JPH03223131A - Production of elliptical core-type polarization plane-maintaining optical - Google Patents

Production of elliptical core-type polarization plane-maintaining optical

Info

Publication number
JPH03223131A
JPH03223131A JP2015021A JP1502190A JPH03223131A JP H03223131 A JPH03223131 A JP H03223131A JP 2015021 A JP2015021 A JP 2015021A JP 1502190 A JP1502190 A JP 1502190A JP H03223131 A JPH03223131 A JP H03223131A
Authority
JP
Japan
Prior art keywords
core
core rod
glass layer
elliptical
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015021A
Other languages
Japanese (ja)
Inventor
Kimimichi Yamada
山田 公道
Takeyoshi Takuma
詫摩 勇悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2015021A priority Critical patent/JPH03223131A/en
Publication of JPH03223131A publication Critical patent/JPH03223131A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain low-loss elliptical core-type polarization plane-maintaining optical fiber by grinding both sides of a core rod, having a specific composition and composed of a core and a clad in the axial direction, depositing fine glass particles on the outer peripheral part, sintering the particles, forming a preform and hot drawing a wire. CONSTITUTION:A core rod 10 having a structure composed of three layers of a core glass layer 6 containing GeO2 from the center, the first clad glass layer 7 containing F and the second clad glass layer 9 of pure SiO2 is produced by a VAD method. Both sides 11 of the aforementioned core rod 10 are then ground in the axial direction and fine glass particles (soot) 13 for forming a support 16 are subsequently deposited on the outer periphery of the resultant ground core rod 12 by the VAD method and sintered to form a preform 17, which is then hot drawn into a wire to produce elliptical core-type polarization plane-maintaining optical fiber. Thereby, since the SiO2 glass layer 9 is formed on the outermost layer of the core rod 10, mixing of H2O and H2 from an oxyhydrogen flame into the ground core rod 12 can be suppressed to reduce OH loss of the elliptical core fiber.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、コアが断面楕円形状の偏波面保存光ファイバ
(以下、楕円コアファイバと称する)の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a polarization maintaining optical fiber (hereinafter referred to as elliptical core fiber) whose core has an elliptical cross section.

[従来の技術] 楕円コアファイバの製造方法の一つに、特願昭62−3
07735号、特願昭62−128498号に記載され
ている方法がある。
[Prior art] One of the methods for manufacturing an elliptical core fiber is disclosed in Japanese Patent Application No. 1986-3.
There are methods described in Japanese Patent Application No. 07735 and Japanese Patent Application No. 128498/1982.

この方法は、GeO□を含有するコアガラス層及びこれ
を囲むFを含有するクラッドガラス層からなるコアロッ
ドの両側面を、軸方向に沿って機械加工により研削除去
して、断面非円形の研削コアロッドを形成し、次に、こ
の研削コアロッドの外周に5if2ガラススートを外付
けし焼結して、サポートガラス層を形成した後、このガ
ラス母材を光フアイバ母材として、線引きするという行
程で楕円コアファイバを製造している。
In this method, both sides of a core rod consisting of a core glass layer containing GeO Next, 5if2 glass soot is externally attached to the outer periphery of this ground core rod and sintered to form a support glass layer, and this glass base material is used as an optical fiber base material and is drawn into an ellipse. Manufactures core fiber.

[発明が解決しようとする課題] この製造方法により、楕円コアファイバを試作し、損失
特性を評価したところ波長1.39μmのOH基による
吸収損失(以下、OH損失と称す)が15dB/に■と
大きく、このOH損失のすそ引きの影響により、1.3
〜1.5μm帯の損失が増加し、1.54μmでの損失
は0.4 dB/Kmであった。
[Problems to be Solved by the Invention] Using this manufacturing method, an elliptical core fiber was prototyped and its loss characteristics were evaluated, and the absorption loss due to OH groups at a wavelength of 1.39 μm (hereinafter referred to as OH loss) was 15 dB/■ This is large, and due to the effect of this OH loss, 1.3
The loss in the ~1.5 μm band increased, and the loss at 1.54 μm was 0.4 dB/Km.

更に低損失な楕円コアファイバを得るには、OH損失を
低減する必要がある。
In order to obtain an elliptical core fiber with even lower loss, it is necessary to reduce the OH loss.

このOH損失増加の原因を試作、評価を繰り返しながら
検討したところ、研削コアロッドにVAD法でスートを
外付けする工程において、酸水素火災からコアロッドに
820.H2が混入するなめ、OH損失が増加するとい
うことが分かった。
We investigated the cause of this increase in OH loss through repeated trial production and evaluation, and found that 820% of the OH loss was caused by an oxyhydrogen fire in the process of externally attaching soot to the ground core rod using the VAD method. It was found that OH loss increases due to the incorporation of H2.

本発明は、前記した従来技術の欠点を解消し、低損失な
楕円コアファイバを提供することにある。
The present invention aims to eliminate the drawbacks of the prior art described above and provide a low-loss elliptical core fiber.

[課題を解決するための手段] 本発明は、コア及びクラッドからなるコアロッドの両側
面を軸方向に研削した後、この研削コアロッドの外周部
にガラス微粒子(スート)を堆積させると共に、これを
焼結してプリフォームを形成し、更にこのプリフォーム
を加熱線引きする偏波面保存光ファイバの製造方法にお
いて、上記研削コアロッドの構造が、中心からG130
2(酸化ゲルマニウム)を含有するコアガラス層、F(
フッ素)を含有する第1クラッドガラス層、及び純粋5
in2 (酸化ゲイ素)の第2クラッドガラス層、の3
層からなるものである。
[Means for Solving the Problems] The present invention involves grinding both side surfaces of a core rod consisting of a core and a cladding in the axial direction, depositing glass particles (soot) on the outer periphery of the ground core rod, and baking the soot. In the method for manufacturing a polarization maintaining optical fiber, the structure of the ground core rod is G130 from the center.
2 (germanium oxide), a core glass layer containing F(
a first clad glass layer containing fluorine), and a pure 5
in2 (gay metal oxide) second cladding glass layer, 3
It consists of layers.

[作用コ 本発明の要旨は、従来のGeOz含有コアガラス層、F
含有クラッドガラス層の外周に、5i02+02ガラス
けたコアロッドを用いたことにあり、それによってスー
ト外付は工程時に起こる、酸水素火災からコアロッド内
部へのH2O,H2の混入を抑制し、OH損失を低減さ
せたものである。
[Function] The gist of the present invention is that the conventional GeOz-containing core glass layer, F
The reason is that a 5i02+02 glass girder core rod is used on the outer periphery of the cladding glass layer, which suppresses the mixing of H2O and H2 into the core rod from oxyhydrogen fires that occur during the process, and reduces OH loss. This is what I did.

SiO2ガラス層を設けた理由は、Si O,ガラスが
F含有ガラスに較べ、H20,H2の拡散速度が遅いと
いう実験結果に基づいている。拡散速度に差が生じるの
は、ガラス原子の結合状態の違いによるものと推定して
いる。
The reason for providing the SiO2 glass layer is based on the experimental result that SiO2 glass has a slower diffusion rate of H20 and H2 than F-containing glass. It is presumed that the difference in diffusion rate is due to the difference in the bonding state of the glass atoms.

尚、研削後のコアロッドの第1クラッド外周は、第2ク
ラツド(S+02ガラス層)に完全に囲まれていること
がOH損失の低減に望ましい、研削が第1クラツドにま
で及ぶと、5in2ガラス層によるH、O,H2抑制の
効果が小さくなりOH損失が増加する。
It is desirable that the outer periphery of the first cladding of the core rod after grinding be completely surrounded by the second cladding (S+02 glass layer) in order to reduce OH loss.If the grinding extends to the first cladding, a 5in2 glass layer The effect of suppressing H, O, and H2 becomes smaller and OH loss increases.

[実施例] 以下、本発明の実施例を添付図面に従って説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明の一実施例の係る楕円コアファイバの
製造工程を示す工程図である。
FIG. 1 is a process diagram showing the manufacturing process of an elliptical core fiber according to an embodiment of the present invention.

実施例1 コアバーナ1からGf30*及び5iftを、クラッド
バーナ2から5iOzを供給し、VAD法によりスート
を堆積させて、コア部3及びクラッド部4からなる多孔
質母材5を形成する(第1図(a))、尚、コア部3の
GeO2はクラッドを基準とした非屈折率差(Δ)で1
.2%分添加した。
Example 1 Gf30* and 5ift are supplied from the core burner 1, and 5iOz is supplied from the clad burner 2, and soot is deposited by the VAD method to form the porous base material 5 consisting of the core part 3 and the clad part 4 (first Figure (a)), GeO2 in the core part 3 is 1 with a non-refractive index difference (Δ) based on the cladding.
.. A 2% amount was added.

この多孔質母材5をふっ素含有ヘリウム雰囲気中で焼結
ガラス化し、コア6及び第1クラツド7からなるコアロ
ッド8を形成した(第1図1b))。
This porous base material 5 was sintered and vitrified in a fluorine-containing helium atmosphere to form a core rod 8 consisting of a core 6 and a first cladding 7 (FIG. 1b)).

このとき、ふっ素の流量はクラッドの比屈折率差(Δ−
)が、シリカに対して0.3%低下するような値とした
。また、第1クラツド径/コア径比は2.5とした。
At this time, the flow rate of fluorine is the relative refractive index difference (Δ−
) was set to a value such that it decreased by 0.3% relative to silica. Further, the first clad diameter/core diameter ratio was set to 2.5.

このガラス化したコアロッド8を直径2011mに延伸
した後、延伸ロッドに再度VAD法でスートを堆積させ
て、ヘリウム雰囲気中で焼結ガラス化し、第2クラツド
となる5in2ガラス層9を形成した。更に、延伸、外
付け、焼結を行い、SiO2ガラス層の形成を行い、第
2クラツド径/コア径比=11のコアロッド10を製造
した(第1図(C))。
After this vitrified core rod 8 was stretched to a diameter of 2011 m, soot was again deposited on the stretched rod by the VAD method, and the core rod was sintered and vitrified in a helium atmosphere to form a 5 in 2 glass layer 9 serving as a second cladding. Furthermore, stretching, external attachment, and sintering were performed to form a SiO2 glass layer, thereby producing a core rod 10 having a second cladding diameter/core diameter ratio of 11 (FIG. 1(C)).

このコアクラッド10を直径30aiに延伸した後、第
2クラツド9の両側部11を軸方向に機械的に研削した
。研削比(短径/長径比)は0.3とした(第1図(d
))。
After this core cladding 10 was stretched to a diameter of 30ai, both sides 11 of the second cladding 9 were mechanically ground in the axial direction. The grinding ratio (minor axis/long axis ratio) was set to 0.3 (Fig. 1(d)
)).

その後、この三層構造の研削コアロッド12の外周部に
、サポート用の5iOiガラススート13を外付けしく
第1図(e))、これを焼結ガラス化する。この行程を
3回繰り返し、外径を30nnに仕上げた。
Thereafter, a 5iOi glass soot 13 for support is externally attached to the outer periphery of this three-layered ground core rod 12 (FIG. 1(e)), and this is sintered into glass. This process was repeated three times to finish the outer diameter to 30 nn.

この様にして、第1図(f)に示すような楕円コア14
.楕円クラッド15、サポート16からなるプリフォー
ム17が形成された。ここで、SiO2ガラススート1
3の焼結時に、コア6及びクラッド7に収縮力が作用し
、これらは同一方向に楕円化された。
In this way, the elliptical core 14 as shown in FIG.
.. A preform 17 consisting of an elliptical cladding 15 and a support 16 was formed. Here, SiO2 glass soot 1
During the sintering of Sample No. 3, a contraction force was applied to the core 6 and the cladding 7, causing them to become ovalized in the same direction.

更に、このグリフオームを加熱線引きして外径125μ
mの楕円コアファイバを作成した。このファイバを長さ
1000mサンプリングして、その損失波長特性を測定
したところ、第2図に示すような結果が得られた。カッ
トオフ波長は1.35μm、波長1.39μmのOH損
失は1.3dB/に一1波長1.54μmのOH損失は
0.25dB/ K+e、消光比−31dBであった。
Furthermore, this Glyform was heated and drawn to have an outer diameter of 125μ.
An elliptical core fiber of m was prepared. When this fiber was sampled over a length of 1000 m and its loss wavelength characteristics were measured, the results shown in FIG. 2 were obtained. The cutoff wavelength was 1.35 μm, the OH loss at a wavelength of 1.39 μm was 1.3 dB/1, the OH loss at a wavelength of 1.54 μm was 0.25 dB/K+e, and the extinction ratio was −31 dB.

実施例2 コア6、第1クラツド7、第2クラツド9(Δ−1.2
%、Δ−=0.3%)から成り、第1クラッド径/コア
径比=2.5 、第2クラツド径/コア径比=7なる構
造のコアロッド10(第1図(C)参照)を製遺し、こ
れを実施例1と同機に、研削比0.3で研削した。研削
面は第1クラツド7まで及んだ。
Example 2 Core 6, first clad 7, second clad 9 (Δ-1.2
%, Δ-=0.3%), and the core rod 10 has a structure in which the first cladding diameter/core diameter ratio = 2.5 and the second cladding diameter/core diameter ratio = 7 (see Fig. 1 (C)). This was ground using the same machine as in Example 1 at a grinding ratio of 0.3. The grinding surface extended to the first cladding 7.

第3図に、この研削コアロッド12の構造を示す、コア
6、第1クラツド7、第2クラツド9からなる。
FIG. 3 shows the structure of this ground core rod 12, which consists of a core 6, a first clad 7, and a second clad 9.

この三層構造の研削ロッド12を用いて、実施例1と同
様の工程を行い、楕円コアファイバを試作した。波長1
.39μmのOH損失は5dB/に1と実施例1に較べ
て大きくなった。波長1.54μmのOH損失は0.3
0dB/に曙、消光比−30dB(ファイバ長IKm)
であった。
Using this three-layered grinding rod 12, the same steps as in Example 1 were carried out to fabricate an elliptical core fiber. wavelength 1
.. The OH loss at 39 μm was 5 dB/1, which was larger than that in Example 1. OH loss at wavelength 1.54μm is 0.3
0dB/Akebono, extinction ratio -30dB (fiber length IKm)
Met.

[発明の効果] 以上述べたように、本発明により、研削コアロッドを三
層構造にして、最外層に5in2ガラス層を設けること
で、酸水素火炎から研削コアロッドへのH20,H2の
混入を抑制でき、楕円コアファイバのO)(損失を低減
できる。その結果、1.3〜1.5μm帯で低損失な楕
円コアファイバを得ることができる。
[Effects of the Invention] As described above, according to the present invention, the grinding core rod has a three-layer structure and the outermost layer is provided with a 5in2 glass layer, thereby suppressing the incorporation of H20 and H2 from the oxyhydrogen flame into the grinding core rod. As a result, an elliptical core fiber with low loss in the 1.3 to 1.5 μm band can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る楕円コアファイバの製
造法を示す工程図、第2図は実施例1で製造した楕円コ
アファイバの損失波長特性図、第3図は実施例2で用い
た研削コアロッドの断面図である。 図中、1はコアバーナ、2はクラッドバーナ、3はコア
部、4はクラヅド部、5は多孔質母材、6はコア、7は
第1クラツド、8はコアロッド、9は第2クラツドとな
るSiO2ガラス層、10はコアロッド、11は研削部
、12は研削コアロッド、13はSiO2ガラススート
、14は楕円コア、15は楕円クラッド、16はサポー
ト、17はプリフォームを示す。
FIG. 1 is a process diagram showing the method for manufacturing an elliptical core fiber according to an embodiment of the present invention, FIG. 2 is a loss wavelength characteristic diagram of the elliptical core fiber produced in Example 1, and FIG. FIG. 3 is a cross-sectional view of the ground core rod used. In the figure, 1 is a core burner, 2 is a clad burner, 3 is a core part, 4 is a clad part, 5 is a porous base material, 6 is a core, 7 is a first clad, 8 is a core rod, and 9 is a second clad. A SiO2 glass layer, 10 a core rod, 11 a ground portion, 12 a ground core rod, 13 a SiO2 glass soot, 14 an elliptical core, 15 an elliptical cladding, 16 a support, and 17 a preform.

Claims (1)

【特許請求の範囲】[Claims] 1、コア及びクラッドからなるコアロッドの両側面を軸
方向に研削した後、この研削コアロッドの外周部にガラ
ス微粒子を堆積させると共に、これを焼結してプリフォ
ームを形成し、更にこのプリフォームを加熱線引きする
偏波面保存光ファイバの製造方法において、上記研削コ
アロッドの構造が、中心からGeO_2を含有するコア
ガラス層、Fを含有する第1クラッドガラス層、及び純
粋SiO_2の第2クラッドガラス層、の3層からなる
ことを特徴とする楕円コア型偏波面保存光ファイバの製
造方法。
1. After grinding both sides of the core rod consisting of the core and cladding in the axial direction, fine glass particles are deposited on the outer periphery of the ground core rod, and this is sintered to form a preform. In the method for manufacturing a polarization maintaining optical fiber by heating drawing, the structure of the ground core rod includes, from the center, a core glass layer containing GeO_2, a first cladding glass layer containing F, and a second cladding glass layer of pure SiO_2. A method for manufacturing an elliptical core polarization maintaining optical fiber characterized by comprising three layers.
JP2015021A 1990-01-26 1990-01-26 Production of elliptical core-type polarization plane-maintaining optical Pending JPH03223131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021A JPH03223131A (en) 1990-01-26 1990-01-26 Production of elliptical core-type polarization plane-maintaining optical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021A JPH03223131A (en) 1990-01-26 1990-01-26 Production of elliptical core-type polarization plane-maintaining optical

Publications (1)

Publication Number Publication Date
JPH03223131A true JPH03223131A (en) 1991-10-02

Family

ID=11877195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021A Pending JPH03223131A (en) 1990-01-26 1990-01-26 Production of elliptical core-type polarization plane-maintaining optical

Country Status (1)

Country Link
JP (1) JPH03223131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587624B2 (en) * 1996-06-17 2003-07-01 Corning Incorporated Polarization retaining fiber
WO2018123541A1 (en) * 2016-12-28 2018-07-05 住友電気工業株式会社 Method for producing optical fiber preform

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587624B2 (en) * 1996-06-17 2003-07-01 Corning Incorporated Polarization retaining fiber
WO2018123541A1 (en) * 2016-12-28 2018-07-05 住友電気工業株式会社 Method for producing optical fiber preform
CN110114320A (en) * 2016-12-28 2019-08-09 住友电气工业株式会社 Method for manufacturing fibre-optical preform
CN110114320B (en) * 2016-12-28 2021-11-30 住友电气工业株式会社 Method for manufacturing optical fiber preform

Similar Documents

Publication Publication Date Title
JP2959877B2 (en) Optical fiber manufacturing method
US4360371A (en) Method of making polarization retaining single-mode optical waveguide
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
JPS60226422A (en) Preparation of intermediate for single mode fiber
JPS6236035A (en) Production of optical fiber base material
KR100866266B1 (en) Method and apparatus for fabricating optical fiber using improved oxygen stoichiometry and deuterium exposure
JPH03182704A (en) Passive optical part and manufacture thereof
JP2001510137A5 (en)
JPH11237514A (en) Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform
JPH03223131A (en) Production of elliptical core-type polarization plane-maintaining optical
JPS60260430A (en) Manufacture of base material for optical fiber containing fluorine in clad part
KR100878709B1 (en) A method for fabricating optical fiber using adjustment of oxygen stoichiometry
JPS61191543A (en) Quartz base optical fiber
JP2988524B2 (en) Optical fiber and method for manufacturing the same
JP2616087B2 (en) Manufacturing method of elliptical core type polarization maintaining optical fiber
JP3823341B2 (en) Optical fiber preform, optical fiber and manufacturing method thereof
JPS6246931A (en) Production of base material for optical fiber
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPH03261631A (en) Production of optical fiber preform
JPH0557215B2 (en)
JPS6240302B2 (en)
JPS63222031A (en) Production of preform for optical fiber
JPS598634A (en) Preparation of base material for optical fiber having retained plane of polarization
JPH02208234A (en) Production of optical fiber preform
JPH04119940A (en) Production of glass body