JPH03222860A - Pressure intensifying type fuel injection valve - Google Patents

Pressure intensifying type fuel injection valve

Info

Publication number
JPH03222860A
JPH03222860A JP1356890A JP1356890A JPH03222860A JP H03222860 A JPH03222860 A JP H03222860A JP 1356890 A JP1356890 A JP 1356890A JP 1356890 A JP1356890 A JP 1356890A JP H03222860 A JPH03222860 A JP H03222860A
Authority
JP
Japan
Prior art keywords
pressure
chamber
valve
fuel
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1356890A
Other languages
Japanese (ja)
Inventor
Masayuki Munekiyo
正幸 宗清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1356890A priority Critical patent/JPH03222860A/en
Publication of JPH03222860A publication Critical patent/JPH03222860A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To shorten a fuel injection period of time by installing a pressure valve, for partitioning off a pressure chamber, at the time of a plunger chamber of an injection on-off valve, while interconnecting the pressure chamber to an accumulator chamber where this injection on-off valve is housed, via a pressure inflow means, and making it possible to set the valve closing pressure highish. CONSTITUTION:The base side of a plunger 45 partitioning a plunger chamber 49 at the end face is projected to the inside of a sliding hole 69 formed in a nozzle head 53, and the end part is clamped to a booster piston 71. A pressure intendifying chamber 75 partitioned off by this booster piston 71 is made interconnectible to a fuel inlet 57 via a three-way solenoid valve 77. In addition, at the side of a block 47 of a nozzle body 91, there is formed with an accumulator chamber 103 being interconnected to the plunger chamber 49 via a bypass passage 101. A needle valve 107 or an injection on-off valve is fitted in this accumulator chamber 103 and an injection fuel passage 105. In this case, a pressure valve 113 is installed in an upper part of the needle valve 107, and a pressure chamber 115 being partitioned off by this pressure valve is interconnected to the accumulator chamber 103 via a pressure feeding valve 117.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的コ (産業上の利用分野) この発明は、噴射用燃料を増圧するための増圧室が設け
られた、例えばディーゼル機関に用いられる増圧式燃料
噴射弁に関する。 (従来の技術) ディーゼル機関は、高圧、高温状態のシリンダ内空気中
に燃料を噴射して着火させるものであることから、噴射
燃料にはより高い圧力を与え燃t1の微粒化促進及び燃
料噴射期間の短縮化を図ることが望ましい、これに対処
したものとしては。 例えば第10図に示すような増圧プランジャ式燃[[噴
射弁がある(特開昭59−85433号公報参照)。 この燃料噴射弁は、液圧を利用して燃料を加圧する増圧
プランジャタイプのもので、プランジャlの下降によっ
てプランジャ室3内の燃料を介してアキュームレータバ
ルブ5を押し下げ、プランジャ室3内の燃料をノズル本
体7Wiの蓄圧室9に圧送し、その後7ランジヤ室3内
の圧力低下によってニードルバルブ11が上昇するとき
にノズルチップ13先端の噴射孔15から図示しないシ
リンダ内に燃料か噴射される。 増圧用のプランジャ1のプランジャ室3と反対側の端部
には、増圧ピストン17が配置され、増圧ピストン17
のプランジャ1と反対側には増圧室1つが形成されてい
る。増圧室19は三方電磁弁21を介して燃料入「12
3に連通可能となっている。三方電磁弁21は増圧室1
つと燃料入LI23とを連通状態にするほか、増j−L
室19と燃料開放D 25とを連通状態にする。また、
燃[1人1123はプランジャ室3に燃料通路27によ
り連通可能であり、燃ト1通路27には燃t[入1−1
.23がらプランジャ室3への流通のみを許容する逆止
弁29か設けられている。燃t1人II 23には、燃
料タンク31からフィードポンプ33により汲み上げら
れ圧力調整)〈ルブ35によ−って圧力調整された燃F
−)が供給される。37は圧力計て39はアキュームレ
ータである。 上記三方電磁弁21が増圧室1つと燃料開放(−125
とを連通状態にすると、フィートポンプ33によって送
られる燃料は燃料入口23から燃料通路27を通ってプ
ランジャ室3に供給される。 方、三方電磁弁21が燃料入口23と増圧室19とを連
通状態にすると、フィートポンプ33によって送られる
燃料は増圧室1つに導かれる。増圧室1つに燃料が導か
れると、この燃料により増圧ピストン17はプランジャ
1とともに押し下げられ、前記プランジャ室3内の燃料
は、増圧ピストン17とプランジャ1とのそれぞれの受
圧部相互の面積化分たけ増圧されてアキュームレータバ
ルブ3を押し下げ、蓄圧室9に圧送される。 そして、蓄圧室9内の圧力とプランジャ室3内の圧力と
が平衡すると、ばね41によりアキュ−ムレータバルブ
5が閉じ、蓄圧室9は密mされる。 ここで、三方電磁弁21が増圧室1つと燃料開放[」2
5とを再度連通させると、増圧室1つ内の圧力は大気圧
に開放され、増圧ピストン17はばね43に押されて一
ト昇する。これと同時にプランジャ室3内の圧力もフィ
ートポンプ33による供給圧まで低下する。このとき、
蓄圧室9内の圧力か、はね4]とプランジャ室3内の圧
力とによって二一トルパルフ11を閉じようとする力を
上回れば、二一ドルハルフ11は閉弁し、蓄圧室9内の
燃料かt+B3射孔15から噴射される。 燃L1かl’ffl射されると、蓄圧室9内の圧力が低
下し始め、この低下しつつある圧力と、前記はね41と
プランジャ室3内の圧力とが平衡すると、ニードルバル
ブ11が閉し噴射か終了する。以後、士、記動作を繰り
返す。 (発明が解決しようとする課題) ところで、このような従来の増圧式燃料噴射弁は、ニー
ドルバルブ11が閉弁して燃’f=1噴射が終了すると
きのいわゆる閉弁圧は、プランジャ室3内への供給圧力
とばね41の力と、蓄圧室9内の圧力による力とのバラ
ンスによって決まるものであるが、燃料人「123を介
してのプランジャ室3への供給圧力は、増圧室1つへの
供給圧力と同一であることから、この供給圧力によって
決まる閉弁圧は高圧噴射時での蓄圧室9の圧力に比べて
かなり低く、このため噴射後蓄圧室9内の圧力が閉弁圧
まで低下してニードルバルブ11が閘しるまで時間かか
かり、高圧噴射が可能であるものの、そのときの噴射期
間が充分に短縮化されておらず、このため燃焼期間が増
長し、燃焼、排気性能及び燃費などが悪化することとな
る。 そこでこの発明は、高圧燃料噴射を可能とした上で、噴
射期間を充分短縮化することを目的としている。 [発明の構成] (課題を解決するための手段) 前述した課題を解決するためにこの発明は、往復動可能
なプランジャの先端側に噴射用燃料が供給されるプラン
ジャ室が設けられる一方、前記プランジャの基部側には
プランジャ室の圧力を増圧するための増圧用燃料が供給
される増圧室が設けられ、前記プランジャ室に連通可能
で噴射用燃料が充填される蓄圧室には、弾性手段によっ
て閉弁方向に付勢される噴射用開閉弁が設けられた増圧
式燃料噴射弁において、前記噴射用開閉弁のプランシャ
室側には噴射用開閉弁との間に圧力室を形成する圧力弁
を設け、前記圧力室と前記蓄圧室とを連通可能にする圧
力供給通路を設け、この圧力供給通路に、燃料噴射後前
記蓄圧室内の燃料を1にカ室に所定の圧力で流入させる
圧力流入手段を設けたものである。 ((ヤ用) 増圧室に燃1:・lか供給されると、プランジャ室に供
給されている燃料はj+力か高まって蓄圧室に流入する
とともに圧力室に流入する。圧力室に流入する燃f−1
の圧力は圧力流入手段により所定の■弁月二に保たれる
一方、蓄圧室内の圧力は高圧となる。その後プランジャ
室の圧力を低下させ、蓄圧室内の圧力が、弾性手段とプ
ランジャ室内の圧力とによって
[Object of the Invention (Industrial Field of Application) The present invention relates to a pressure boosting fuel injection valve used in, for example, a diesel engine, which is provided with a pressure boosting chamber for boosting the pressure of fuel for injection. (Prior art) Since a diesel engine injects fuel into the air inside the cylinder under high pressure and high temperature to ignite it, a higher pressure is applied to the injected fuel to promote atomization of the fuel t1 and fuel injection. It is desirable to try to shorten the period, and one way to deal with this is to shorten the period. For example, there is a pressure-increasing plunger type fuel injection valve as shown in FIG. This fuel injection valve is of a pressure increasing plunger type that pressurizes fuel using hydraulic pressure, and when the plunger l is lowered, the accumulator valve 5 is pushed down via the fuel in the plunger chamber 3, and the fuel in the plunger chamber 3 is The fuel is force-fed to the pressure storage chamber 9 of the nozzle body 7Wi, and then when the needle valve 11 rises due to a pressure drop in the 7-lunger chamber 3, fuel is injected from the injection hole 15 at the tip of the nozzle tip 13 into a cylinder (not shown). A pressure increase piston 17 is disposed at the end of the pressure increase plunger 1 opposite to the plunger chamber 3.
One pressure intensification chamber is formed on the opposite side of the plunger 1. The pressure boosting chamber 19 is supplied with fuel through a three-way solenoid valve 21.
It is possible to communicate with 3. The three-way solenoid valve 21 is the pressure booster chamber 1
In addition to putting the two and the fuel inlet LI23 into communication,
The chamber 19 and the fuel release D 25 are brought into communication. Also,
The fuel tank 1123 can communicate with the plunger chamber 3 through the fuel passage 27, and the fuel tank 1 passage 27 can communicate with the fuel tank 1123.
.. A check valve 29 is provided which allows flow only to the plunger chamber 3 from the plunger chamber 23. The fuel tank 31 is pumped up from the fuel tank 31 by the feed pump 33 and the pressure is regulated.
−) is supplied. 37 is a pressure gauge and 39 is an accumulator. The above three-way solenoid valve 21 has one pressure boosting chamber and fuel release (-125
When these are brought into communication, the fuel sent by the foot pump 33 is supplied from the fuel inlet 23 to the plunger chamber 3 through the fuel passage 27. On the other hand, when the three-way solenoid valve 21 brings the fuel inlet 23 and the pressure boosting chamber 19 into communication, the fuel sent by the foot pump 33 is guided to one pressure boosting chamber. When fuel is introduced into one pressure boosting chamber, the pressure boosting piston 17 is pushed down together with the plunger 1, and the fuel in the plunger chamber 3 is transferred between the pressure receiving parts of the pressure boosting piston 17 and the plunger 1. The pressure is increased by the area, pushing down the accumulator valve 3, and the pressure is fed to the pressure accumulating chamber 9. When the pressure in the pressure accumulator chamber 9 and the pressure in the plunger chamber 3 are balanced, the accumulator valve 5 is closed by the spring 41, and the pressure accumulator chamber 9 is sealed. Here, the three-way solenoid valve 21 has one pressure intensifying chamber and one fuel release chamber [''2].
5 is brought into communication again, the pressure within one pressure increase chamber is released to atmospheric pressure, and the pressure increase piston 17 is pushed by the spring 43 and rises by one. At the same time, the pressure within the plunger chamber 3 also decreases to the pressure supplied by the foot pump 33. At this time,
If the pressure in the pressure accumulator 9, the pressure in the plunger chamber 3 and the pressure in the plunger chamber 3 exceed the force that tries to close the 21-torparf 11, the 21-torparf 11 closes and the fuel in the accumulator 9 is released. It is injected from the t+B3 injection hole 15. When the fuel L1 is injected, the pressure in the pressure accumulation chamber 9 begins to decrease, and when this decreasing pressure and the pressure in the spring 41 and the plunger chamber 3 are balanced, the needle valve 11 opens. Close and end injection. After that, repeat the above steps. (Problem to be Solved by the Invention) By the way, in such a conventional pressure increase type fuel injection valve, the so-called valve closing pressure when the needle valve 11 closes and the fuel f=1 injection ends is the pressure in the plunger chamber. It is determined by the balance between the supply pressure to the plunger chamber 3, the force of the spring 41, and the force due to the pressure in the pressure accumulator chamber 9. Since it is the same as the supply pressure to one chamber, the valve closing pressure determined by this supply pressure is considerably lower than the pressure in the pressure accumulation chamber 9 during high-pressure injection, and therefore the pressure in the pressure accumulation chamber 9 after injection is It takes time for the needle valve 11 to close when the pressure drops to the valve closing pressure, and although high-pressure injection is possible, the injection period at that time is not sufficiently shortened, and as a result, the combustion period increases. Combustion, exhaust performance, fuel efficiency, etc. will deteriorate. Therefore, the purpose of this invention is to sufficiently shorten the injection period while making high-pressure fuel injection possible. Means for Solving) In order to solve the above-mentioned problems, the present invention provides a plunger chamber in which fuel for injection is supplied to the tip side of a reciprocally movable plunger, while a plunger chamber is provided in the base side of the plunger. A pressure boosting chamber is provided to which pressure boosting fuel is supplied to increase the pressure of the plunger chamber, and a pressure accumulating chamber that can communicate with the plunger chamber and is filled with injection fuel is biased in the valve closing direction by an elastic means. In a pressure booster fuel injection valve provided with an injection on-off valve, a pressure valve that forms a pressure chamber between the injection on-off valve and the injection on-off valve is provided on the plunger chamber side of the injection on-off valve. A pressure supply passage that enables communication with the pressure accumulation chamber is provided, and a pressure inflow means is provided in the pressure supply passage for causing the fuel in the pressure accumulation chamber to flow into the chamber at a predetermined pressure after fuel injection. ((For Ya) When 1:・l of fuel is supplied to the pressure intensifying chamber, the fuel being supplied to the plunger chamber increases the j+ force and flows into the pressure accumulating chamber and into the pressure chamber. Incoming fuel f-1
While the pressure in the pressure inflow means is maintained at a predetermined level, the pressure in the pressure accumulator becomes high. The pressure in the plunger chamber is then reduced, and the pressure in the accumulator chamber is increased by the elastic means and the pressure in the plunger chamber.

【10射用開閉弁を関し
ようとする力を1・回れば、110射川開閏弁は閉弁し
て蓄圧室内の燃料か11n射される。燃f’4 ’C射
浚は蓄圧室の圧力が低下し、この圧力か前記圧力室内の
所定のI+力と等しくな−ったときに、噴射用開閉弁は
弾性手段の作用によ−)でのみ速やかに[」弁する。こ
の閏が時期は、圧力室に供給する蓄圧室からの圧力すな
わち閉弁圧を、プランジャ室への供給圧より高めに設定
することで、早くなり、噴射期間が短縮化する9(実施
例〉 以下、この発明の実施例を図面に基づき説明する。 第1図に示したこの発明の第1の実施例による燃i1 
I’m射弁は、ディーゼル機関に使用される液圧を利用
して燃料を加圧する増圧プランジャタイプのものて゛、
プランジャ45はブロック47内を先端側が摺動可能に
設けられ、このプランジャ45の端面とブロック47と
に囲まれてプランジャ室4つが形成されている。プラン
ジャ室4つは、ブロック47に形成された燃料通路51
.燃料通路51の途中に設けられた逆止弁52.ノズル
ヘ・ノド53に形成された燃pt通路55を経て燃料入
1]57に連通可能となっている。燃料入[1157は
燃料配管59の一端側に接続され、燃料配管5つの他端
側は途中にフィードポンプ61が設けられて燃料タンク
63に接続されている。65は圧力調整バルブ1(56
は圧力計、67はアキュ−ムレータである。 プランンヤ45のプランジャ室4つと反対側の基部側は
、ノズルナツト53内に形成された摺動孔69内に突出
しており、この摺動孔6つ内にはプランジャ45の基端
部側に当接するキャップ状の増圧ピストン71か摺動可
能に収納されている。 増圧ピスト・ン71はプランジャ45側に設けられたは
ね73により[・、方に付勢されており、増圧ピストン
71のはね73と反対側には増圧室75が形成されてい
る。増圧室75は、途中に三方電磁弁77を介して燃料
入[157に連通可能となっている。三方電磁fr77
はそのソレノイド7つへの通電、非通電によってロット
81の先端及び途中に設けられたホール弁83.85が
移動して増圧室75を、燃ト[入「157に連通さぜる
状態と、燃t−+開放1’J 87に連通さぜる状態と
に切換可能である。燃トl開放[187は燃料配管89
により燃料タンタロ3に接続されている。プランジャ4
5が摺動オるブロック47の下側には、ノズル本体91
がノズルナツト93により装着され、さらにノズル本体
91の下部側にはノズルチップ95がリテーナ97によ
り装着されている。 ノズル本体91のブロック47側には、プランジャ室4
つにアキュームレータバルブ99の側部通路101を通
して連通可能な蓄圧室103が形成され、ノズル本体9
1のノズルチップ95側及びノズルチップ95には、蓄
圧室103に連通する11^射燃料流路105が形成さ
れている。蓄圧室103及び噴射燃料流路105内には
、噴射用開閉弁としてのニードルバルブ107が上下動
可能に収納され、ニードルバルブ107の先端部位によ
って、ノズルチップ95の先端に形成された燃料噴射孔
97aを開閉可能となっている。 ニードルバルブ107のプランジャ室4つ側端部には、
前記アキュームレータバルブ9つが摺動可能に嵌め込ま
れ、アキュームレータバルブ99と、ニードルバルブ1
07の蓄圧室103内部位に形成されたフランジ109
との間には、弾性手段としてのばね111が介装されて
アキュームレ−タバルブ9つをプランジャ室4つ側に付
勢している。 アキュームレータバルブ9つのプランジャ室4つ側には
、ニードルバルブ107の」1端に対向して配置される
圧力弁113が摺動可能に設けられている。圧力弁11
3のアキュームレータバルブ9つから突出したプランジ
ャ室4つ側端部には、アキュームレータバルブ99に形
成された四部99aに収納されるフランジ114が載置
されている。フランジ114は、はは止三角形状を早し
。 その3つの頂点部位を円弧状に形成し、この円弧部位を
凹部99J1の内周面に摺接させてあり、さらに中央に
貫通孔114aか設けられている。圧力′/T113と
ニードルバルブ107との相互の対向部位は断面が円弧
状に形成され、この相互間に圧力室115が形成される
。 プランジャ室4つ側方のブロック47及びノズルナツト
93には、蓄圧室103内の圧力を所定圧の状態で圧力
室115に供給する圧力流入手段としての圧力供給用弁
117.及び所定圧に保なれている圧力室115内の圧
力を逃がす牛用をもつ電磁弁119が装着されている。 電磁弁119の弁体121内通路121aには、プロ・
ツク47及びアキュームレータバルブ9つにそれぞれ形
成された圧力供給通路123及び125なとを通して圧
力室115に連通している。圧力供給通路123とj+
力供給通路125との接続部位は2フロツク47側に凹
部478を、アキl−ムし一タノくルブ99側に凹部4
7aに密な状態て摺動可能に嵌合する凸部9つ;]をそ
れぞれ形成することで、アキ、l−ムレータバルブ99
が下降した場合でも圧力供給通路123及び125とプ
ランジャ室4つとが連通しないようにしている。弁体1
21は、ソレノイド127への通電によって第1図中で
右方向に移動可能で、これによって通路1 ’、2 ]
、 nを燃料配管129を介して燃料タンク63に開放
可能となる。 圧力供給用弁117は、圧力供給通路123に連通する
ブロック47内に形成された圧力供給通路131aと側
部通路101に連通するブロック47内に形成された圧
力供給通路13 l bとの間に介装された弁体135
.調整ねし137.弁体135と調整ねし137との間
に介装されて弁体135を第1図中で左方向に付勢する
ばね139から構成されており、圧力供給通路131b
に常時連通する弁体135内通路135aは、−f+体
135がばね139によって左方向に移動しているとき
圧力供給通R131aに連通可能となる。そして、ここ
でははね13つの付勢力に抗して弁体135か右方向に
移動するときの蓄圧室103内の圧力は、500 k 
g f 、/ c rn ’としである。 次に、このように構成された増圧式燃料噴射弁の動作を
第2図ないし第6図を用いて説明する。 まず三方電磁弁77に通電し、増圧室75と燃ト[開放
II 87とが連通状態となるようロッド81を図中で
右方向に移動させると、フィードポンプ61により圧送
される燃t4は、燃料配管59.燃ト[入口57及び燃
料通路55.51を通−)でプランジャ室49に供給さ
れる。 次に、燃料入口57と増圧室75とが連通状態となるよ
う三方電磁弁77に通電してロッド81を図中で左方向
に移動させると、フィードポンプ61により圧送される
燃料(よ、燃料配管59及び燃It入1’+ 57を通
って増圧室75に導かれる。増圧室75に燃料が導かれ
ると、この燃料により増圧ピストン71は、ばね73に
抗してプランジャ45とともに押し下げられ、プランジ
ャ室4つ内の圧力が超高圧(例えば3000kg r/
c:rn2)に加圧される。これに伴いアキ、1−ムレ
ータへルブ99はばね111に抗して押し下げられ、プ
ランジャ室4つ内の燃料は、側部通路101を通って蓄
圧室103に流入すると同時に、圧力供給通路131b
、弁体内通Rr135 a 、圧力供給通路131a、
123,125を通って圧力室115に流入する(第2
図参照)。 この過程において、蓄圧室103側の燃料圧力が500
 k g f / c rn ’まで達すると、弁体】
35はばね139に抗して右方向に移動して蓄圧室10
3と圧力室115とを遮断し、蓄圧室103及び圧力室
115内の圧力は前記500kgr/C: m 2に保
たれる(第3図参照)。 その俺、蓄圧室103内の圧力がさらに上昇し超高圧(
例えは3000k g f /<:rn2)に達すると
、第3図のようにアキュームレータバルブ9つが上昇し
て閑し、プランジャ室49と蓄圧室103とか遮断され
た状態となる。ここで、三方電磁弁77を作動させて増
圧室75と燃料開放[195とを再ひ連通さぜると、増
圧室75内の圧力は人気Ji−に開放され、増j1ビス
[・ン71はばね73に押されてプランンヤ45ととも
に−1する。これに(旧って〕゛ランンヤ室−49内の
jトカはフィード7)スシプ()1の供給性まて除々に
Ok下する。このとき、蓄圧室103内のノ1力が、ば
ね111とプランジ室49内の圧力とによ−ってニード
ルバルブ107をj刹しようとする力を1・1回れは、
ニードルハルフ107は圧力弁113とともに−IMし
て閉弁し、蓄圧室103内の燃1’4がI’i’+ 射
TL 97 ;Iカラ11n射される(第一1図参照)
。このときの蓄圧室103内の1勾3000kg、f7
cm’が燃料110射II−となる。 燃料が噴射されると、蓄圧室103内の圧力が徐々に低
下し、蓄圧室103に連通している圧力供給通路13 
l bの圧力も下がり、この圧力が500kgf/cm
2を下回った時点で弁体135は第5図のように左方向
に移動し、圧力供給通路131aと13 l bとを連
通させる。これにより、圧力室115は蓄圧室103内
圧力と同一となり、このときニードルバルブ107は圧
力弁113を押1−げたまま、ばね111の付勢力によ
ってのみ速やかに下降して閉弁し、噴射が終了する。こ
のときの圧力室115及び蓄圧室103内の圧力500
kgr/crn”が閉弁圧となる。 噴射が終了すると、第6図のようにフィードポンプ61
から次の噴射を行うための燃V[がプランジャ室4つ内
に流入する。このとき、圧力室115内の圧力は閉弁圧
にに昇したままであるので、電磁弁119のソレノイド
127に通電することにより、弁体内通路121aと燃
料配管129と連通させて圧力室115を大気圧に開放
し、開放された燃料は燃料タンク63に戻される。この
状態て蓄j1:室103は閏か、圧を僅かに下回った高
圧にf〉コたれる。その後、ソレノイド127への通電
か停止1−されて電磁弁117か閉弁すると、第2図に
示すプランジャ室4つへの加圧状態に移行し、以降は」
二足動作を繰り返す。 第7図は従来例での噴射圧及び閉弁圧と、これに対応す
る燃料ni射率及び噴射期間を示し、第814は1.記
実施例での噴射圧及び閉弁圧と、これに対応」゛る燃i
t l’a射率及び噴射期間を示している。 1゛記実施例ての閉弁圧は、圧力供給用弁117(こよ
−って、ブラン′ン゛ヤ室49で゛のフィードポンプ。 01による供給性200kg f/cm”  (FM来
の(供給j1−に川′!1)より高めの500 k g
 r / c: m ’に設定してあり、しかもプラン
ジャ45の下降によく)蓄圧室103内員大圧力、ずな
わち11n射圧をrit ”hの200 (,11k 
g f y′c m 2から3000kg[(・ITI
 ’まで高めである。この結果、燃料噴射後これか終了
する1η弁時期は、蓄圧室103内圧力か、 500 
k g f’ 7 c m 2とな−)でいる圧力室)
:3内圧力に達するまでてよいので早くなり、したがっ
て燃料噴射量を1に来と同等としたまま、噴射期間を1
,1からt2まて短縮化できる。これにより、燃焼及び
排気性能が改善され、燃費も大幅に低減されることにな
る。しかも、上記閉弁圧は、圧力供給用弁117のねし
119を調整することにより設定できるので、噴射期間
もこれに応じて設定できる。 また−に記閉弁動rヤは、蓄圧室103内圧力が圧力室
115内圧力まて°下がったときに、はね111の付勢
力だけで行われるので閉弁動作が速く、このため燃焼に
悪影響を及はす、燃料後だれに起因する後燃えを防止で
きる。 第9図はこの発明の第2の実施例を示している。 この実施例は、第1図に示した電磁弁117を廃I卜し
、この電磁弁117の動作を、第1の実施例の三方電磁
弁77に代えてノズルヘッド141に設けた棒状弁14
3に兼用させたものである。その池の構成は第1の実施
例と同様である。 棒状弁143は、ソレノイド145と、ソレノイド14
5によって図中で左右方向に移動する棒状弁本体147
とから構成されている。棒状弁本体147には、燃料入
口149に連通ずる主通路151と、主通路151の途
中及び端部に直交するよう設けられる第1及び第2連通
路153及び155と、主通路151よりソレノイド1
45側に設けられた第3及び第4連通路157及び15
9とが形成されている。 第9図に示す状態では、第2連通路155が増圧室16
1に連通しており、このとき増圧室161に燃料が供給
されてプランジャ室4つが加圧状態となる。一方、この
状態から棒状弁本体147が左方向に移動すると、第1
連通路153が燃料通路163に連通し、第3連通路1
57が増圧室161と燃ト[開放II I G 5とを
連通さぜる。このとき、燃t1通路163を通してプラ
ンジャ室4つに新たな燃料を供給する。そして、さらに
棒状弁本体147を左方向に移動させると、第4連通路
159が、圧力室115に接続している流路167と燃
料開放口165とを連通さぜる。これにより、閉弁圧ま
で」1昇している圧力室115内の圧力が減圧される。 この実施例においても、第1の実施例同様、高1+噴射
で充分な燃料の微粒化を行いながら所望の噴射量のまま
、噴射期間を充分短縮化でき、燃焼及び排気性能が改善
され燃費も大幅に低減されることになる。また、この場
合圧力室115内を減圧させる動作を、増圧室161を
燃料入II 149と燃料開放111 G 5とに切換
える棒状弁に143に兼用させたので、−F〜、記減圧
のための専用の電磁弁が不要となり、その分コスト・低
下を図ることができる。 [発明の効果] 以I−説明してきたようにこの発明によれは、lIQ射
川開用弁のプランジャ室側には噴射用開閉弁との間に圧
力室を形成する圧力弁を設け、弾性手段によって閉弁方
向に付勢される噴射用量11弁か収納される蓄圧室と圧
力室とを連通可能にする圧力供給通路を設け、この圧力
供給通路に、燃$4 l!a射後前後前記蓄圧室内料を
圧力室に所定の圧力で流入させる圧力流入手段を設ける
構成としたため、圧力流入手段によって設定された圧力
室内の圧力を閉弁圧とすることができるので、閉弁圧を
プランジャ室への供給圧とは関係なくそれより高めに設
定でき、これにより閉弁時期が早まり、高圧噴射で充分
な燃料の微粒化を行いながら所定の噴射量で燃料噴射期
間を充分短縮化することができ、燃焼及び排気性能の改
善、燃費の低減を達成することができる。
When the force that tries to close the 10 injection on-off valve is turned by 1, the 110 injection on-off valve closes and the fuel in the pressure accumulation chamber is injected by 11n. During fuel f'4'C injection, the pressure in the pressure storage chamber decreases, and when this pressure becomes equal to the predetermined I+ force in the pressure chamber, the injection on-off valve is activated by the action of the elastic means. Promptly speak ['' only at By setting the pressure from the pressure accumulation chamber that supplies the pressure chamber, that is, the valve closing pressure, to be higher than the supply pressure to the plunger chamber, this jump timing can be made earlier, and the injection period can be shortened.9 (Example) Embodiments of the present invention will be described below with reference to the drawings.
The I'm injection valve is a pressure booster plunger type that pressurizes the fuel using hydraulic pressure used in diesel engines.
The plunger 45 is provided so that its distal end side can slide within a block 47, and four plunger chambers are formed surrounded by the end face of the plunger 45 and the block 47. The four plunger chambers have fuel passages 51 formed in the block 47.
.. A check valve 52 provided in the middle of the fuel passage 51. It is possible to communicate with the fuel inlet 1] 57 via a fuel pt passage 55 formed in the nozzle throat 53. The fuel inlet [1157] is connected to one end of the fuel pipe 59, and the other end of the five fuel pipes is connected to a fuel tank 63 with a feed pump 61 provided in the middle. 65 is pressure adjustment valve 1 (56
is a pressure gauge, and 67 is an accumulator. The base side of the plunger 45 on the opposite side from the four plunger chambers protrudes into a sliding hole 69 formed in the nozzle nut 53, and a base end side of the plunger 45 comes into contact with the six sliding holes. A cap-shaped pressure increase piston 71 is slidably housed. The pressure increasing piston 71 is biased in the direction by a spring 73 provided on the plunger 45 side, and a pressure increasing chamber 75 is formed on the opposite side of the pressure increasing piston 71 from the spring 73. There is. The pressure boosting chamber 75 can communicate with a fuel inlet 157 via a three-way solenoid valve 77 in the middle. Three-way electromagnetic fr77
When the seven solenoids are energized or de-energized, the Hall valves 83 and 85 provided at the tip and middle of the lot 81 move, and the pressure intensifying chamber 75 is brought into communication with the combustion chamber 157. , fuel t-+ open 1'J 87 can be switched.
is connected to the fuel tantalo 3. Plunger 4
The nozzle body 91 is located below the block 47 on which the nozzle 5 slides.
is attached by a nozzle nut 93, and a nozzle tip 95 is attached to the lower side of the nozzle body 91 by a retainer 97. The plunger chamber 4 is located on the block 47 side of the nozzle body 91.
A pressure accumulating chamber 103 is formed in the nozzle body 9 and a pressure accumulating chamber 103 that can communicate through a side passage 101 of the accumulator valve 99 is formed.
On the nozzle tip 95 side of No. 1 and on the nozzle tip 95, an 11^ injection fuel flow path 105 communicating with the pressure accumulation chamber 103 is formed. A needle valve 107 as an injection opening/closing valve is housed in the pressure accumulation chamber 103 and the injection fuel flow path 105 so as to be movable up and down. 97a can be opened and closed. At the end of the four plunger chambers of the needle valve 107,
The nine accumulator valves are slidably fitted into the accumulator valve 99 and the needle valve 1.
Flange 109 formed inside the pressure accumulation chamber 103 of 07
A spring 111 as an elastic means is interposed between the two and biases the nine accumulator valves toward the four plunger chambers. On the four plunger chamber sides of the nine accumulator valves, a pressure valve 113 is slidably disposed to face one end of the needle valve 107. pressure valve 11
A flange 114 that is housed in a four part 99a formed in the accumulator valve 99 is mounted on the end portion of the four plunger chambers that protrudes from the nine accumulator valves of No. 3. The flange 114 has a triangular shape. The three apex portions are formed into a circular arc shape, and the circular arc portions are brought into sliding contact with the inner circumferential surface of the recessed portion 99J1, and a through hole 114a is provided in the center. The opposing portions of the pressure '/T 113 and the needle valve 107 have arcuate cross sections, and a pressure chamber 115 is formed between them. The block 47 and the nozzle nut 93 on the four sides of the plunger chamber are provided with a pressure supply valve 117, which serves as a pressure inflow means for supplying the pressure in the pressure accumulation chamber 103 to the pressure chamber 115 at a predetermined pressure. A solenoid valve 119 is also installed to release the pressure inside the pressure chamber 115 which is maintained at a predetermined pressure. The passage 121a in the valve body 121 of the solenoid valve 119 has a professional
It communicates with the pressure chamber 115 through pressure supply passages 123 and 125 formed in the plug 47 and nine accumulator valves, respectively. Pressure supply passage 123 and j+
The connecting portion with the force supply passage 125 is a concave portion 478 on the second block 47 side, and a concave portion 478 on the aluminum block 47 side.
By forming nine convex portions that fit tightly and slidably into 7a, the space and l-mulator valve 99
Even if the pressure supply passages 123 and 125 are lowered, the four plunger chambers are prevented from communicating with each other. Valve body 1
21 can be moved to the right in FIG. 1 by energizing the solenoid 127, thereby opening the passages 1', 2]
, n can be opened to the fuel tank 63 via the fuel pipe 129. The pressure supply valve 117 is located between a pressure supply passage 131a formed in the block 47 communicating with the pressure supply passage 123 and a pressure supply passage 131b formed in the block 47 communicating with the side passage 101. Interposed valve body 135
.. Adjustment 137. It is composed of a spring 139 that is interposed between the valve body 135 and the adjustment screw 137 and urges the valve body 135 to the left in FIG. 1, and the pressure supply passage 131b
The internal passage 135a of the valve body 135, which is always in communication with the pressure supply passage R131a, can be communicated with the pressure supply passage R131a when the -f+ body 135 is moved to the left by the spring 139. Here, the pressure inside the pressure accumulation chamber 103 when the valve body 135 moves to the right against the urging force of 13 springs is 500 k
g f ,/c rn '. Next, the operation of the pressure increase type fuel injection valve configured as described above will be explained using FIGS. 2 to 6. First, the three-way solenoid valve 77 is energized and the rod 81 is moved to the right in the figure so that the pressure boosting chamber 75 and the fuel t4 open II 87 are in communication. , fuel piping 59. The fuel is supplied to the plunger chamber 49 through the inlet 57 and the fuel passage 55.51. Next, when the three-way solenoid valve 77 is energized and the rod 81 is moved to the left in the figure so that the fuel inlet 57 and the pressure intensifying chamber 75 are in communication, the fuel ( The fuel is guided to the pressure boosting chamber 75 through the fuel pipe 59 and the fuel input 1'+ 57. When the fuel is guided to the pressure boosting chamber 75, the pressure boosting piston 71 is moved against the spring 73 by the plunger 45. The pressure inside the four plunger chambers reaches an extremely high pressure (e.g. 3000 kg r/
c:rn2). Accordingly, the 1-mulator valve 99 is pushed down against the spring 111, and the fuel in the four plunger chambers flows into the pressure accumulation chamber 103 through the side passage 101, and at the same time, the fuel in the pressure supply passage 131b
, valve body passage Rr135a, pressure supply passage 131a,
123, 125 into the pressure chamber 115 (second
(see figure). During this process, the fuel pressure on the pressure accumulation chamber 103 side increases to 500
When it reaches k g f / cr n', the valve body]
35 moves to the right against the spring 139 and moves to the pressure accumulation chamber 10.
3 and the pressure chamber 115 are shut off, and the pressure in the pressure accumulation chamber 103 and the pressure chamber 115 is maintained at the above-mentioned 500 kgr/C: m 2 (see FIG. 3). That's me, the pressure inside the pressure accumulator chamber 103 has further increased to an ultra-high pressure (
For example, when the pressure reaches 3000 kg f /<:rn2), the nine accumulator valves rise and become idle as shown in FIG. 3, and the plunger chamber 49 and the pressure accumulation chamber 103 are cut off. Here, when the three-way solenoid valve 77 is operated and the pressure increase chamber 75 and the fuel release valve [195] are communicated again, the pressure inside the pressure increase chamber 75 is released completely, and the pressure increase valve 75 is opened to the fuel release valve [195]. The plunger 71 is pushed by the spring 73 and decreases by -1 along with the plunger 45. In response to this (in the old days), the feedability of the feed 7 in the runner chamber 49 and the feedability of the suship ( ) 1 gradually became OK. At this time, if the force in the pressure accumulator 103 is 1.1 times the force trying to break the needle valve 107 due to the spring 111 and the pressure in the plunge chamber 49, then
The needle half 107 and the pressure valve 113 go -IM and close, and the fuel 1'4 in the pressure accumulating chamber 103 is injected with I'i'+ TL 97 ;I color 11n (see Figure 11).
. At this time, one gradient in the pressure accumulation chamber 103 is 3000 kg, f7
cm' becomes the fuel 110 injection II-. When fuel is injected, the pressure inside the pressure accumulation chamber 103 gradually decreases, and the pressure supply passage 13 communicating with the pressure accumulation chamber 103 gradually decreases.
The pressure at l b also decreases, and this pressure becomes 500 kgf/cm.
2, the valve body 135 moves to the left as shown in FIG. 5, thereby communicating the pressure supply passages 131a and 131b. As a result, the pressure in the pressure chamber 115 becomes the same as the pressure inside the pressure accumulation chamber 103, and at this time, the needle valve 107 quickly lowers and closes only by the biasing force of the spring 111 while keeping the pressure valve 113 pressed, and the injection is stopped. finish. At this time, the pressure inside the pressure chamber 115 and the pressure accumulation chamber 103 is 500
kgr/crn" becomes the valve closing pressure. When the injection is finished, the feed pump 61 is turned on as shown in Fig. 6.
The fuel V for the next injection flows into the four plunger chambers. At this time, the pressure inside the pressure chamber 115 remains elevated to the valve closing pressure, so by energizing the solenoid 127 of the solenoid valve 119, the valve body passage 121a and the fuel pipe 129 are communicated, and the pressure chamber 115 is opened. It is opened to atmospheric pressure, and the released fuel is returned to the fuel tank 63. In this state, the storage j1: chamber 103 falls to a high pressure slightly lower than the jump pressure. After that, when the solenoid 127 is energized or stopped and the solenoid valve 117 is closed, the state shifts to the state in which the four plunger chambers are pressurized as shown in FIG.
Repeat the bipedal movement. FIG. 7 shows the injection pressure and valve closing pressure and the corresponding fuel injection rate and injection period in the conventional example, and No. 814 is 1. The injection pressure and valve closing pressure in the example described above, and the corresponding fuel i
t l'a ejection rate and injection duration are shown. The closing pressure in the embodiment described above is 200 kg f/cm" (from the FM system). Supply j1-to the river'!1) Higher 500 kg
r/c: set to m', which is good for the descent of the plunger 45).
g f y′c m 2 to 3000 kg [(・ITI
'It's expensive. As a result, the 1η valve timing that ends after fuel injection is either the pressure inside the pressure accumulator 103 or 500.
pressure chamber with kg f' 7 cm 2)
:It is faster because it only takes until the internal pressure reaches 3. Therefore, the injection period can be changed to 1 while keeping the fuel injection amount the same as in 1.
, 1 to t2 can be shortened. This will improve combustion and exhaust performance and significantly reduce fuel consumption. Moreover, since the valve closing pressure can be set by adjusting the head 119 of the pressure supply valve 117, the injection period can also be set accordingly. In addition, the valve closing operation described in - is carried out only by the biasing force of the spring 111 when the pressure inside the pressure storage chamber 103 drops to the pressure inside the pressure chamber 115, so the valve closing operation is quick, and therefore the combustion It can prevent afterburn caused by fuel dripping, which has a negative impact on the fuel. FIG. 9 shows a second embodiment of the invention. In this embodiment, the solenoid valve 117 shown in FIG.
3 is also used. The configuration of the pond is similar to that of the first embodiment. The rod-shaped valve 143 has a solenoid 145 and a solenoid 14.
5, the rod-shaped valve body 147 moves in the left-right direction in the figure.
It is composed of. The rod-shaped valve body 147 includes a main passage 151 communicating with the fuel inlet 149, first and second communication passages 153 and 155 provided perpendicularly to the middle and end of the main passage 151, and a solenoid 1 connected to the main passage 151.
Third and fourth communication passages 157 and 15 provided on the 45 side
9 is formed. In the state shown in FIG. 9, the second communication passage 155 is
At this time, fuel is supplied to the pressure increase chamber 161 and the four plunger chambers are pressurized. On the other hand, when the rod-shaped valve body 147 moves leftward from this state, the first
The communication passage 153 communicates with the fuel passage 163, and the third communication passage 1
57 connects the pressure boosting chamber 161 and the combustion chamber 57 to communicate with each other. At this time, new fuel is supplied to the four plunger chambers through the fuel t1 passage 163. Then, when the rod-shaped valve body 147 is further moved to the left, the fourth communication passage 159 communicates the flow passage 167 connected to the pressure chamber 115 and the fuel release port 165. As a result, the pressure within the pressure chamber 115, which has increased by 1'' to the valve closing pressure, is reduced. In this embodiment, as in the first embodiment, the injection period can be sufficiently shortened while maintaining the desired injection amount while sufficiently atomizing the fuel with high 1+ injection, improving combustion and exhaust performance and reducing fuel consumption. This will result in a significant reduction. In addition, in this case, since the operation of reducing the pressure inside the pressure chamber 115 is made to function as the rod-like valve 143 that switches the pressure increasing chamber 161 between fuel input II 149 and fuel release 111 G 5, -F~, for the above pressure reduction This eliminates the need for a dedicated solenoid valve, which can reduce costs accordingly. [Effects of the Invention] As described below, according to the present invention, a pressure valve is provided on the plunger chamber side of the IQ Ikawa opening valve to form a pressure chamber between it and the injection opening/closing valve. A pressure supply passage is provided to enable communication between the pressure chamber and a pressure accumulation chamber in which the 11 injection volume valves which are biased in the valve closing direction by means are provided. Since the structure is provided with a pressure inflow means for causing the inside of the pressure accumulation chamber to flow into the pressure chamber at a predetermined pressure before and after the a injection, the pressure inside the pressure chamber set by the pressure inflow means can be set as the valve closing pressure. The valve pressure can be set higher regardless of the supply pressure to the plunger chamber, which allows the valve to close earlier, ensuring sufficient fuel atomization with high-pressure injection and a sufficient fuel injection period with a predetermined injection amount. It is possible to improve combustion and exhaust performance, and reduce fuel consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を示す燃料噴射弁の断
面図、第2図ないし第6図はその動作説明図、第7図は
従来例における閉弁圧と噴射圧との変化による燃料噴射
率と噴射期間とダ示す説明図、第8図は第1の実施例に
おける閉弁圧と噴射圧との変化による燃料噴射率と噴射
期間とを示す説明図、第9図はこの発明の第2の実施例
を示す燃料噴射弁の断面図、第1013はjK来例を示
す燃ト[噴射弁の断面図である。 45・プランジャ  49・・・プランジャ室75・・
増圧室   103・・蓄圧室07・・ニートルバルフ
(噴射用開閉弁)11・・はね(弾性手段) 13・・・圧力弁  115・・・圧力室17・・圧力
供給用弁(圧力流入手段)23.125,131a、1
31b−・圧力供給通路
Fig. 1 is a sectional view of a fuel injection valve showing a first embodiment of the present invention, Figs. 2 to 6 are explanatory diagrams of its operation, and Fig. 7 is a change in valve closing pressure and injection pressure in a conventional example. FIG. 8 is an explanatory diagram showing the fuel injection rate and injection period according to changes in valve closing pressure and injection pressure in the first embodiment, and FIG. 1013 is a cross-sectional view of a fuel injection valve showing a second embodiment of the invention, and No. 1013 is a cross-sectional view of a fuel injection valve showing a JK conventional example. 45・Plunger 49...Plunger chamber 75...
Pressure boosting chamber 103... Pressure accumulating chamber 07... Neattle valve (injection on/off valve) 11... Spring (elastic means) 13... Pressure valve 115... Pressure chamber 17... Pressure supply valve (pressure inflow means) )23.125,131a,1
31b-・Pressure supply passage

Claims (1)

【特許請求の範囲】[Claims] 往復動可能なプランジャの先端側に噴射用燃料が供給さ
れるプランジャ室が設けられる一方、前記プランジャの
基部側にはプランジャ室の圧力を増圧するための増圧用
燃料が供給される増圧室が設けられ、前記プランジャ室
に連通可能で前記噴射用燃料が充填される蓄圧室には、
弾性手段によつて閉弁方向に付勢される噴射用開閉弁が
設けられた増圧式燃料噴射弁において、前記噴射用開閉
弁のプランジャ室側には噴射用開閉弁との間に圧力室を
形成する圧力弁を設け、前記圧力室と前記蓄圧室とを連
通可能にする圧力供給通路を設け、この圧力供給通路に
、燃料噴射後前記蓄圧室内の燃料を圧力室に所定の圧力
で流入させる圧力流入手段を設けたことを特徴とするを
増圧式燃料噴射弁。
A plunger chamber to which fuel for injection is supplied is provided on the tip side of the reciprocally movable plunger, while a pressure increasing chamber is provided at the base side of the plunger to which fuel for pressure increase is supplied to increase the pressure in the plunger chamber. A pressure accumulator chamber is provided, is capable of communicating with the plunger chamber, and is filled with the injection fuel,
In a pressure booster fuel injection valve provided with an injection on-off valve that is biased in the closing direction by an elastic means, a pressure chamber is provided between the injection on-off valve and the plunger chamber side of the injection on-off valve. A pressure valve is provided to allow communication between the pressure chamber and the pressure accumulation chamber, and a pressure supply passage is provided to allow the fuel in the pressure accumulation chamber to flow into the pressure chamber at a predetermined pressure after fuel injection. A pressure increase type fuel injection valve characterized by being provided with a pressure inflow means.
JP1356890A 1990-01-25 1990-01-25 Pressure intensifying type fuel injection valve Pending JPH03222860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1356890A JPH03222860A (en) 1990-01-25 1990-01-25 Pressure intensifying type fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1356890A JPH03222860A (en) 1990-01-25 1990-01-25 Pressure intensifying type fuel injection valve

Publications (1)

Publication Number Publication Date
JPH03222860A true JPH03222860A (en) 1991-10-01

Family

ID=11836768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1356890A Pending JPH03222860A (en) 1990-01-25 1990-01-25 Pressure intensifying type fuel injection valve

Country Status (1)

Country Link
JP (1) JPH03222860A (en)

Similar Documents

Publication Publication Date Title
KR100596642B1 (en) Fuel injector with direct needle valve control
JP2003507639A (en) Fuel injection method and fuel injection mechanism combining stroke control and pressure control for internal combustion engine
WO2002040856A1 (en) Electronic control fuel injection device
JPH06299928A (en) Fuel injection device for internal combustion engine
JP2002513885A (en) A hydraulically driven fuel injector without a spring
JPH06510581A (en) injection device
JP4567264B2 (en) Method and apparatus for performing fuel injection
US7216815B2 (en) Control valve for a fuel injector comprising a pressure exchanger
JP4241601B2 (en) Fuel injection device and fuel injection method
JP2001073900A (en) Fuel injection method and fuel injection system for internal combustion engine
WO2005066485A1 (en) Fuel injector with piezoelectric actuator and method of use
JPH03222860A (en) Pressure intensifying type fuel injection valve
JPS59141764A (en) Fuel injection device
JP2004521242A (en) Fuel injection device with booster
JPS56106061A (en) Fuel injector for internal combustion engine*particularly*diesel engine
JP2005519222A (en) Device for forming injection characteristics based on pressure regulation
KR101433041B1 (en) Fuel injector
JP2005320904A (en) Fuel injection valve
JPS6153455A (en) Fuel injection nozzle
JPS56165760A (en) High-pressure fuel injector
JP2006161678A (en) Fuel injection nozzle, fuel injection valve and fuel injection device
KR101333795B1 (en) Fuel Injector
JP4045922B2 (en) Fuel injection device for internal combustion engine
JPS61116060A (en) Fuel injection device capable of injecting two kinds of fuels in turn
JPH0643489Y2 (en) Fuel injection device for internal combustion engine