン系ゴム酸化変性物は、分子中
に1個以上の極性官能基を有するイソプレンゴム、解重
合イソプレンゴム、環化ポリイソプレンおよびイソプレ
ン系共重合体のうちの1種以上から誘導される変性物で
ある。
The novel oxidized isoprene-based rubber of the present invention is made from one or more of isoprene rubber having one or more polar functional groups in the molecule, depolymerized isoprene rubber, cyclized polyisoprene, and isoprene-based copolymer. It is a modified product that is induced.

はじめに、本発明のイソプレン系ゴム酸化変性物の原料
となるイソプレン朶什合物について説明する。
First, the isoprene mixture that is the raw material for the oxidized modified isoprene rubber of the present invention will be explained.

本発明において、分子中に1個以上の極性官能基を有す
るイソプレンゴムとは、分子中に1個以上のカルボキシ
ル基、水酸基、エポキシ基、アミノ基等の官能基を有す
る天然ゴム、天然トランス−ポリイソプレン、合成イソ
プレンゴム(シス−1,4−イソプレンゴム、トランス
−1,4−イソプレンゴム、3.4−イソプレンゴム、
液状ポリイソプレン)を指す。
In the present invention, isoprene rubber having one or more polar functional groups in the molecule refers to natural rubber having one or more functional groups such as carboxyl, hydroxyl, epoxy, or amino groups in the molecule, and natural trans- Polyisoprene, synthetic isoprene rubber (cis-1,4-isoprene rubber, trans-1,4-isoprene rubber, 3,4-isoprene rubber,
liquid polyisoprene).

解重合イソプレンゴムとは、天然ゴム、天然トランス−
ポリイソプレンまたは合成イソプレンゴムに熱、光、化
学反応等の処理を施すことによって得られる、常温で液
状又は半固形状を程するイソプレンゴムであり、具体的
には、解重合天然ゴム、解重合合成イソプレンゴム等で
ある。
Depolymerized isoprene rubber is natural rubber, natural trans-
Isoprene rubber that is liquid or semi-solid at room temperature and is obtained by treating polyisoprene or synthetic isoprene rubber with heat, light, chemical reactions, etc. Specifically, depolymerized natural rubber, depolymerized natural rubber, etc. Synthetic isoprene rubber, etc.

また、環化ポリイソプレンとは、天然ゴム、天然トラン
ス−ポリイソプレンあるいは合成ポリイソプレンを原料
として、それにフリーデル・クラフッ反応等を行なわせ
しめることによって得られるものである。
Cyclized polyisoprene is obtained by subjecting natural rubber, natural trans-polyisoprene, or synthetic polyisoprene to a Friedel-Krach reaction.

すなわち、天然ゴム、天然トランス−ポリイソプレンあ
るいは合成イソプレンゴムに強酸を反応させるか、R3
O□Xまたはルイス酸を用いて環化反応を行なわせしめ
ることにより、環化ポリイソプレンが得られる。
That is, by reacting natural rubber, natural trans-polyisoprene or synthetic isoprene rubber with a strong acid, or by reacting R3
A cyclized polyisoprene is obtained by carrying out a cyclization reaction using O□X or a Lewis acid.

さらに、イソプレン系共重合体とは、共重合体製造時の
原料モノマーのうちの1種がイソプレンである共重合体
と、該共重合体に極性官能基が導入された、分子中に1
個以上の極性官能基を有するイソプレン系共重合体とを
いう。
Furthermore, an isoprene-based copolymer is a copolymer in which one of the raw material monomers during copolymer production is isoprene, and a copolymer in which a polar functional group is introduced into the molecule.
An isoprene-based copolymer having one or more polar functional groups.

そして、イソプレンと共重合される他の原料モノマーと
しては、ブタジェン、スチレン、アクリロニトリル等の
ジエンモノマーが例示される。 尚、該共重合体は、二
元共重合体に限定されない。
Examples of other raw material monomers copolymerized with isoprene include diene monomers such as butadiene, styrene, and acrylonitrile. Note that the copolymer is not limited to a binary copolymer.

イソプレン系共重合体の具体例としては、イソプレン・
スチレン共重合体、イソプレン・ブタジェン共重合体、
イソプレン・ブタジェン・スチレン共重合体、イソプレ
ン・ブタジェン・アクリロニトリル共重合体、スチレン
・イソプレン・スチレンブロック共重合体等と、これら
の共重合体に、カルボキシル基、水酸基、エポキシ基、
アミノ基等の極性官能基が導入されたもの等が挙げられ
る。
Specific examples of isoprene-based copolymers include isoprene-based copolymers.
Styrene copolymer, isoprene-butadiene copolymer,
Isoprene/butadiene/styrene copolymer, isoprene/butadiene/acrylonitrile copolymer, styrene/isoprene/styrene block copolymer, etc., and these copolymers contain carboxyl groups, hydroxyl groups, epoxy groups,
Examples include those into which polar functional groups such as amino groups are introduced.

以上が本発明のイソプレン系ゴム酸化変性物の原料とな
るイソプレン系化合物であるが、その他、上記の化合物
の二重結合を部分水添したものも用いることができる。
The above are the isoprene compounds that serve as raw materials for the oxidized modified isoprene rubber of the present invention, but in addition, compounds obtained by partially hydrogenating the double bonds of the above compounds can also be used.

 ただし、二重結合が多いほうが、イソプレン系ゴム酸
化変性物を製造するのに好適である。
However, the more double bonds there are, the more suitable it is for producing an oxidized and modified isoprene-based rubber.

また、本発明のイソプレン系ゴム酸化変性物の原料とし
ては、イソプレン含有量の多い化合物が好ましく、50
重量%以上のものが好ましい。
In addition, as a raw material for the oxidatively modified isoprene rubber of the present invention, a compound with a high isoprene content is preferable, with 50%
It is preferable that the amount is % by weight or more.

なお、本発明のイソプレン系ゴム酸化変性物の原料とな
るイソプレン系化合物は、常温で液状のものでも固形の
ものでもよい。
The isoprene compound that is the raw material for the oxidatively modified isoprene rubber of the present invention may be liquid or solid at room temperature.

本発明のイソプレン系ゴム酸化変性物は、上記の原料イ
ソプレン系化合物のうちの1種以上から誘導される変性
物であるが、上記原料イソプレン系化合物のうちの1種
以上と極性官能基を有しないイソプレン単独重合体(N
RlIR)を混合したものの変性物も、本発明のイソプ
レン系ゴム酸化変性物に包含される。
The oxidized and modified isoprene-based rubber of the present invention is a modified product derived from one or more of the above-mentioned raw material isoprene-based compounds, and has a polar functional group with one or more of the above-mentioned raw material isoprene-based compounds. Isoprene homopolymer (N
Modified products mixed with RlIR) are also included in the oxidized modified isoprene rubber products of the present invention.

本発明のイソプレン系ゴム酸化変性物は、分子中に1個
以上の極性官能基を有するイソプレンゴム、解重合イソ
プレンゴム、環化ポリイソプレンおよびイソプレン系共
重合体のうちの1種以上、あるいはそれらとイソプレン
単独重合体との混合物が、溶媒溶解時に酸化反応を受け
て変性したものであるが、酸化反応は、酸素の存在下、
熱、紫外線、電子線、可視光等のエネルギーの関与によ
って行われる。
The oxidatively modified isoprene rubber of the present invention is one or more of isoprene rubber having one or more polar functional groups in the molecule, depolymerized isoprene rubber, cyclized polyisoprene, and isoprene copolymer, or A mixture of isoprene and isoprene homopolymer is modified by undergoing an oxidation reaction when dissolved in a solvent, but the oxidation reaction occurs in the presence of oxygen.
This is done through the involvement of energy such as heat, ultraviolet rays, electron beams, and visible light.

本発明のイソプレン系ゴム酸化変性物の特徴は、赤外吸
収スペクトルにおいて3400cm−’付近と1720
cm−’付近に特性吸収を有し、示差走査熱量計(DS
C)において0〜120℃の範囲に吸収帯を有すること
であ赤外吸収スペクトルにおいては、3400cm−’
付近と1720cm−’付近に大きな特性吸収を有する
が、赤外吸収スペクトルの3400cm−’付近と17
20cm−’付近の特性吸収は、それぞれ、光照射によ
って原料であるイソプレン系化合物の分子内に生成する
ヒドロペルオキシド基とカルボニル基といわれれている
(例えばRubber Chem、 Tecnol、、
 50 、705.1977) 示差走査熱量計においては、0〜120℃の範囲に吸収
帯を有するが、これは、この酸化変性物が0℃以上に融
点(軟化点)を持っていることを意味している。
The characteristics of the oxidized isoprene-based rubber of the present invention are that the infrared absorption spectrum is around 3400 cm-' and 1720 cm-'.
It has a characteristic absorption in the vicinity of cm-' and can be detected by differential scanning calorimetry (DS
C) has an absorption band in the range of 0 to 120°C, and in the infrared absorption spectrum, it has an absorption band of 3400 cm-'
It has a large characteristic absorption near 3400 cm-' and 1720 cm-' in the infrared absorption spectrum.
The characteristic absorption around 20 cm-' is said to be caused by hydroperoxide groups and carbonyl groups, respectively, which are generated within the molecule of the raw material isoprene compound by light irradiation (for example, Rubber Chem, Tecnol,
50, 705.1977) In a differential scanning calorimeter, it has an absorption band in the range of 0 to 120°C, which means that this oxidized modified product has a melting point (softening point) above 0°C. are doing.

さらに、このイソプレン系ゴム酸化変性物は、ヘキサン
に不溶であるという特徴を有する。 また、クロロホル
ム等の有機溶剤には良好な溶解性を示すが、イソプレン
含有量が低くなると、クロロホルム等への溶解性は低下
する。
Furthermore, this oxidized isoprene rubber is characterized by being insoluble in hexane. Furthermore, it shows good solubility in organic solvents such as chloroform, but as the isoprene content decreases, solubility in chloroform and the like decreases.

解時、太陽光もしくは紫外線の照射により、分子量が低
下することが知られている。 本発明のイソプレン系ゴ
ム酸化変性物も、溶媒溶解時における紫外線、電子線、
可視光等の照射によって得られ、通常はMwは3,00
0〜50,000であり、低い。 従って、本来ならば
液状を示し、ヘキサン等の炭化水素系有機溶剤にも溶解
するはずである。 にもかかわらず、ヘキサンに不溶で
あるのは、イソプレン系ゴム酸化変性物がヒドロペルオ
キシド基、カルボニル基を有することのほかに、分子量
が一定の領域まで低下しているため、環化もしくは異性
化反応が起こり、ヘキサンに不溶のものとなったと推測
される。 なお、本発明のイソプレン系ゴム酸化変性物
の原料であるイソプレン系化合物のうち、環化ポリイソ
プレンはそれ自体ヘキサンに不溶であるという事実から
も、環化もしくは異性化反応が起こったことが支持され
る。
It is known that during decomposition, the molecular weight decreases due to irradiation with sunlight or ultraviolet rays. The isoprene-based rubber oxidized modified product of the present invention also has ultraviolet rays, electron beams,
Obtained by irradiation with visible light, etc., and usually has a Mw of 3,00
0 to 50,000, which is low. Therefore, it should normally be liquid and should be soluble in hydrocarbon organic solvents such as hexane. However, the reason why it is insoluble in hexane is that isoprene-based rubber oxidized modified products have hydroperoxide groups and carbonyl groups, and the molecular weight has decreased to a certain range, so it is difficult to cyclize or isomerize. It is assumed that a reaction occurred and the product became insoluble in hexane. Furthermore, the fact that cyclized polyisoprene itself is insoluble in hexane among the isoprene compounds that are the raw materials for the oxidized modified isoprene rubber of the present invention supports that a cyclization or isomerization reaction has occurred. be done.

本発明の第2の態様は、第1の態様で示した特徴を有す
るイソプレン系ゴム酸化変性物の好適な製造方法を提供
することである。
A second aspect of the present invention is to provide a suitable method for producing an oxidized modified isoprene rubber having the characteristics shown in the first aspect.

具体的には、前記原料イソプレン系化合物を炭化水素系
有機溶剤に溶解し、酸素の存在下、太陽光もしくは紫外
線を照射し、通常は沈殿物として、イソプレン系ゴム酸
化変性物を得る。
Specifically, the raw material isoprene compound is dissolved in a hydrocarbon organic solvent and irradiated with sunlight or ultraviolet rays in the presence of oxygen to obtain an oxidized and modified isoprene rubber, usually as a precipitate.

ここで、イソプレン系ゴム酸化変性物の製造原料である
イソプレン系化合物は、本発明第1の態様の説明の中で
例示したように、分子中に1個以上の極性官能基を有す
るイソプレンゴム、解重合イソプレンゴム、環化ポリイ
ソプレンおよびイソプレンを原料モノマーの1種として
用いて製造されたイソプレン系共重合体のうちの1種、
あるいは2種以上の混合物である。
Here, the isoprene compound which is the raw material for producing the oxidized modified isoprene rubber is an isoprene rubber having one or more polar functional groups in the molecule, as exemplified in the explanation of the first aspect of the present invention. One type of isoprene-based copolymer produced using depolymerized isoprene rubber, cyclized polyisoprene, and isoprene as one type of raw material monomer,
Alternatively, it is a mixture of two or more types.

あるいは、これらの原料イソプレン系化合物とイソプレ
ン単独重合体の混合物である。
Alternatively, it is a mixture of these raw material isoprene compounds and an isoprene homopolymer.

また、原料イソプレン系化合物を溶解させる溶剤は、炭
化水素系で該化合物を溶解するものであれば何れでもよ
いが、その具体例として、ヘキサン、ヘプタン、シクロ
ヘキサン、メチルシクロヘキサン、ベンゼン、トルエン
、キシレン、エチルベンゼン等の炭化水素系有機溶剤、
これらを主成分とするゴム揮発油、およびこれらの混合
物等があげられる。
Further, the solvent for dissolving the raw material isoprene compound may be any hydrocarbon-based solvent that dissolves the compound, and specific examples thereof include hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, Hydrocarbon organic solvents such as ethylbenzene,
Examples include rubber volatile oils containing these as main components, and mixtures thereof.

これらの中では、原料であるイソプレン系化合物の溶解
性、安全性、光吸収作用および生成する変性物の溶解性
等の点から、ヘキサン等の脂肪族炭化水素、シクロヘキ
サン等の脂環族炭化水素、脂肪族、脂環族系炭化水素が
主成分のゴム揮発油、およびこれらの混合物等の炭化水
素系有機溶剤が特に好ましい。 ただし、前記の如く、
環化ポリイソプレンはヘキサンに溶解しないので、原料
として環化ポリイソプレンを用いる場合は、トルエン等
の芳香族炭化水素が好ましい。 これらの炭化水素系有
機溶剤を用いると、イソプレン系ゴム酸化変性物が沈殿
物として得られる。
Among these, aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, etc. Particularly preferred are hydrocarbon-based organic solvents such as rubber volatile oils mainly composed of , aliphatic and alicyclic hydrocarbons, and mixtures thereof. However, as mentioned above,
Since cyclized polyisoprene does not dissolve in hexane, aromatic hydrocarbons such as toluene are preferred when cyclized polyisoprene is used as a raw material. When these hydrocarbon organic solvents are used, an oxidized and modified isoprene rubber is obtained as a precipitate.

なお、溶液中の原料イソプレン系化合物濃度量%である
Note that it is the concentration of the raw material isoprene compound in the solution (%).

原料イソプレン系化合物の変性反応を促進するためには
、原料イソプレン系化合物または該化合物と溶剤との混
合物に、しやつ解削、無機または有機化合物からなる薬
品、例えば金属石鹸、具体的にはナフテン酸等の環状脂
肪酸や2−エチルヘキシル酸、カプリル酸、カプリン酸
、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリ
ン酸等の鎖状脂肪酸の金属塩を添加するとよい。 金属
石鹸の金属塩としては、Co、Mn、Mg、Aj2.C
u、Ca、Zn。
In order to accelerate the modification reaction of the raw material isoprene compound, the raw material isoprene compound or the mixture of the compound and the solvent is treated with a chemical such as a chemical made of an inorganic or organic compound, such as metal soap, specifically naphthene. It is preferable to add metal salts of cyclic fatty acids such as acids and chain fatty acids such as 2-ethylhexylic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid. Examples of metal salts of metal soap include Co, Mn, Mg, Aj2. C
u, Ca, Zn.

Ti、Fe、Ni、Sn、Zr、Pb等が挙げられる。Examples include Ti, Fe, Ni, Sn, Zr, and Pb.

 さらに、ManobondC−16、Manobon
dCP−420等の商品名で知られている有機酸コバル
ト・ホウ酸石鹸等の酸化触媒や、酸化助剤を添加しても
よい。 また、ベンゾフェノン、アセトフェノン等の光
増感剤を添加してもよい。
Furthermore, ManobondC-16, Manobon
An oxidation catalyst such as an organic acid cobalt-boric acid soap known under a trade name such as dCP-420 or an oxidation aid may be added. Further, a photosensitizer such as benzophenone or acetophenone may be added.

本発明第2の態様では、このようにして調製された原料
イソプレン系化合物の溶液に、酸素射することによって
、本発明のイソプレン系ゴム酸化変性物を得る。
In the second aspect of the present invention, the oxidized and modified isoprene-based rubber of the present invention is obtained by irradiating oxygen to the solution of the raw material isoprene-based compound thus prepared.

未照射の場合、原料イソプレン系化合物は溶剤に溶解し
ているが、照射が進むにつれて溶液の粘度が下がり、最
終的には溶剤に溶解しないポリマー(イソプレン系ゴム
酸化変性物)が生成し、析出し、容器の底に沈殿する。
In the case of non-irradiation, the raw material isoprene compound is dissolved in the solvent, but as the irradiation progresses, the viscosity of the solution decreases, and eventually a polymer (oxidized modified isoprene rubber) that does not dissolve in the solvent is formed and precipitates. and settle to the bottom of the container.

 溶剤部分を除去することで、析出したポリマー、即ち
目的のイソプレン系ゴム酸化変性物を得る。
By removing the solvent portion, the precipitated polymer, that is, the desired oxidized isoprene-based rubber is obtained.

なお、必要に応じ、このイソプレン系ゴム酸化変性物を
クロロホルム等に溶解させ、それをヘキサン、シクロヘ
キサン、トルエン等の炭化水素系有機溶剤に注いで再沈
殿させることにより、イソプレン系ゴム酸化変性物を精
製することができる。 また、イソプレン系ゴム酸化変
性物の変質を防ぐために、2.6〜ジーt−ブチルヒド
ロキシトルエン等の安定剤を添加することが好ましい。
If necessary, the oxidized and modified isoprene rubber can be dissolved in chloroform, etc., and poured into a hydrocarbon organic solvent such as hexane, cyclohexane, toluene, etc. to reprecipitate the oxidized and modified isoprene rubber. Can be purified. Further, in order to prevent deterioration of the oxidized isoprene-based rubber, it is preferable to add a stabilizer such as 2.6 to di-t-butylhydroxytoluene.

本発明のイソプレン系ゴム酸化変性物をゴム用配合剤と
して用いる場合には、上記のように精製した後、真空乾
燥を行って用いるのがよい。
When the isoprene-based rubber oxidized modified product of the present invention is used as a compounding agent for rubber, it is preferably purified as described above and then vacuum-dried before use.

光照射を行う際に必要な酸素の濃度は、特に制限はな(
、存在すればよい。 従って、純酸素下ばかりでなく、
空気中や、酸素と他の不活性ガスとの混合雰囲気下で反
応を行ってもよい。
There are no particular restrictions on the concentration of oxygen required for light irradiation (
, just exists. Therefore, not only under pure oxygen,
The reaction may be carried out in air or in a mixed atmosphere of oxygen and other inert gas.

太陽光もしくは紫外線の照射時間は、原料であるイソプ
レン系化合物の種類、重合度、溶液中のイソプレン系化
合物の濃度、溶液の量、光の強さ、容器の形状等によっ
て変わり、−概には決められないが、析出して分散して
いたイソプレン系ゴム酸化変性物が沈殿するまで行えば
よい。 好ましくは、沈殿し始めてからも少し継続して
照射すると、目的の変性物が多(得られてよい。
The irradiation time of sunlight or ultraviolet rays varies depending on the type of isoprene compound that is the raw material, the degree of polymerization, the concentration of the isoprene compound in the solution, the amount of solution, the intensity of light, the shape of the container, etc. Although it cannot be determined, it is sufficient to carry out the process until the precipitated and dispersed oxidized isoprene-based rubber is precipitated. Preferably, if the irradiation is continued for a while even after precipitation begins, a large amount of the desired modified product can be obtained.

照射時の溶液の温度は、均一なイソプレン系ゴム酸化変
性物を多(得るためにはなるべ(低いほうが良(、通常
は90℃以下、好ましくは60℃以下である。 ただし
、照射時の溶液の温度は、溶剤の凝固点以上でなければ
1反応が進行しに(い。
The temperature of the solution during irradiation should be as low as possible in order to obtain a uniform amount of oxidized isoprene-based rubber (usually below 90°C, preferably below 60°C. The temperature of the solution must be above the freezing point of the solvent for one reaction to proceed.

以上説明してきた本発明のイソプレン系ゴム酸化変性物
は、ゴム組成物に配合剤として添加すると、該ゴム組成
物の未加硫時の粘度を下げ、軟化剤として作用すると同
時に、加硫後のゴム製品の硬度を高める作用も示す。
When added to a rubber composition as a compounding agent, the isoprene-based rubber oxidized modified product of the present invention described above lowers the viscosity of the rubber composition when unvulcanized, acts as a softener, and at the same time acts as a softener after vulcanization. It also shows the effect of increasing the hardness of rubber products.

その際、ゴム組成物の原料ゴムとしては、天然ゴム、ポ
リイソプレンゴム、スチレン−ブタジェンゴム、ポリブ
タジェンゴム、ブチルゴム、アクリロニトリル−ブタジ
ェンゴム、エチレン−プロピレン系共重合ゴム、イソプ
レン−イソブチレン共重合ゴム、クロロブレンゴム等が
例示でき、これらを単独あるいはブレンドして使用でき
る。 また、ゴム組成物には、原料ゴムおよび本発明の
イソプレン系ゴム酸化変性物のほかに、必要に応じ、カ
ーボンブラック、亜鉛華、老化防止剤、硫黄、加硫促進
剤等を添加することができる。 ゴム組成物への本発明
のイソプレン桑ゴム酸什変性物の添加量は、原料ゴム1
00重量部に対して0.5〜50重量部が適当である。
In this case, the raw material rubber for the rubber composition includes natural rubber, polyisoprene rubber, styrene-butadiene rubber, polybutadiene rubber, butyl rubber, acrylonitrile-butadiene rubber, ethylene-propylene copolymer rubber, isoprene-isobutylene copolymer rubber, chloro Blend rubber can be exemplified, and these can be used alone or in a blend. Furthermore, in addition to the raw material rubber and the oxidized isoprene-based rubber of the present invention, carbon black, zinc white, an anti-aging agent, sulfur, a vulcanization accelerator, etc. may be added to the rubber composition as necessary. can. The amount of the isoprene mulberry rubber acid modified product of the present invention added to the rubber composition is as follows: raw material rubber 1
0.5 to 50 parts by weight is appropriate.

〈実施例〉 以下に、本発明を実施例によりさらに具体的に説明する
が、本発明は、これら実施例に限定されるものではない
<Examples> The present invention will be explained in more detail by Examples below, but the present invention is not limited to these Examples.

〔実施例1〕 下記の方法(本発明例1〜14)にてイソプレン系ゴム
酸化変性物を得、それらについて、後記の方法でIR分
析、DSC分析、GPC分析、溶解性試験を行った。 
結果は、第1表および第1図、第2図、第3図、第4図
に示した。
[Example 1] Isoprene-based rubber oxidized modified products were obtained by the following method (Invention Examples 1 to 14), and IR analysis, DSC analysis, GPC analysis, and solubility test were conducted on them using the methods described below.
The results are shown in Table 1 and FIGS. 1, 2, 3, and 4.

(本発明例1) 容!3βのステンレス製オートクレーブに、精製n−ヘ
キサン800g、イソプレン94.5g、1,3−ブタ
ジェン5.5gを仕込み、60℃に保った。 重合触媒
のn−ブチルリチウム0.5moβを添加し、攪拌下に
60分間反応させた。 メタノールを加えて反応を停止
し、そこへ、2,6−ジーt−ブチルヒドロキシトルエ
ン0.7gを添加し、常温固形のイソプレン弓、3−ブ
タジェン共重合体i 00gを得た。 後述のGPC分
析を行なったところ、分子量は320000であった。
(Example 1 of the present invention) Yong! 800 g of purified n-hexane, 94.5 g of isoprene, and 5.5 g of 1,3-butadiene were placed in a 3β stainless steel autoclave and maintained at 60°C. 0.5 moβ of n-butyllithium as a polymerization catalyst was added, and the mixture was reacted for 60 minutes with stirring. Methanol was added to stop the reaction, and 0.7 g of 2,6-di-t-butylhydroxytoluene was added thereto to obtain 00 g of isoprene arch and 3-butadiene copolymer i which was solid at room temperature. When the GPC analysis described below was performed, the molecular weight was 320,000.

この合成したイソプレン・1.3−ブタジェン共重合体
3.0gを、光を通す透明でかつ空気のとり入れ口を有
するガラス容器に入れ、ついでn−ヘキサン147gを
加えて均一な溶液(イソプレン・1.3−ブタジェン共
重合体濃度2%)とし、無色のフィルムで封をして、太
陽光を照射した。 60時間照射したところで沈殿物が
得られたので、溶剤部分を除去し、残った沈殿物をクロ
ロホルムに溶解し、325meshの網を通し、n−ヘ
キサンに注いで再沈殿させることによって精製し、真空
乾燥したところ、淡黄色の固体(サンプルA)2.3g
が得られた。
3.0 g of the synthesized isoprene/1,3-butadiene copolymer was placed in a transparent glass container that allows light to pass through and has an air intake, and then 147 g of n-hexane was added to form a homogeneous solution (isoprene/1,3-butadiene copolymer). 3-butadiene copolymer concentration of 2%), sealed with a colorless film, and exposed to sunlight. A precipitate was obtained after 60 hours of irradiation, so the solvent portion was removed, the remaining precipitate was dissolved in chloroform, passed through a 325 mesh net, poured into n-hexane, and reprecipitated to purify it, and purified in a vacuum. When dried, 2.3 g of pale yellow solid (sample A)
was gotten.

(本発明例2) 原料として市販の液状イソプレン・ブタジェン共重合体
LIR−340(■クラレ製)を用い、LIR−340
logをn−ヘキサン190gに溶解(液状イソプレン
・ブタジェン共重合体濃度5%)し、照射時間は150
時間としたほかは、本発明例1と同じ方法で沈殿物を得
、精製、乾燥したところ、白色の粉末(サンプルB)6
.3gが得られた。
(Example 2 of the present invention) Using a commercially available liquid isoprene-butadiene copolymer LIR-340 (■ manufactured by Kuraray) as a raw material, LIR-340
log was dissolved in 190 g of n-hexane (liquid isoprene-butadiene copolymer concentration 5%), and the irradiation time was 150 g.
A precipitate was obtained in the same manner as in Inventive Example 1 except for the time, and when purified and dried, a white powder (Sample B) 6
.. 3g was obtained.

(本発明例3) 原料として市販の液状イソプレン・スチレン共重合体L
IR−310(■クラレ製)を用い、LIR−3105
,0gをn−ヘキサン・トルエン(80:20、重量)
混合溶媒145gに溶解(液状イソプレン・スチレン共
重合体濃度3.3%)し、照射時間は90時間としたほ
かは、本発明例1と同じ方法で沈殿物を得、精製、乾燥
したところ、淡黄色の粉末(サンプルC)4.2gが得
られた。
(Example 3 of the present invention) Commercially available liquid isoprene-styrene copolymer L as a raw material
Using IR-310 (■Kuraray), LIR-3105
,0g to n-hexane/toluene (80:20, weight)
A precipitate was obtained in the same manner as in Inventive Example 1, except that it was dissolved in 145 g of a mixed solvent (liquid isoprene-styrene copolymer concentration 3.3%), and the irradiation time was 90 hours, purified and dried. 4.2 g of pale yellow powder (sample C) was obtained.

(本発明例4) LIR−310を10gとし、n−ヘキサン140gに
溶解(液状イソプレン・スチレン共重合体濃度6.7%
)し、照射時間は110時間としたほかは、本発明例3
と同じ方法で沈殿物を得、精製、乾燥したところ、淡黄
色固体(サンプルD)6.1gが得られた。
(Example 4 of the present invention) 10 g of LIR-310 was dissolved in 140 g of n-hexane (liquid isoprene-styrene copolymer concentration 6.7%).
), and the irradiation time was 110 hours, except that the present invention example 3
A precipitate was obtained in the same manner as above, purified and dried to obtain 6.1 g of a pale yellow solid (sample D).

(本発明例5) 原料として市販のKraton  D 1107 (S
hellChemical Co、製)を用い、照射時
間は89時間としたほかは、本発明例1と同じ方法で沈
殿物を得、精製、乾燥したところ、淡黄色固体(サンプ
ルE)2.4gが得られた。
(Example 5 of the present invention) Commercially available Kraton D 1107 (S
Hell Chemical Co., Ltd.) was used, and the irradiation time was 89 hours, but the precipitate was obtained in the same manner as in Inventive Example 1, purified and dried, and 2.4 g of a pale yellow solid (Sample E) was obtained. Ta.

(本発明例6) n−ヘキサン・トルエン混合溶媒のかわりにn−ヘキサ
ンを用い、溶液中にナフテン酸コバルト(Co含有量1
0%、日本化学産業■製)0.1gを添加し、照射時間
は80時間としたほかは1本発明例3と同じ方法で沈殿
物を得、精製、rJ9慢したところ、赤褐色固体(サン
プルF)4.1gが得られた。
(Example 6 of the present invention) Using n-hexane instead of the n-hexane/toluene mixed solvent, cobalt naphthenate (Co content 1
A precipitate was obtained in the same manner as in Invention Example 3, except that 0.1 g of 0.0% (manufactured by Nippon Kagaku Sangyo ■) was added and the irradiation time was 80 hours.A precipitate was obtained in the same manner as in Invention Example 3, purified, and heated to rJ9, resulting in a reddish brown solid (sample F) 4.1 g was obtained.

(本発明例7) 第5図に反応セルと照射装置を示したが、本発明例3で
用いたLIR−3103,0gをガラス製のセル1にと
り、n−ヘキサン147gを加え、液状イソプレン・ス
チレン共重合体濃度が2.0%の溶液を調製した。 続
いて、紫外線硬化用照射器形式UEOII−203(ア
イグラフィックス社製)を用い、紫外線を照射した。
(Example 7 of the present invention) Figure 5 shows the reaction cell and irradiation device. 0 g of LIR-3103 used in Example 3 of the present invention was placed in a glass cell 1, 147 g of n-hexane was added, and liquid isoprene was added. A solution having a styrene copolymer concentration of 2.0% was prepared. Subsequently, ultraviolet rays were irradiated using an ultraviolet curing irradiator type UEOII-203 (manufactured by Eye Graphics).

セル1には、石英製の蓋5と還流冷却器2をつけ、溶媒
が系から揮散しないようにするとともに、溶液が空気と
接し、酸素濃度が一定に保持されるようにした。
The cell 1 was equipped with a quartz lid 5 and a reflux condenser 2 to prevent the solvent from volatilizing from the system, and to keep the solution in contact with air to maintain a constant oxygen concentration.

照射光源3は、メタルハライドランプを用い、反応溶液
中に入射する光量が一定となるように、光源3と石英製
の蓋5とを平行に配置し、その距離は60cmとした。
A metal halide lamp was used as the irradiation light source 3, and the light source 3 and a quartz lid 5 were arranged in parallel with a distance of 60 cm so that the amount of light incident on the reaction solution was constant.

 また、溶液の温度が40℃以下となるように、セル1
は水浴6中に設置した。
In addition, the cell 1
was placed in water bath 6.

91時間の照射で沈殿物が得られたので、溶剤部分を捨
て、残った沈殿物をクロロホルムに溶解し、325me
shの網を通し、n−ヘキサンに注いで再沈殿させるこ
とにより精製し、真空乾燥したところ、淡黄色の粉末(
サンプルG)2.5gが得られた。
A precipitate was obtained after 91 hours of irradiation, so the solvent part was discarded, the remaining precipitate was dissolved in chloroform, and 325 me
It was purified by passing it through a sh net and pouring it into n-hexane to reprecipitate it, and vacuum drying it to give a pale yellow powder (
Sample G) 2.5 g was obtained.

(本発明例8) 原料として市販のカルボキシル基含有液状ボッイソプレ
ンLIR−403(■クラレ製)を用いた。
(Example 8 of the present invention) Commercially available carboxyl group-containing liquid isoprene LIR-403 (manufactured by Kuraray) was used as a raw material.

IjR−4033,0gを光を通す透明でかつ空気のと
り入れ口を有するガラス容器に入れ、ついでn−ヘキサ
ン147gを加えて均一な溶液(カルボキシル基含有液
状ポリイソプレン濃度2%)とし、無色のフィルムで封
をして、溶液の温度を45℃以下に調整しながら太陽光
を照射した。 65時間照射したところで沈殿物が得ら
れたので、溶剤部分を除去し、残った沈殿物をクロロホ
ルムに溶解し、325meshの網を通し、n−ヘキサ
ンに注いで再沈殿させることによって精製し、真空乾燥
したところ、淡黄色の固体(サンプルH)2.3gが得
られた。
0 g of IjR-4033 was placed in a transparent glass container that allows light to pass through and has an air inlet, and then 147 g of n-hexane was added to make a homogeneous solution (carboxyl group-containing liquid polyisoprene concentration 2%), and a colorless film was formed. The container was sealed with water, and sunlight was irradiated while adjusting the temperature of the solution to 45° C. or lower. A precipitate was obtained after 65 hours of irradiation, so the solvent portion was removed, the remaining precipitate was dissolved in chloroform, passed through a 325 mesh net, poured into n-hexane, and purified by reprecipitation. Upon drying, 2.3 g of a pale yellow solid (Sample H) was obtained.

(本発明例9) 原料として市販の水酸基含有液状ポリイソプレンLIR
−503(■クラレ製)を用い、LIR−5036,0
gをjl  /’、キサン194gに溶解(水酸基含有
液状ポリイソプレン濃度3%)し、照射時間は54時間
としたほかは、本発明例8と同じ方法で沈殿物を得、精
製、乾燥したところ、白色の粉末(サンプルI)5.8
gが得られた。
(Example 9 of the present invention) Commercially available hydroxyl group-containing liquid polyisoprene LIR as a raw material
-503 (manufactured by Kuraray), LIR-5036,0
A precipitate was obtained in the same manner as in Inventive Example 8, except that g was dissolved in 194 g of xane (hydroxyl group-containing liquid polyisoprene concentration: 3%) and the irradiation time was 54 hours, purified and dried. , white powder (Sample I) 5.8
g was obtained.

(本発明例10) 原料としてLIR−403とLIR−503の混合物(
1: 1)5gを用い、それをn−ヘキサン195gに
溶解(ゴム混合物濃度2.5%)し、照射時間は85時
間としたほかは、本発明例8と同じ方法で沈殿物を得、
精製、乾燥したところ、白色の粉末(サンプルJ)4.
5gが得られた。
(Example 10 of the present invention) A mixture of LIR-403 and LIR-503 (
1: A precipitate was obtained in the same manner as in Inventive Example 8, except that 5 g of 1) was used, dissolved in 195 g of n-hexane (rubber mixture concentration 2.5%), and the irradiation time was 85 hours.
After purification and drying, a white powder (sample J) was obtained.4.
5g was obtained.

(本発明例11) NR(SMR−5L)100gを、50℃±10℃、間
隙1.0mmに調整したロールに10回通した。 この
ゴム7.0gをギヤー式老化試験機(JIs  K  
6301準拠)を使用して120℃で72時間処理し、
常温で半液状の解重合ゴムを得た。
(Example 11 of the present invention) 100 g of NR (SMR-5L) was passed through a roll adjusted to 50° C.±10° C. and a gap of 1.0 mm 10 times. 7.0g of this rubber was tested in a gear type aging tester (JIs K
6301 compliant) at 120°C for 72 hours,
A depolymerized rubber that is semi-liquid at room temperature was obtained.

原料としてこの解重合ゴムを用い、この解重合ゴム6.
0gをn−ヘキサン144gに溶解(解重合ゴム濃度4
.0%)し、照射時間は29時間としたほかは、本発明
例8と同じ方法で沈殿物を得、精製、乾燥したところ、
白色の粉末(サンプルK)5.8gが得られた。
Using this depolymerized rubber as a raw material, this depolymerized rubber6.
Dissolve 0g in 144g of n-hexane (depolymerized rubber concentration 4
.. 0%) and the irradiation time was 29 hours, but the same method as in Inventive Example 8 was used to obtain a precipitate, purification, and drying.
5.8 g of white powder (sample K) was obtained.

(本発明例12) 原料として市販の解重合合成イソプレンゴム l5ol
ene D400  (Hardman社製)を用い、
l5olene D4005 、0 gをn−ヘキサン
195gに溶解(解重合合成イソプレンゴム濃度2.5
%)し、照射時間は73時間としたほかは、本発明例8
と同じ方法で沈殿物を得、精製、乾燥したところ、白色
の粉末(サンプルL)3.1gが得られた。
(Example 12 of the present invention) Commercially available depolymerized synthetic isoprene rubber l5ol as a raw material
Using ene D400 (manufactured by Hardman),
l5olene D4005, 0 g dissolved in 195 g of n-hexane (depolymerized synthetic isoprene rubber concentration 2.5
%) and the irradiation time was 73 hours.
A precipitate was obtained in the same manner as above, purified and dried to obtain 3.1 g of white powder (sample L).

(本発明例13) 原料として市販の環化ポリイソプレン サーモライトP
(精工化学株製)を用い、サーモライトP5.Ogをト
ルエン195gに溶解(環化ポリイソプレン濃度2.5
%)し、照射時間は45時間としたほかは、本発明例8
と同じ方法で沈殿物を得、精製、乾燥したところ、灰白
色の粉末(サンプルM)0.5gが得られた。
(Example 13 of the present invention) Commercially available cyclized polyisoprene Thermolyte P as a raw material
(manufactured by Seiko Kagaku Co., Ltd.) using Thermolite P5. Dissolve Og in 195g of toluene (cyclized polyisoprene concentration 2.5
%) and the irradiation time was 45 hours.
A precipitate was obtained in the same manner as above, purified and dried to obtain 0.5 g of an off-white powder (sample M).

(本発明例14) 原料としてLIR−310のかわりにLIR−503を
用い、照射時間を45時間としたほかは、本発明例7と
同じ方法で沈殿物を得、精製、乾燥したところ、淡黄色
の粉末(サンプルN)2.5gが得られた。
(Example 14 of the present invention) A precipitate was obtained in the same manner as Example 7 of the present invention, except that LIR-503 was used instead of LIR-310 as the raw material, and the irradiation time was changed to 45 hours. When the precipitate was purified and dried, a pale 2.5 g of yellow powder (sample N) was obtained.

(試験方法) ■工R分析 パーキンエルマー社製983 G型赤外分
光光度計を用い、KBr錠剤法にて測定した。
(Test Method) ■ Engineering R Analysis Measurement was carried out by the KBr tablet method using a 983 G-type infrared spectrophotometer manufactured by PerkinElmer.

■DSC分析 Du Pont社製1090BTを用い
、10℃/分の昇温速度で測定した。
■DSC analysis Measurement was carried out using Du Pont's 1090BT at a heating rate of 10° C./min.

■GPC分析 ウォーターズ社製150−CALC/G
PCを用い、ゲル・パーミェーション・クロマトグラフ
ィーによりMwを求めた。 検量線は、プレッシャーケ
ミカル社製の標準ポリスチレンを用いて作成した。
■GPC analysis Waters 150-CALC/G
Mw was determined by gel permeation chromatography using PC. The calibration curve was created using standard polystyrene manufactured by Pressure Chemical Company.

溶媒はテトラヒドーロフラン、分離カラムはウォーター
ズ社製ウルトラ・スタイラ・ジェル10’、10’、1
03500人を用いた。
The solvent was tetrahydrofuran, and the separation column was Ultra Styla Gel 10', 10', 1 manufactured by Waters.
03,500 people were used.

■溶剤に対する溶解性試験 ヘキサン又はクロロホルム
10mI2にイソプレン系ゴム酸化変性物0.2gを室
温にて溶解させ、目視にて、沈殿が見られないものを可
溶、沈殿が見られるものを不溶と判定した。
■ Solubility test in solvent Dissolve 0.2 g of oxidized isoprene rubber in 10 mI2 of hexane or chloroform at room temperature. Visually check that no precipitate is seen as soluble, and that where precipitate is seen as insoluble. did.

〔実施例2〕 第2表に示した配合組成のゴム組成物について、下記の
方法で、未加硫時の粘度と、加硫速度と、加硫後の硬度
を測定した。 結果は第2表に示した。
[Example 2] Regarding the rubber compositions having the formulation shown in Table 2, the viscosity before vulcanization, the vulcanization rate, and the hardness after vulcanization were measured by the following methods. The results are shown in Table 2.

(試験方法) ■未加硫ゴムの粘度 原料をバンバリーミキサ−によって混練し、得られたゴ
ム組成物について、東洋精機社製ムーニー試験機にて、
JIS K 6300に準じてムーニー粘度(ML、、
、、100℃)を測定した。
(Test method) ■ Viscosity of unvulcanized rubber The raw materials were kneaded using a Banbury mixer, and the resulting rubber composition was tested using a Mooney tester manufactured by Toyo Seiki Co., Ltd.
Mooney viscosity (ML) according to JIS K 6300
, 100°C) were measured.

■加硫速度 未加硫ゴム組成物につき、Mon5anto社製レオメ
ータ−TP−100型にて、温度150℃、ARC±3
°の条件にて、T 96を測定した。
■Vulcanization speed For unvulcanized rubber compositions, the temperature was 150℃, ARC±3 using a rheometer TP-100 manufactured by Mon5anto.
T96 was measured under the conditions of .

■加硫後の硬度 未加硫ゴム組成物を、150℃で30分間加硫し、ゴム
シートに成形した。 それらのゴムをシートを用い、 JIS 6301に準じて硬度 (A形による) を測定した。
(2) Hardness after vulcanization The unvulcanized rubber composition was vulcanized at 150° C. for 30 minutes and molded into a rubber sheet. Using these rubber sheets, the hardness (by type A) was measured according to JIS 6301.

実施例1は、本発明のイソプレン系ゴム酸化変性物の具
体的製造方法と、得られたイソプレン系ゴム酸化変性物
(サンプルA−N)の物性および特性を示したものであ
る(第1表、第1図、第2図、第3図、第4図参照)。
Example 1 shows a specific method for producing the oxidized modified isoprene rubber of the present invention and the physical properties and characteristics of the obtained oxidized modified isoprene rubber (Samples A-N) (Table 1) , Fig. 1, Fig. 2, Fig. 3, Fig. 4).

サンプルA−Nは、いずれも、赤外吸収スペクトルにお
いて3400cm−’付近と1720cm−’付近に特
性吸収を有し、示差走査熱量計において0〜120℃の
範囲に吸収帯を有し、ヘキサンに不溶であるという特徴
を有する。
Samples A-N all have characteristic absorptions near 3400 cm-' and 1720 cm-' in their infrared absorption spectra, absorption bands in the range of 0 to 120°C in differential scanning calorimetry, and It is characterized by being insoluble.

実施例2は、本発明・のイソプレン系ゴム酸化変性物の
ゴム組成物への配合例(No、15〜28)と、それら
の未加硫時の粘度、加硫速度および加硫後の硬度を示し
たものである。
Example 2 shows examples of blending the oxidatively modified isoprene rubber of the present invention into rubber compositions (Nos. 15 to 28), and their unvulcanized viscosity, vulcanization rate, and post-vulcanized hardness. This is what is shown.

なお、比較のために、軟化剤不配合の例(No、29)
と、従来の軟化剤を配合した例(No、  30〜33
 )を示した。
For comparison, an example without softener (No. 29)
Examples of blending conventional softeners (No. 30 to 33)
)showed that.

第2表から明らかなように、従来の軟化剤のうち、石油
系軟化剤、石油樹脂および液状ゴム1+    4 1
.を口 吐 輸士+n−吐 ^ 會μ幽 ン−τIJ 
ヅ 1− 間 i+に、加硫ゴムの硬度も低下させてし
まう。 また、ガムロジンは、ゴム組成物未加硫時の粘
度を下げ、加硫後の硬度には影響を与えないが、加硫速
度を大幅に遅らせてしまう。 これに対し、本発明のイ
ソプレン系ゴム酸化変性物は、ゴム組成物未加硫時の粘
度は大幅に下げるが、加硫後の硬度は下げるどころかか
えって向上させ、物性を改善している。 そして、加硫
速度には影響を与えない。
As is clear from Table 2, among conventional softeners, petroleum softeners, petroleum resins, and liquid rubber 1+ 4 1
.. Mouth vomiting
Besides, the hardness of the vulcanized rubber also decreases. Further, although gum rosin lowers the viscosity of the rubber composition when it is not cured and does not affect the hardness after vulcanization, it significantly slows down the vulcanization rate. On the other hand, the oxidized isoprene-based rubber of the present invention significantly lowers the viscosity of the unvulcanized rubber composition, but rather than lowers the hardness after vulcanization, it improves the physical properties. And it does not affect the vulcanization rate.

〈発明の効果〉 以上説明してきたように、本発明のイソプレン系ゴム酸
化変性物は、前述のような特性を有するものであり、ゴ
ム組成物に軟化剤として配合すると、未加硫時の粘度は
、従来の軟化剤、例えばプロセスオイルを使用した場合
と同等に低下させるにもかかわらず、加硫後の硬度は、
軟化剤不配合の場合と同等かそれ以上であるという特徴
を有する。
<Effects of the Invention> As explained above, the isoprene-based rubber oxidized modified product of the present invention has the above-mentioned properties, and when added to a rubber composition as a softener, the viscosity when uncured increases. Although the hardness after vulcanization is reduced to the same degree as when using conventional softeners, e.g. process oils,
It has the characteristic that it is equivalent to or better than the case without a softener.

系ゴム酸化変性物は、ゴム工業において、軟化剤、硬度
向上剤として極めて有用である。
Oxidized modified rubber products are extremely useful as softeners and hardness improvers in the rubber industry.

【図面の簡単な説明】 第1図は、サンプルA、B、D、Eの赤外吸収スペクト
ルを示すグラフである。 第2図は、サンプルH,1,に、L、Mの赤外吸収スペ
クトルを示すグラフである。 第3図は、サンプルA、B、D、Eを示差走査熱量計で
測定した結果を示すグラフである。 第4図は、サンプルH1■、K、L、Mを示差走査熱量
計で測定した結果を示すグラフである。 第5図は、本発明のイソプレン系ゴム酸化変性物の製造
装置の一例を示す線図である。 符号の説明 l・・・セル、 2・・・還流冷却器、 3・・・光源、 5・・・石英製の蓋、 6・・・水浴 FIG。 (cm−’) FIG、2 FIG、3 (°ジノ FIG、4
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the infrared absorption spectra of samples A, B, D, and E. FIG. 2 is a graph showing the infrared absorption spectra of L and M for samples H, 1, and. FIG. 3 is a graph showing the results of measuring samples A, B, D, and E using a differential scanning calorimeter. FIG. 4 is a graph showing the results of measuring samples H1, K, L, and M using a differential scanning calorimeter. FIG. 5 is a diagram showing an example of an apparatus for producing an oxidized and modified isoprene-based rubber of the present invention. Explanation of symbols 1... Cell, 2... Reflux condenser, 3... Light source, 5... Quartz lid, 6... Water bath FIG. (cm-') FIG, 2 FIG, 3 (°Zino FIG, 4

Claims (2)

【特許請求の範囲】[Claims] (1)分子中に1個以上の極性官能基を有するイソプレ
ンゴム、解重合イソプレンゴム、環化ポリイソプレンお
よびイソプレンを原料モノマーの1種として用いて製造
されたイソプレン系共重合体のうちの1種以上から誘導
される変性物であって、赤外吸収スペクトルにおいて3
400cm^−^1付近と1720cm^−^1付近に
特性吸収を有し、示差走査熱量計において0〜120℃
の範囲に吸収帯を有することを特徴とするイソプレン系
ゴム酸化変性物。
(1) One of the isoprene-based copolymers produced using isoprene rubber, depolymerized isoprene rubber, cyclized polyisoprene, and isoprene having one or more polar functional groups in the molecule as one type of raw material monomer. It is a modified product derived from more than one species, and has an infrared absorption spectrum of 3.
It has characteristic absorption near 400cm^-^1 and 1720cm^-^1, and has a temperature range of 0 to 120℃ in a differential scanning calorimeter.
An oxidized modified isoprene-based rubber characterized by having an absorption band in the range of .
(2)分子中に1個以上の極性官能基を有するイソプレ
ンゴム、解重合イソプレンゴム、環化ポリイソプレンお
よびイソプレンを原料モノマーの1種として用いて製造
されたイソプレン系共重合体のうちの1種以上を炭化水
素系有機溶剤に溶解し、酸素の存在下、太陽光もしくは
紫外線を照射して、請求項1に記載のイソプレン系ゴム
酸化変性物を製造することを特徴とするイソプレン系ゴ
ム酸化変性物の製造方法。
(2) One of isoprene rubber having one or more polar functional groups in the molecule, depolymerized isoprene rubber, cyclized polyisoprene, and isoprene-based copolymers produced using isoprene as one type of raw material monomer. Oxidation of isoprene rubber, characterized in that the oxidized and modified isoprene rubber according to claim 1 is produced by dissolving the above species in a hydrocarbon organic solvent and irradiating it with sunlight or ultraviolet rays in the presence of oxygen. Method for producing modified products.
JP3503290A 1989-12-22 1990-02-15 Oxidatively modified isoprene rubber and its production Pending JPH03223311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3503290A JPH03223311A (en) 1989-12-22 1990-02-15 Oxidatively modified isoprene rubber and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-333843 1989-12-22
JP33384389 1989-12-22
JP3503290A JPH03223311A (en) 1989-12-22 1990-02-15 Oxidatively modified isoprene rubber and its production

Publications (1)

Publication Number Publication Date
JPH03223311A true JPH03223311A (en) 1991-10-02

Family

ID=26373922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3503290A Pending JPH03223311A (en) 1989-12-22 1990-02-15 Oxidatively modified isoprene rubber and its production

Country Status (1)

Country Link
JP (1) JPH03223311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338619A (en) * 2001-03-14 2002-11-27 Univ Nihon Propylene-vinyl alcohol copolymer and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338619A (en) * 2001-03-14 2002-11-27 Univ Nihon Propylene-vinyl alcohol copolymer and its production method

Similar Documents

Publication Publication Date Title
TWI553019B (en) Modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
TWI399389B (en) A method for producing a conjugated diene-based polymer, a modified conjugated diene-based polymer, a modified conjugated diene-based polymer
JP6777454B2 (en) Modified conjugated diene polymer composition, rubber composition for tread, and tire
US4248986A (en) Selective cyclization of block copolymers
EP0087110B1 (en) Process for modifying rubbers
US10138319B2 (en) Polymer and asphalt composition
JPH0246062B2 (en)
JP2000044734A (en) Hydroxyl-containing solution rubber
Sahakaro et al. Reinforcement of maleated natural rubber by precipitated silica
JP2013245248A (en) Modified butadiene polymer, method for producing the same, rubber composition, and tire
JPS633060A (en) High polymer stabilizer compound, manufacture and stabilizedpolyolefin composition
US4242471A (en) Selectively cyclized block copolymers
JPH03223311A (en) Oxidatively modified isoprene rubber and its production
JPS6279211A (en) Production of modified hydrogenated block copolymer
Rabek et al. Studies on the photo‐oxidative mechanism of polymers. VII. The role of singlet oxygen in the dye‐photosensitized oxidation of cis‐1, 4‐and 1, 2‐polybutadienes and butadiene–styrene copolymers
US4255536A (en) Azodicarboxylate-modified copolymers
JPH03239739A (en) Rubber composition
JPH0411501A (en) Pneumatic tire
Riyajan et al. Cationic cyclization of purified natural rubber in latex form with a trimethylsilyl triflate as a novel catalyst
JPH03237104A (en) Oxidation-modified isoprene-based rubber containing sulfur and production thereof
JPH04246401A (en) Method for modification of conjugated diene polymer rubber and conjugated diene rubber composition
JPH0253802A (en) Isoprene rubber-modified product and production thereof
US3769256A (en) Rubbery compositions
US4102849A (en) Oil-extended hydrogenated diblock copolymer
JPS6389504A (en) Polymer having reactive terminal group and its production