JPH03222404A - Ignition coil for internal combustion engine - Google Patents

Ignition coil for internal combustion engine

Info

Publication number
JPH03222404A
JPH03222404A JP2018489A JP1848990A JPH03222404A JP H03222404 A JPH03222404 A JP H03222404A JP 2018489 A JP2018489 A JP 2018489A JP 1848990 A JP1848990 A JP 1848990A JP H03222404 A JPH03222404 A JP H03222404A
Authority
JP
Japan
Prior art keywords
iron core
synthetic resin
ignition coil
gap
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018489A
Other languages
Japanese (ja)
Other versions
JP2529748B2 (en
Inventor
Eiichiro Kondo
英一郎 近藤
Hiroshi Watanabe
博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP2018489A priority Critical patent/JP2529748B2/en
Publication of JPH03222404A publication Critical patent/JPH03222404A/en
Application granted granted Critical
Publication of JP2529748B2 publication Critical patent/JP2529748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To improve both thermal and impact resistance by inhibiting the inflow of hot-setting resin into a gap between an iron core and a primary coil in an internal combustion engine ignition coil made of hot-setting materials. CONSTITUTION:An attempt is made to lay out a sealing material 8 which covers the upper end of a gap 11 between an iron core 7 and a primary bobbin 1 on the upper end of the iron core 7. A further attempt is made to inject hot- setting synthetic resin, for example, epoxy resin 10 into a case 9 and then heat the resin 10 so that it may hot-set. Before the hot-setting synthetic resin 10 is injected, a sealing material 8 is installed to one end of the iron core 7. The sealing material 8 is designed to cover a gap 11 produced between a bobbin 1 and a primary coil which adjoins the iron core 7. This construction prevents the hot-setting synthetic resin from flowing into a gap when it is injected so that an air layer may be formed in the gap 8. It is, therefore, possible to prevent the generation of thermal stress induced by a differential linear expansion coefficient of the iron core 7 and the hot-setting synthetic resin 10 at the gap between the iron core 7 and the primary bobbin 1, thereby preventing thermal impact resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関用点火コイルおよびその製造方法に係
わり、特に、コイル、鉄心等の点火コイルの構成部品を
熱可塑性樹脂で予め成形したケースに収納した後、その
ケース内に熱硬化性合成樹脂を注入し、熱硬化してなる
内燃機関用点火コイルおよびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ignition coil for an internal combustion engine and a method for manufacturing the same, and particularly to a case in which the components of the ignition coil such as the coil and the iron core are pre-molded with thermoplastic resin. The present invention relates to an ignition coil for an internal combustion engine, which is obtained by injecting a thermosetting synthetic resin into the case and thermosetting the ignition coil after the ignition coil is housed in the case, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

内燃機関用点火コイルには幾つかの製造方法があり、そ
の1つに、例えば特開昭63−70508号公報に記載
のように、一次コイル、二次コイル、鉄心等の点火コイ
ルの構成部品を、ポリブチレンテレフタレート等の熱可
塑性合成樹脂で予め射出成型されたケースに収納した後
、そのケース内にエポキシ樹脂等の熱硬化性合成樹脂を
注入し、熱硬化するものがある。
There are several manufacturing methods for ignition coils for internal combustion engines, and one of them, for example, as described in Japanese Patent Application Laid-Open No. 63-70508, is to manufacture ignition coil components such as the primary coil, secondary coil, and iron core. There are some cases in which a thermosetting synthetic resin such as an epoxy resin is injected into the case after being housed in a case pre-injection molded with a thermoplastic synthetic resin such as polybutylene terephthalate, and then thermosetted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来技術においては、上述した点火コイルの構成部
品を予め射出成型されたケースに収納した状態において
、鉄心の上端部分は開放されていると共に、鉄心と一次
ボビンとの間には、これらを別々に製造した後、鉄心を
一次ボビン内に収納するため僅かな隙間がある。したが
って、その後ケース内に熱硬化性樹脂を注入したとき、
その熱硬化性樹脂は鉄心と一次ボビンとの間の隙間にも
流れ込み、他の樹脂と一緒に熱硬化する。
In this prior art, the above-mentioned components of the ignition coil are housed in a pre-injection molded case, and the upper end of the iron core is open, and these parts are separated between the iron core and the primary bobbin. After manufacturing, there is a small gap in order to store the iron core in the primary bobbin. Therefore, when thermosetting resin is subsequently injected into the case,
The thermosetting resin also flows into the gap between the iron core and the primary bobbin, and is thermoset together with other resins.

ところで、鉄心と熱硬化性合成樹脂とは材料の違いから
線膨脹係数に差がある。このことから、熱衝撃試験でそ
の線膨脹係数の差により鉄心と一次ボビンとの隙間に位
置する熱硬化性樹脂にクラックが生じ、そのうち特に鉄
心の上端付近に生じたクラックが発達し、一次コイルと
二次コイルの間で絶縁破壊に至り、出力電圧の低下を招
くという問題がある。
By the way, there is a difference in linear expansion coefficient between the iron core and the thermosetting synthetic resin due to the difference in materials. For this reason, in a thermal shock test, cracks occurred in the thermosetting resin located in the gap between the iron core and the primary bobbin due to the difference in linear expansion coefficient, and the cracks that appeared near the upper end of the iron core developed, and the primary coil There is a problem in that dielectric breakdown occurs between the coil and the secondary coil, resulting in a drop in output voltage.

なお、他の製造方法による内燃機関用点火コイルのこの
種の問題に関連するものとしては、特開昭50−741
23号公報、特開昭50−98625号公報、特開昭5
6−93309号公報等がある。
Incidentally, as related to this kind of problem with ignition coils for internal combustion engines produced by other manufacturing methods, Japanese Patent Application Laid-Open No. 50-741
No. 23, JP-A-50-98625, JP-A-Sho 5
There are publications such as No. 6-93309.

本発明の目的は、コイル、鉄心等の点火コイルの構成部
品を熱可塑性樹脂で予め成形したケースに収納した後、
そのケース内に熱硬化性合成樹脂を注入し、熱硬化して
なる内燃機関用点火コイルにおいて、鉄心と一次コイル
との間の隙間に熱硬化性樹脂が流れ込むことを阻止する
ことにより耐熱衝撃性に優れた内燃機関用点化コイルを
提供すると共に、その製造方法を提供することである。
The purpose of the present invention is to store the components of the ignition coil such as the coil and iron core in a case pre-molded with thermoplastic resin, and then
In internal combustion engine ignition coils, which are made by injecting thermosetting synthetic resin into the case and thermosetting it, thermal shock resistance is achieved by preventing the thermosetting resin from flowing into the gap between the iron core and the primary coil. It is an object of the present invention to provide a scorching coil for an internal combustion engine that is excellent in terms of performance, and to provide a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、一次コイル、二次
コイル、鉄心等の点火コイルの構成部品を、熱可塑性合
成樹脂で予め成形されたケースに収納した後、そのケー
ス内に熱硬化性合成樹脂を注入し、熱硬化してなる内燃
機関用点火コイルにおいて、前記鉄心の一端に隣接して
、前記熱硬化性合成樹脂の注入時にその熱硬化性合成樹
脂が鉄心と一次コイルのボビンとの間の隙間に流れ込む
のを阻止する封止部材を設け、前記隙間を空気層とした
ものである。
In order to achieve the above-mentioned object, the present invention stores the components of an ignition coil such as a primary coil, a secondary coil, and an iron core in a case pre-molded with thermoplastic synthetic resin, and then injects thermosetting resin into the case. In an ignition coil for an internal combustion engine formed by injecting a synthetic resin and thermosetting it, the thermosetting synthetic resin is placed adjacent to one end of the iron core, and when the thermosetting synthetic resin is injected, the thermosetting synthetic resin is bonded to the iron core and the bobbin of the primary coil. A sealing member is provided to prevent air from flowing into the gap between the two, and the gap is used as an air layer.

前記封止部材は好ましくは独立気泡を有するシリコンゴ
ムで構成される。
The sealing member is preferably made of silicone rubber having closed cells.

また、本発明は、一次コイル、二次コイル、鉄心等の点
火コイルの構成部品を、熱可塑性合成樹脂で予め成形さ
れたケースに収納した後、そのケース内に熱硬化性合成
樹脂を注入し、熱硬化してなる内燃機関用点火コイルの
製造方法において、前記熱硬化性合成樹脂を注入する前
に、前記鉄心の一端に隣接して鉄心と一次コイルのボビ
ンとの間の隙間に蓋をする封止部材を配置し、熱硬化性
合成樹脂の注入時にそれが前記隙間に流れ込むのを阻止
するものである。
Furthermore, the present invention involves housing the components of the ignition coil, such as the primary coil, secondary coil, and iron core, in a case pre-molded with thermoplastic synthetic resin, and then injecting thermosetting synthetic resin into the case. In the method for manufacturing a thermosetting ignition coil for an internal combustion engine, before injecting the thermosetting synthetic resin, a lid is placed adjacent to one end of the iron core in the gap between the iron core and the bobbin of the primary coil. A sealing member is disposed to prevent thermosetting synthetic resin from flowing into the gap when it is injected.

前記封止部材の配置は、好ましくは、液状のシリコンゴ
ムで室温硬化が可能であると同時に、熱硬化性樹脂して
独立気泡を形成する性状のものを滴下することにより行
う。また、封止部材の配置は、独立気泡を有するシリコ
ンゴムシートをプレス成形したもめを用いることにより
行ってもよい。
The sealing member is preferably arranged by dropping a liquid silicone rubber that can be cured at room temperature and a thermosetting resin that forms closed cells. Further, the sealing member may be arranged by using a press molding of a silicone rubber sheet having closed cells.

〔作用〕[Effect]

熱硬化性合成樹脂を注入する前に、鉄心の一端に隣接し
て鉄心と一次コイルのボビンとの間の隙間に蓋をする封
止部材を配置し、熱硬化性合成樹脂の注入時にそれが前
記隙間に流れ込むのを阻止することにより、その隙間に
空気層が形成されるので、鉄心と熱硬化性合成樹脂との
線膨脹係数の差による熱応力の発生が防止され、耐熱衝
撃性に優れた構成が得られる。
Before injecting the thermosetting synthetic resin, place a sealing member adjacent to one end of the iron core to cover the gap between the iron core and the bobbin of the primary coil. By preventing the flow into the gap, an air layer is formed in the gap, which prevents the generation of thermal stress due to the difference in linear expansion coefficient between the iron core and the thermosetting synthetic resin, resulting in excellent thermal shock resistance. A new configuration can be obtained.

また、封止部材に独立気泡を有するシリコンゴムを使用
することにより十分な応力吸収効果が期待できるので、
封止部材により鉄心の一端と封止部材に隣接する熱硬化
性合成樹脂との間での線膨脹係数の差による熱応力が吸
収され、耐熱衝撃性がさらに改善される。
In addition, by using silicone rubber with closed cells for the sealing member, a sufficient stress absorption effect can be expected.
The sealing member absorbs thermal stress due to the difference in linear expansion coefficient between one end of the core and the thermosetting synthetic resin adjacent to the sealing member, further improving thermal shock resistance.

液状のシリコンゴムで室温硬化が可能であると同時に、
熱硬化時発泡して独立気泡を形成する性状のものを滴下
することにより封止部材を配置することにより、封止部
材を配置する作業が容易となる。
Liquid silicone rubber can be cured at room temperature, and at the same time,
By disposing the sealing member by dropping a material that foams to form closed cells when cured under heat, the work of disposing the sealing member becomes easy.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、一次ボビン1には一次コイル2が巻装
され、二次ボビン3には二次コイル4が巻装されている
。一次ボビン1は熱可塑性合成樹脂で成形されている。
In FIG. 1, a primary coil 2 is wound around a primary bobbin 1, and a secondary coil 4 is wound around a secondary bobbin 3. The primary bobbin 1 is molded from thermoplastic synthetic resin.

一次コイル2は線径が0゜3〜1.0口程度のエナメル
線を一層当たり数千回ずつ、数層に渡り合計1oo〜3
00回程度積層巻きされている。二次ボビン3は、一次
ボビン1と同じような合成樹脂により成形されていて、
軸方向に配置された複数個のフランジ5と、このフラン
ジ5によって区切られた複数個の溝6とを有している。
The primary coil 2 is made of enamelled wire with a wire diameter of about 0°3 to 1.0 mm, and is rolled several thousand times per layer, totaling 10 to 3 times over several layers.
It is laminated and wound about 00 times. The secondary bobbin 3 is molded from the same synthetic resin as the primary bobbin 1,
It has a plurality of flanges 5 arranged in the axial direction and a plurality of grooves 6 separated by the flanges 5.

二次コイル4は線径0.03〜0゜1wn程度のエナメ
ル線を用いて合計5000〜20000回程度巻装され
ている。一次ボビン1の内側には鉄心7が挿入され、そ
の上端に後述する封止部材8が配置されている。一次ボ
ビン1は二次ボビン3の内側に挿入されている。これら
点火コイルの構成部品はポリブチレンテレフタレート等
の熱可塑性合成樹脂で予め射出成型されたケース9に収
納され、ケース9内において点火コイルの構成部品の周
囲には熱硬化した樹脂、例えばエポキシ樹脂10が充填
されている。
The secondary coil 4 is wound approximately 5,000 to 20,000 times in total using enameled wire with a wire diameter of approximately 0.03 to 0.1 wn. An iron core 7 is inserted inside the primary bobbin 1, and a sealing member 8, which will be described later, is arranged at the upper end of the iron core 7. The primary bobbin 1 is inserted inside the secondary bobbin 3. These components of the ignition coil are housed in a case 9 that has been injection molded in advance from a thermoplastic synthetic resin such as polybutylene terephthalate. is filled.

以上の構成の内燃機関用点火コイルは次のようにして製
造される。
The ignition coil for an internal combustion engine having the above configuration is manufactured as follows.

一次ボビン1の内側に鉄心7を挿入し、一次ボビン1を
二次ボビン3の内側に挿入した後、これら点火コイルの
構成部品を、ポリブチレンテレフタレート等の熱可塑性
合成樹脂で予め射出成型されたケース9に収納する。次
いで、鉄心7の上端に、鉄心7と一次ボビン1との間の
隙間11の上端に蓋をする封止部材8を配置する。ここ
で、この封止部材8の配置は、液状のシリコンゴムで室
温硬化が可能であると同時に、熱硬化時発泡して独立気
泡を形成する性状のものを滴下することにより行う。こ
れにより、簡単な作業で封止部材8を配置できる。次い
で、ケース9内に熱硬化性合成樹脂、例えばエポキシ樹
脂1oを注入した後、その熱硬化性合成樹脂を加熱し硬
化させる。
After inserting the iron core 7 inside the primary bobbin 1 and inserting the primary bobbin 1 inside the secondary bobbin 3, these ignition coil components are pre-injection molded from thermoplastic synthetic resin such as polybutylene terephthalate. Store in case 9. Next, a sealing member 8 is placed on the upper end of the iron core 7 to cover the upper end of the gap 11 between the iron core 7 and the primary bobbin 1. Here, the sealing member 8 is arranged by dropping a liquid silicone rubber which can be cured at room temperature and which foams to form closed cells when cured under heat. Thereby, the sealing member 8 can be arranged with a simple operation. Next, a thermosetting synthetic resin, for example, an epoxy resin 1o, is injected into the case 9, and then the thermosetting synthetic resin is heated and hardened.

したがって、本実施例によれば、鉄心7と一次ボビン1
との間の隙間11に蓋をする封止部材8を配置するので
、熱硬化性合成樹脂の注入時にそれが隙間11に流れ込
むのが阻止され、その隙間に空気層が形成されることと
なり、鉄心と熱硬化性合成樹脂との線膨脹係数の差によ
る隙間11での熱応力の発生が防止され、耐熱衝撃性が
向上する。また、シリコンゴムで構成した封止部材8の
独立気泡は封止部材全体積の30〜70%でありかつこ
の独立気泡へのエポキシ樹脂の侵入はほとんど無いため
、封止部材8の厚みは1〜3mmで十分な応力吸収効果
が期待できる。このため、封止部材8により鉄心7の端
面と封止部材8の上方のエポキシ樹脂10との間での線
膨脹係数の差による熱応力が吸収され、耐熱衝撃性がさ
らに改善される。
Therefore, according to this embodiment, the iron core 7 and the primary bobbin 1
Since the sealing member 8 is disposed to cover the gap 11 between the thermosetting resin and the thermosetting synthetic resin, it is prevented from flowing into the gap 11 when the thermosetting synthetic resin is injected, and an air layer is formed in the gap. Generation of thermal stress in the gap 11 due to the difference in linear expansion coefficient between the iron core and the thermosetting synthetic resin is prevented, and thermal shock resistance is improved. Further, the closed cells of the sealing member 8 made of silicone rubber account for 30 to 70% of the total volume of the sealing member, and since there is almost no intrusion of epoxy resin into these closed cells, the thickness of the sealing member 8 is 1. A sufficient stress absorption effect can be expected with a thickness of ~3 mm. Therefore, the sealing member 8 absorbs the thermal stress due to the difference in linear expansion coefficient between the end face of the iron core 7 and the epoxy resin 10 above the sealing member 8, and the thermal shock resistance is further improved.

第2図に、本実施例の熱衝撃試験結果を従来品との比較
で示す。熱衝撃試験は、−40°01時間と+130℃
1時間を繰り返すことにより行った。
FIG. 2 shows the thermal shock test results of this example in comparison with a conventional product. Thermal shock test is -40°01 hour and +130°C
This was done by repeating for 1 hour.

−40°01時間と+130℃1時間を1サイクルとす
ると、従来品では50〜100サイクルで熱硬化性合成
樹脂にクラックが発生していたのに対して、本実施例品
では300サイクルに達してもクラックの発生は見られ
ず、耐熱衝撃性に極めて優れていることが実証された。
If one cycle is one hour at -40°C and one hour at +130°C, cracks occurred in the thermosetting synthetic resin after 50 to 100 cycles in the conventional product, but this example product reached 300 cycles. No cracks were observed, demonstrating that the material has extremely good thermal shock resistance.

なお、本実施例では、封止部材8の配置を液状のシリコ
ンゴムを流し込み、硬化することにより行ったが、独立
気泡を有するシリコンゴムシートをプレス成形し、鉄心
7の軸方向の端面に設けてもよく、これによっても同様
の効果を得ることができる。
In this example, the sealing member 8 was arranged by pouring liquid silicone rubber and curing it. The same effect can also be obtained by this method.

〔効果〕〔effect〕

本発明によれば、鉄心と一次ボビンとの間の隙間での鉄
心と熱硬化性合成樹脂との線膨脹係数の差による熱応力
の発生が防止されるので、耐熱衝撃性が向上する。
According to the present invention, thermal shock resistance is improved because thermal stress is prevented from occurring due to the difference in linear expansion coefficient between the iron core and the thermosetting synthetic resin in the gap between the iron core and the primary bobbin.

また、封止部材に独立気泡を有するシリコンゴムを使用
するので、鉄心の一端と封止部材に隣接する熱硬化性合
成樹脂との間での線膨脹係数の差による熱応力も吸収さ
れ、耐熱衝撃性がさらに向上する。
In addition, since silicone rubber with closed cells is used for the sealing member, thermal stress due to the difference in linear expansion coefficient between one end of the core and the thermosetting synthetic resin adjacent to the sealing member is absorbed, making it heat resistant. Impact resistance is further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による内燃機関用点火コイル
の断面図であり、第2図は本発明の耐熱衝撃性の改善効
果を示すための従来品と本発明品との熱衝撃試験結果を
示す図である。 符号の説明 1・・・一次ボビン 2・・・一次コイル 3・・・二次ボビン 4・・・二次コイル 7・・・鉄心 8・・・封止部材 9・・・ケース 10・・・熱硬化性合成樹脂 11・・・隙間
FIG. 1 is a cross-sectional view of an ignition coil for an internal combustion engine according to an embodiment of the present invention, and FIG. 2 is a thermal shock test of a conventional product and a product of the present invention to demonstrate the improvement effect of the present invention on thermal shock resistance. It is a figure showing a result. Explanation of symbols 1...Primary bobbin 2...Primary coil 3...Secondary bobbin 4...Secondary coil 7...Iron core 8...Sealing member 9...Case 10... Thermosetting synthetic resin 11... Gap

Claims (5)

【特許請求の範囲】[Claims] (1) 一次コイル、二次コイル、鉄心等の点火コイル
の構成部品を、熱可塑性合成樹脂で予め成形されたケー
スに収納した後、そのケース内に熱硬化性合成樹脂を注
入し、熱硬化してなる内燃機関用点火コイルにおいて、 前記鉄心の一端に隣接して、前記熱硬化性合成樹脂の注
入時にその熱硬化性合成樹脂が鉄心と一次コイルのボビ
ンとの間の隙間に流れ込むのを阻止する封止部材を設け
、前記隙間を空気層としたことを特徴とする内燃機関用
点火コイル。
(1) After storing the components of the ignition coil such as the primary coil, secondary coil, and iron core in a case pre-molded with thermoplastic synthetic resin, thermosetting synthetic resin is injected into the case and thermoset. In the ignition coil for an internal combustion engine, there is provided an ignition coil for an internal combustion engine, which is provided adjacent to one end of the iron core to prevent the thermosetting synthetic resin from flowing into the gap between the iron core and the bobbin of the primary coil when the thermosetting synthetic resin is injected. An ignition coil for an internal combustion engine, characterized in that a sealing member is provided to prevent the ignition, and the gap is an air layer.
(2) 請求項1記載の内燃機関用点火コイルにおいて
、前記封止部材が独立気泡を有するシリコンゴムからな
っていることを特徴とする内燃機関用点火コイル。
(2) The ignition coil for an internal combustion engine according to claim 1, wherein the sealing member is made of silicone rubber having closed cells.
(3) 一次コイル、二次コイル、鉄心等の点火コイル
の構成部品を、熱可塑性合成樹脂で予め成形されたケー
スに収納した後、そのケース内に熱硬化性合成樹脂を注
入し、熱硬化してなる内燃機関用点火コイルの製造方法
において、 前記熱硬化性合成樹脂を注入する前に、前記鉄心の一端
に隣接して鉄心と一次コイルのボビンとの間の隙間に蓋
をする封止部材を配置し、熱硬化性合成樹脂の注入時に
それが前記隙間に流れ込むのを阻止することを特徴とす
る内燃機関用点火コイルの製造方法。
(3) After storing the components of the ignition coil such as the primary coil, secondary coil, and iron core in a case pre-molded with thermoplastic synthetic resin, thermosetting synthetic resin is injected into the case and thermoset. In the method of manufacturing an ignition coil for an internal combustion engine, before injecting the thermosetting synthetic resin, sealing is performed adjacent to one end of the iron core to cover a gap between the iron core and the bobbin of the primary coil. A method for manufacturing an ignition coil for an internal combustion engine, comprising arranging a member to prevent thermosetting synthetic resin from flowing into the gap when it is injected.
(4) 請求項3記載の内燃機関用点火コイルの製造方
法において、前記封止部材の配置は、液状のシリコンゴ
ムで室温硬化が可能であると同時に、熱硬化時発泡して
独立気泡を形成する性状のものを滴下することにより行
うことを特徴とする内燃機関用点火コイルの製造方法。
(4) In the method for manufacturing an ignition coil for an internal combustion engine according to claim 3, the arrangement of the sealing member is such that liquid silicone rubber can be cured at room temperature and at the same time foams to form closed cells when cured under heat. 1. A method for producing an ignition coil for an internal combustion engine, the method comprising dropping an ignition coil having the properties of
(5) 請求項3記載の内燃機関用点火コイルの製造方
法において、前記封止部材の配置は、独立気泡を有する
シリコンゴムシートをプレス成形したものを用いること
により行うことを特徴とする内燃機関用点火コイルの製
造方法。
(5) The method for manufacturing an ignition coil for an internal combustion engine according to claim 3, wherein the sealing member is arranged by using a press-molded silicone rubber sheet having closed cells. ignition coil manufacturing method.
JP2018489A 1990-01-29 1990-01-29 Ignition coil for internal combustion engine Expired - Lifetime JP2529748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018489A JP2529748B2 (en) 1990-01-29 1990-01-29 Ignition coil for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018489A JP2529748B2 (en) 1990-01-29 1990-01-29 Ignition coil for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03222404A true JPH03222404A (en) 1991-10-01
JP2529748B2 JP2529748B2 (en) 1996-09-04

Family

ID=11973049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018489A Expired - Lifetime JP2529748B2 (en) 1990-01-29 1990-01-29 Ignition coil for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2529748B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333756A (en) * 1993-05-21 1994-12-02 Mitsubishi Electric Corp Resin mold-type transformer and formation method
JP2005347588A (en) * 2004-06-04 2005-12-15 Murata Mfg Co Ltd Winding coil
US7071804B2 (en) * 1997-02-14 2006-07-04 Denso Corporation Stick-type ignition coil having improved structure against crack or dielectric discharge
JP2010257999A (en) * 2009-04-02 2010-11-11 Nec Tokin Corp Coil component
JP2013051314A (en) * 2011-08-31 2013-03-14 Denso Corp Ignition coil for internal combustion engine and manufacturing method of the same
JP2013239542A (en) * 2012-05-15 2013-11-28 Nec Tokin Corp Reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333756A (en) * 1993-05-21 1994-12-02 Mitsubishi Electric Corp Resin mold-type transformer and formation method
US7071804B2 (en) * 1997-02-14 2006-07-04 Denso Corporation Stick-type ignition coil having improved structure against crack or dielectric discharge
JP2005347588A (en) * 2004-06-04 2005-12-15 Murata Mfg Co Ltd Winding coil
JP2010257999A (en) * 2009-04-02 2010-11-11 Nec Tokin Corp Coil component
JP2013051314A (en) * 2011-08-31 2013-03-14 Denso Corp Ignition coil for internal combustion engine and manufacturing method of the same
JP2013239542A (en) * 2012-05-15 2013-11-28 Nec Tokin Corp Reactor

Also Published As

Publication number Publication date
JP2529748B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US6525636B1 (en) Stick-type ignition coil having improved structure against crack or dielectric discharge
JP6065923B2 (en) Method for producing coated coil molded body and coated coil molded body
US6216679B1 (en) Ignition coil for an internal combustion engine
JP5476749B2 (en) Method for producing composite molded body
CN103795194A (en) Method of manufacturing stator of electric rotating machine
JPH03222404A (en) Ignition coil for internal combustion engine
JP7101804B2 (en) Ignition coil
KR900002363A (en) Resin Molded Coil
JPH02240902A (en) Ignition coil for internal combustion engine
JP5556284B2 (en) Coil composite molded body manufacturing method and coil composite molded body
EP1391901B1 (en) Internal combustion engine ignition coil, and method of producing the same
JPS63293908A (en) Ignition coil for internal combustion engine
JPH06333756A (en) Resin mold-type transformer and formation method
JPS5820128B2 (en) Ignition coil for internal combustion engine
JPH08339928A (en) Ignition coil for internal combustion engine
JP4426707B2 (en) Ignition coil and ignition device using the same
JP2005183995A (en) Ignition coil used for otto engine and method of manufacturing ignition coil
KR101166391B1 (en) Ignition coil
JP7099204B2 (en) Ignition coil for internal combustion engine
JPH0462811A (en) Ignition coil for internal combustion engine
JPS6134911A (en) Ignition coil for internal-combustion engine
JP2009170783A (en) Ignition coil, and manufacturing method thereof
JPS58122713A (en) Mold ignition coil for internal combustion engine
JPS6065281A (en) High-energy ignitor
JPH0347319Y2 (en)