JPH03221894A - Fuel assembly for boiling water reactor - Google Patents

Fuel assembly for boiling water reactor

Info

Publication number
JPH03221894A
JPH03221894A JP2016275A JP1627590A JPH03221894A JP H03221894 A JPH03221894 A JP H03221894A JP 2016275 A JP2016275 A JP 2016275A JP 1627590 A JP1627590 A JP 1627590A JP H03221894 A JPH03221894 A JP H03221894A
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
tie plate
channel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016275A
Other languages
Japanese (ja)
Inventor
Shigeru Fujita
茂 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2016275A priority Critical patent/JPH03221894A/en
Publication of JPH03221894A publication Critical patent/JPH03221894A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To reduce practical resistance during the operation of the boiling water reactor and to allow urgent cooling water to easily flow into a channel at the time of generating a cooling material lossing accident by forming an upper tie plate for supporting the upper end of a fuel rod so that its center part is upward raised. CONSTITUTION:In the fuel assembly 10 provided with the fuel rod 1 charged with atomic fuel and a large aperture water channel tube 5 to obtain an efficient neutron decelerating effect in a high boiled area, the upper tie plate 2 for supporting the upper end of the fuel rod 1 is formed so that its center part is upward raised. Boiled water rising through the channel between a channel box 6 and the tube 5 along the rod 1 is guided to a large aperture on the center part along the lower spherical face of the upper tie plate 2. Consequently, the quantity of boiled water passing the large aperture of the center part is increased and the quantity of boiled water passing the narrow aperture of a peripheral part is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、沸騰水型原子炉(BWR)に供される燃料集
合体、特にその上部タイプレート構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel assembly used in a boiling water nuclear reactor (BWR), and particularly to an upper tie plate structure thereof.

[従来の技術] 動力用発電炉として国内で数多く実用運転されている沸
騰水型原子炉において、近来、中性子の減速をより効率
的に行わせ、核燃料の燃焼度を高めるため1ζ、その燃
料集合体として、大口径つ1−タデヤンネル管を中央に
配置してその周囲に細径化した燃料棒を9木×9木の正
方格子状に配列させる9×9型か開発されている。
[Prior art] In boiling water nuclear reactors, which are used in many practical operations in Japan as power reactors, in recent years, 1ζ fuel assembly has been developed in order to more efficiently slow down neutrons and increase the burnup of nuclear fuel. A 9x9 type fuel cell system has been developed in which a large-diameter 1-Tadeyannelle tube is placed in the center and thinner fuel rods are arranged around it in a square lattice of 9 x 9 trees.

第5図〜第7図は、この9×9型の燃料集合体の一例を
示し、第5図(a+は、全体の外観(一部断面図示)を
、また同(]))はそのA −A断面を示す。
Figures 5 to 7 show an example of this 9x9 type fuel assembly. -A cross section is shown.

第5図(a)、(b)において、直径的10mm、長さ
約4000mmのジルカロイ製被覆管に濃縮二酸化ウラ
ンベレットを装填した燃料棒1は、チャンネルボックス
6内に、中央を貫通する大ロ径つォタチャンネル管5を
囲んて9木×9木の正方格子状に配列され、その上端は
上部タイプ1ノート2Dに、下端は下部タイプ1ノート
4(図示しない)にそれぞれ支持される。また、上下の
タイプ1ノート2D14間では、7個のスベーザS1〜
S7(S7のみ図示)か燃料棒1を水平方向に支持して
いる。ここで、燃料棒1をゆるく支持する上下のタイブ
レー)2B、4、およびスペーサ81〜S7は、図示し
ない構造部材により縦方向に支持されていて、上部タイ
プレートに固定された把手3で燃料集合体10D全体を
吊下げた場合、また、運転中の温度上昇により燃料棒1
が熱膨張した場合にも、燃料棒1には負荷が加わらない
In FIGS. 5(a) and 5(b), a fuel rod 1 with enriched uranium dioxide pellets loaded into a Zircaloy cladding tube with a diameter of 10 mm and a length of about 4000 mm is placed in a channel box 6 with a large hole penetrating through the center. They are arranged in a square grid of 9 x 9 trees surrounding the diameter channel tube 5, and their upper end is supported by the upper type 1 notebook 2D and the lower end is supported by the lower type 1 notebook 4 (not shown). Also, between the upper and lower type 1 notes 2D14, there are 7 subesa S1~
S7 (only S7 is shown) supports the fuel rod 1 in the horizontal direction. Here, the upper and lower tie breakers 2B, 4, and spacers 81 to S7 that loosely support the fuel rod 1 are vertically supported by structural members (not shown), and the fuel assembly is carried out by a handle 3 fixed to the upper tie plate. If the entire body 10D is suspended, the fuel rod 1 may also be damaged due to temperature rise during operation.
Even when the fuel rods 1 thermally expand, no load is applied to the fuel rods 1.

第5図(b)  に示されるように、ウォータチャンネ
ル管5は、燃料集合体10Dの中央の3本×3木の燃料
棒」に相当する体積を満たす、上下にオリフィス孔を備
えた、断面形状が正方形の管で、周囲が高沸騰状態とな
っても内部に未沸騰水を貯えて、周囲の燃料棒1に安定
した中性子減速効果を与える。
As shown in FIG. 5(b), the water channel pipe 5 has a cross section with orifice holes at the top and bottom, filling a volume equivalent to 3 x 3 fuel rods in the center of the fuel assembly 10D. The tube is square in shape and stores unboiled water inside even if the surrounding area reaches a high boiling state, providing a stable neutron moderation effect to the surrounding fuel rods 1.

ここで、つ詞−タチャンネル管5とチャンネルボックス
6に囲まれ、また上下のタイプレート2B、4およびス
ペーサ81〜S7の位置で断面積が絞られた、燃料棒1
に沿った細長い空間が、運転中に燃料棒1と熱交換を行
いつつ沸騰水が上昇ずろ水路を形成している。この水路
は、ヂンネルと呼ばれる。また、燃料集合体10Dは、
図示しない制御棒を組合−1uで数百体配列されて炉心
を構成する。
Here, a fuel rod 1 is surrounded by a channel pipe 5 and a channel box 6, and its cross-sectional area is narrowed at the positions of the upper and lower tie plates 2B, 4 and spacers 81 to S7.
The elongated space along the fuel rod forms a rising water channel through which boiling water exchanges heat with the fuel rod 1 during operation. This waterway is called Jinnel. Moreover, the fuel assembly 10D is
Several hundred control rods (not shown) are arranged in combination 1u to constitute the reactor core.

第6図は、燃料集合体10Dの一ヒ部タイプ1ノド2D
の構造を示し、(a)は平面図、(b)  はIE面図
である。
Figure 6 shows a part of the fuel assembly 10D type 1 throat 2D.
The structure of FIG.

第6図(a)、tl)) に示されるようjζ、把手3
か取イJすられ、各燃料棒1およびつオータデへ・ンネ
ル管5の支持部分と沸騰水の通過部分とからなる上部タ
イプレート2Dは、その上面も下面も平坦な平板状であ
る。また、中央のつオータチャンネル管5に相当する部
分には流路抵抗を減らずための大きな開口か設けられて
いる。
As shown in Fig. 6(a), tl)), jζ, handle 3
The upper tie plate 2D, which is made up of a support portion for each fuel rod 1 and the tunnel tube 5 and a boiling water passage portion, has a flat upper and lower surface. Further, a large opening is provided in the central portion corresponding to the two-way channel tube 5 in order not to reduce the flow path resistance.

さて、多数の燃料集合体10Dからなる炉心に冷却水か
満たされ、中性子吸収体である制徊棒か抜かれると、各
燃料棒1は、内部の濃縮二酸化ウランペレットの核連鎖
反応により発熱して冷却水を加熱、沸騰させ、冷却水は
気液二相流となってチャンネルを上昇する。このときの
上昇速度は、−相平均で約2m/sec、蒸気換算流速
ては5〜6m/sec に達する。
Now, when the core consisting of a large number of fuel assemblies 10D is filled with cooling water and the control rods, which are neutron absorbers, are removed, each fuel rod 1 generates heat due to the nuclear chain reaction of the enriched uranium dioxide pellets inside. The cooling water is heated and boiled, and the cooling water rises through the channels as a gas-liquid two-phase flow. The rising speed at this time is about 2 m/sec on average in the negative phase, and the steam equivalent flow rate reaches 5 to 6 m/sec.

ここで、通常の運転時には、出力水蒸気の圧力を約70
気圧に保って290度前後の沸騰条件が選択され、取出
された水蒸気は蒸気タービン、復水器、給水加熱器、再
循環ポンプ等からなる図示しない再循環経路を経由し、
循環冷却水として燃料集合体10D下部に戻される。こ
こて、循環冷却水は、通常、再循環ポンプにより炉心を
通過する際に生じる圧力降下に見合う駆動圧力をかりて
強制的に戻さ和る。圧損と呼ば和るこの駆動圧力は、燃
料集合体10D上下の静水圧損、沸騰による体積膨張に
起因する冷却水の加速反力である加速圧損、沸騰水が細
長いチャンネルを上昇する際に発生ずる損失である摩擦
圧損、および細長いチャンネルを急膨張しつつ上昇する
気液二相流がチャンネルの上方、特にスペーサS6、S
7や上部タイプレート2Dの直下でボトルネック状態を
起して周囲の圧力を高めて燃料集合体10D下部の冷却
水を圧縮する局所圧損により構成される。
Here, during normal operation, the pressure of the output steam is approximately 70
A boiling condition of around 290 degrees Celsius is selected while maintaining the pressure, and the extracted steam passes through a recirculation path (not shown) consisting of a steam turbine, a condenser, a feed water heater, a recirculation pump, etc.
It is returned to the lower part of the fuel assembly 10D as circulating cooling water. Here, the circulating cooling water is normally forcibly returned by a recirculation pump using a driving pressure commensurate with the pressure drop that occurs when passing through the reactor core. This driving pressure, which is called pressure drop, is composed of hydrostatic pressure drop above and below the fuel assembly 10D, acceleration pressure drop that is the accelerating reaction force of cooling water due to volume expansion due to boiling, and loss that occurs when boiling water rises through a long and narrow channel. The frictional pressure drop caused by
7 and the upper tie plate 2D, a bottleneck condition is caused, the surrounding pressure is increased, and the cooling water in the lower part of the fuel assembly 10D is compressed, resulting in a local pressure drop.

第7図は、このチャンネルを上昇する二相流の状態を説
明するためのちのて、−L部タイブレー]・2D周辺を
模式的に示す。
In order to explain the state of the two-phase flow rising in this channel, FIG. 7 schematically shows the area around the -L section tiebrae].2D.

チャンネル上部の流路は、第7図(ζ示されるように、
燃料棒1およびウォータチャンネル5の管部の領域Aど
、ウォータチャンネル5の端幹部のSi域Bと1.:分
けら和る。
The flow path at the top of the channel is as shown in Figure 7 (ζ).
Area A of the fuel rod 1 and the pipe portion of the water channel 5, Si area B of the end shaft of the water channel 5, and 1. : Separate and calm.

従来の平板状の上部タイプ1ノーh2Dの場合には領域
Bの間隔か狭い。チャンネルボックス6て囲まれたチャ
ンネル内での冷却水の流動は、軸方向流れか支配的てあ
り、従来型のタイプ1)−ト2Dの場合、領域Bにおけ
る中央部分への流動の配分が十分行われない。そのため
、冷却水の大部分は、流路断面積の小さい上部タイプ1
ノート2D周辺部をそのまま貫流することどなり、この
部分での圧損はざらに大きくなる。
In the case of the conventional flat upper type 1 no h2D, the interval in region B is narrow. The flow of cooling water in the channels surrounded by the channel box 6 is predominantly axial flow, and in the case of the conventional type 1)-2D, the flow is sufficiently distributed to the central part in area B. Not done. Therefore, most of the cooling water is in the upper type 1, which has a small cross-sectional area.
The liquid flows directly through the periphery of the notebook 2D, and the pressure loss in this area becomes roughly large.

[発明が解決しようとする課題] 第6図に示されるように、上部タイプ1ノート2Dは中
央部に大きな開口を有し、チャンネルを」二昇してきた
二相流は、上部タイプ1ノー1−2 Dに至る以前に、
この開口を生かすように中央部にシフI・することが期
待されていた。しかし、上述のように実際に(・は、二
相流は、その周辺部をより多く貫流しようとするから、
上部タイプレート2Dの実質抵抗か大きくなるとともに
局所損失の改善効果をあまり期待できない。
[Problems to be Solved by the Invention] As shown in Figure 6, the upper type 1 notebook 2D has a large opening in the center, and the two-phase flow that has ascended through the channel is -2 Before reaching D,
It was expected that the center would be shifted to take advantage of this opening. However, as mentioned above, in reality, two-phase flow tends to flow more through the surrounding area, so
As the actual resistance of the upper tie plate 2D increases, it is difficult to expect much improvement in local loss.

また、冷却材損失事故(LOCA)発生時には過熱状態
の燃料棒1を冷却するために、燃料集合体10D上部か
ら緊急冷却水が放出されるが、燃料棒1に接触した緊急
冷却水は急激に蒸発、膨張して水蒸気となって燃才」集
合体10D上部に吹上げる。従って、炉心圧力容器内の
減圧に伴い下部ブレナムで発生ずるフラッシング蒸気と
あいまって、上部タイプレート2D上に溜った後続の冷
却水は中央および周辺の各開口(オリフィス)を越えた
落下が制限され(CCFL効果:  Counter 
Current Flow Lim1tation) 
、燃料棒1の緊急冷却がスムーズに行われない。
In addition, when a loss of coolant accident (LOCA) occurs, emergency cooling water is released from the upper part of the fuel assembly 10D to cool the overheated fuel rods 1, but the emergency cooling water that comes into contact with the fuel rods 1 suddenly It evaporates, expands, turns into water vapor, and blows up to the top of the fuel assembly 10D. Therefore, combined with the flushing steam generated in the lower blenum as the pressure inside the core pressure vessel decreases, subsequent cooling water accumulated on the upper tie plate 2D is restricted from falling beyond the central and peripheral orifices. (CCFL effect: Counter
Current Flow Lim1tation)
, emergency cooling of the fuel rod 1 is not performed smoothly.

本発明は、運転中の実質抵抗が小さく、従って局所圧損
も小さい、また、冷却材損失事故発生時に緊急冷却水が
チャンネル内に流入し易くなる、すなわち、低圧損化す
るとともに安全性を高めた沸騰水型原子炉用燃料集合体
を提供することを目的とする。
The present invention has a low effective resistance during operation, and therefore a small local pressure drop, and also makes it easier for emergency cooling water to flow into the channel in the event of a coolant loss accident, which lowers the pressure drop and improves safety. The purpose of the present invention is to provide a fuel assembly for a boiling water reactor.

[課題を解決するための手段] 本発明の請求項(1)に係る沸騰水型原子炉用燃料集合
体は、核燃料を装填した燃料棒と、特に高ホイト領域で
の効果的な中性子減速効果を得るための大口径つ1−タ
チャンネル管とを備えた燃料集合体において、 燃料棒の上端を支持する、中央部を上方は高く形成した
上部タイプレートを有するものである。
[Means for Solving the Problems] A fuel assembly for a boiling water nuclear reactor according to claim (1) of the present invention has fuel rods loaded with nuclear fuel and an effective neutron moderation effect particularly in a high-hoity region. This fuel assembly is equipped with a large-diameter single-channel pipe for obtaining fuel rods, and has an upper tie plate with a central portion that is high above and supports the upper ends of the fuel rods.

本発明の請求項(2)に係る沸騰水型原子炉用燃料集合
体は、中央に向って階段状に高く形成された上部タイプ
レートを有するものである。
A fuel assembly for a boiling water nuclear reactor according to claim (2) of the present invention has an upper tie plate that is formed high in a stepped manner toward the center.

[作用] 本発明の請求項(1)に係る沸騰水型原子炉用燃料集合
体においては、冷却水に浸漬された燃料棒がその内部の
核連鎖反応により発熱して、周囲の冷却水を加熱沸騰さ
ゼる。また、ウォータチャンネル管は、内部に未沸騰の
冷却水を適量貫流させることにより周囲の燃料棒に安定
した中性子減速効果を与える。また、燃料棒表面て沸騰
した冷却水は気液二相状態どなり、チャンネルを燃料棒
に沿って急」二昇し、さらに気化して体積を膨張させて
上部タイプ1ノート直下でボトルネック状態となって局
所損失を発生する。
[Function] In the boiling water reactor fuel assembly according to claim (1) of the present invention, the fuel rods immersed in cooling water generate heat due to the nuclear chain reaction inside the fuel rods, and the surrounding cooling water is absorbed. Heat to boiling point. In addition, the water channel tube provides a stable neutron moderating effect to the surrounding fuel rods by allowing an appropriate amount of unboiled cooling water to flow through the tube. In addition, the cooling water that boils on the surface of the fuel rod becomes a gas-liquid two-phase state, rapidly rises along the channel along the fuel rod, and further vaporizes and expands in volume, creating a bottleneck directly below the upper type 1 note. This causes local loss.

しかし、上部タイプレートは、中央に大口径つ1−タチ
ャノネル管に対応させた、大きな開口を有し、またその
下面は上方に高く形成されているから、上昇してきた沸
騰水は、抵抗のより少ない中央部にカイトされて、中央
の開口を通過する沸騰水量が従来例で説明した下面が平
坦なものよりもうくなる。
However, the upper tie plate has a large opening in the center that accommodates a large-diameter channel tube, and its lower surface is formed high upwards, so the rising boiling water has less resistance. The amount of boiling water passing through the center opening is larger than that of the conventional example with a flat bottom surface because of the lower amount of water being kited in the center.

また、LOCA時に、吹上げる水蒸気に逆らって燃料集
合体上部からチャンネル内に冷却水を流入させノこ場合
、上部タイプレート下面にガイドされた吹上げる水蒸気
が上部タイプレート中央部の開口を主に通過して燃料集
合体上方に速やかに開放される一方で、上部タイプレー
ト上面にガイドされた冷却水が周辺部の開口から落下し
てチャンネルボックス壁面および燃料棒に沿って流れ落
ちる。
In addition, when cooling water is flowed into the channel from the upper part of the fuel assembly against the blown-up water vapor during LOCA, the blown-up water vapor guided to the lower surface of the upper tie plate mainly flows through the opening in the center of the upper tie plate. While the cooling water is quickly released above the fuel assembly, the cooling water guided to the upper surface of the upper tie plate falls from the opening in the periphery and flows down along the wall surface of the channel box and the fuel rods.

本発明の請求項(2)に係る沸騰水型原子炉用燃料集合
体においては、階段状に高く形成された表面により、請
求項(1)の燃料集合体の場合と同様な冷却水および水
蒸気のカイトが行わ和る。
In the fuel assembly for a boiling water nuclear reactor according to claim (2) of the present invention, the stepped surface allows the same cooling water and steam as in the case of the fuel assembly according to claim (1). The kite is done.

[発明の実施例] 本発明の実施例を第1図〜第4図を参概して説明する。[Embodiments of the invention] Embodiments of the present invention will be described with reference to FIGS. 1 to 4.

木実施例は、従来例で説明した燃料集合体10Dの上部
タイプレート2Dを、上下の面が球面状に形成された上
部タイブレー1−2に置換えたものである。また、各図
において、第5図〜第7図に示した従来例の燃料集合体
の各構成部拐と同様な構成と作用を有する部材には同一
の符号を付してその説明を省略する。
In the wooden embodiment, the upper tie plate 2D of the fuel assembly 10D described in the conventional example is replaced with an upper tie plate 1-2 whose upper and lower surfaces are formed into spherical shapes. In addition, in each figure, members having the same configuration and function as those of the conventional fuel assembly shown in FIGS. 5 to 7 are given the same reference numerals, and their explanations will be omitted. .

第1図は、本発明の実施例に係る燃料集合体の詳細な構
造を示し、(a) は平面図、(b)は正面図である。
FIG. 1 shows the detailed structure of a fuel assembly according to an embodiment of the present invention, in which (a) is a plan view and (b) is a front view.

第1図において、上部タイプ1ノート2は、第6図の従
来例の場合と同様に、中央のつ8−タチャンネル管5に
相当する中央部分に大きな開口を有するか、その上面と
下面は上方向に高い球面状に形成されている。
In FIG. 1, the upper type 1 notebook 2 has a large opening in the central part corresponding to the central 8-channel tube 5, or its upper and lower surfaces are similar to the conventional example shown in FIG. It is formed into a spherical shape that is tall upwards.

第2図は、本発明の実施例に係る燃料集合体の運転状態
における上部タイプレート2周辺の様子を模式的に断面
で示す。
FIG. 2 schematically shows, in cross section, the area around the upper tie plate 2 in the operating state of the fuel assembly according to the embodiment of the present invention.

第2図において、ヂャンネルボックス6とつオタチャン
ネル管4の間のチャンネルを燃料棒1に沿って上昇する
沸騰水は、上部タイプレート2の下面の球面に沿って中
央部の大きな開口に向ってガイドされる。こわにより、
従来例と比較して中央部の大きな開口を通過する沸騰水
量は増し、周辺部の狭い開口を通過する沸騰水量は減る
In FIG. 2, the boiling water rising along the fuel rods 1 through the channel between the channel box 6 and the overchannel pipe 4 flows along the spherical surface of the lower surface of the upper tie plate 2 toward the large opening in the center. You will be guided by Due to stiffness,
Compared to the conventional example, the amount of boiling water that passes through the large opening in the center increases, and the amount of boiling water that passes through the narrow openings in the periphery decreases.

第3図は、冷却材損失事故(LOCA)発生時の燃料棒
1の緊急冷却の様子を模式的に示す。
FIG. 3 schematically shows the state of emergency cooling of the fuel rod 1 when a loss of coolant accident (LOCA) occurs.

冷却材損失事故(LOCA)発生時には、過熱状態の燃
料棒1を緊急冷却するために、燃料集合体10上部から
緊急冷却水が放出されるが、燃料棒1に接触した緊急冷
却水は急激に蒸発して水蒸気となって燃料集合体10上
部に吹上げる。従って、後続の冷却水はこの水蒸気圧に
逆らって流れ落ちる必要かある。ここで、上部タイプレ
ート2は上面と下面か上方に高い球面状であるから、吹
上げる水蒸気は上部タイプレート2面にカイトさ和て主
に中央部の大きな開口を通過して燃料集合体10上方に
速やかに開放され、同時に上部タイブレー]・2上の冷
却水は、上部タイブレー]・2」二面にガイドされて周
辺部の開口から容易jζ落下して、チャンネルホックス
6壁面および塩オー1棒1に沿って流れ落ちる。
When a loss of coolant accident (LOCA) occurs, emergency cooling water is released from the upper part of the fuel assembly 10 in order to urgently cool the overheated fuel rods 1. However, the emergency cooling water that comes into contact with the fuel rods 1 suddenly It evaporates into water vapor and blows up to the upper part of the fuel assembly 10. Subsequent cooling water must therefore flow down against this water vapor pressure. Here, since the upper tie plate 2 has a spherical shape with a high upper and lower surface, the blown up water vapor hits the upper tie plate 2 surface and mainly passes through the large opening in the center of the fuel assembly 10. At the same time, the cooling water on the upper tiebrae]・2 is guided by the upper tiebrae】・2 and easily falls from the opening in the peripheral area, and flows into the wall of the channel hox 6 and the salt water 1. It flows down along bar 1.

第4図は、木発明の別の実施例に係る燃料集合体の上部
タイプ1ノートを模テ)こ的に断面で示す。
FIG. 4 schematically shows, in cross section, an upper type 1 notebook of a fuel assembly according to another embodiment of the invention.

ここで、上部タイプレート2Bは、上面が階段状に下面
が円錐面状に形成されており、」二連の上部タイプレー
ト2ど同様な効果を有する。
Here, the upper tie plate 2B has a stepped upper surface and a conical lower surface, and has the same effect as the double upper tie plate 2.

以上の実施例では、その上面と下面が、中央に向って縦
方向も横方向も高くなる上部タイプレトを説明したか、
縦方向または横方向のいす和かを中央に向って高くする
、例えば屋根型となるように形成する、また、上部タイ
プレート上下面の方のみを中央に向って高く形成するこ
とも可能である。さらに、短い金属パイプをリブて連結
して上部タイプ1ノートを構成する場合には、その外観
は」二下面とも階段状とするのが、製作上好都合である
In the above embodiments, an upper type plate has been described whose upper and lower surfaces become higher both vertically and horizontally toward the center.
It is also possible to make the vertical or horizontal chairs higher toward the center, for example, to form a roof shape, or to make only the upper and lower surfaces of the upper tie plate higher toward the center. . Furthermore, when constructing an upper type 1 notebook by connecting short metal pipes with ribs, it is convenient for manufacturing that the appearance is step-like on both the lower and lower surfaces.

[発明の効果] 木発明の沸騰水型原子炉用燃料集合体においては、上部
タイプレートか、上昇する沸騰水を貫流抵抗の少ない中
央部に集めるので、従来例の場合よりも上部タイプレー
トの実質抵抗が減り局所損失も小さくなる。従って、炉
心の運転の安定性が高まる。
[Effects of the Invention] In the fuel assembly for boiling water reactors of the invention, the rising boiling water is collected in the upper tie plate or in the central part where there is less flow resistance, so the upper tie plate is lower than in the conventional case. The effective resistance is reduced and the local loss is also reduced. Therefore, the stability of core operation is improved.

また、吹上げる水蒸気に逆らって燃料集合体上部から冷
却水を供給する場合、吹上げる水蒸気の通路と落下する
冷却水の通路が上部タイプレートにより区分i−1され
て、冷却水の通りが良い。従って、冷却材損失事故(L
OCA)発生時には、従来例の場合よりも効率的な燃料
棒の緊急冷却を行うことができる。
In addition, when cooling water is supplied from the top of the fuel assembly against the blown-up steam, the passage of the blown-up steam and the passage of the falling cooling water are divided into sections i-1 by the upper tie plate, allowing the cooling water to flow easily. . Therefore, a loss of coolant accident (L
When OCA) occurs, emergency cooling of the fuel rods can be performed more efficiently than in the conventional case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、木発明の実施例に係る沸[俺木型原子炉用燃
料集合体の上部タイブレー]・2の構造を示し、(a)
は平面図、(b)は正面図である。 第2図は、本発明の実施例に係る沸騰水型原子炉用燃料
集合体の運転状態における上部911012周辺の様子
を断面て示す模式図である。 第3図は、本発明の実施例に係る沸騰水型原子炉用燃才
4集合体における冷却材損失事故(L OCA)発生時
の燃料棒】の緊急冷却の様子を示す模式図である。 第4図は、本発明の別の実施例に係る沸騰水型原子炉用
燃料集合体の上部タイプレートの構造を断面て示ず模式
図である。 第5図は、従来例の沸騰水型原子炉用燃料集合体の構造
を説明するための図て、(a)は全体の外観を一部断面
で示した模式図、(b)はそのA−A断面図である。 第6図は、従来例の沸騰水型原子炉用燃料集合体の上部
タイプ1ノート2Bの構造を示し、(a)は平面図、(
b)は正面図である。 第7図は、従来例の沸騰水型原子炉用燃料集合体のチャ
ンネルを上昇する二相流の状態を、上部タイプレート周
辺について説明するための模式図である。 [主要部分の符号の説明] 1・・・燃料棒     2・・・上部タイプレート5
・・・つ1−タチャンネル管 10・・・燃料集合体
FIG. 1 shows the structure of a fuel assembly [upper tiebrae of a fuel assembly for a wooden type nuclear reactor] 2 according to an embodiment of the wooden invention, (a)
is a plan view, and (b) is a front view. FIG. 2 is a schematic cross-sectional view showing the area around the upper portion 911012 in the operating state of the boiling water reactor fuel assembly according to the embodiment of the present invention. FIG. 3 is a schematic diagram showing the state of emergency cooling of fuel rods when a loss of coolant accident (LOCA) occurs in a fuel rod assembly for a boiling water reactor according to an embodiment of the present invention. FIG. 4 is a schematic diagram, not shown in cross section, of the structure of an upper tie plate of a fuel assembly for a boiling water reactor according to another embodiment of the present invention. Figure 5 is a diagram for explaining the structure of a conventional fuel assembly for a boiling water reactor. -A sectional view. FIG. 6 shows the structure of a conventional upper type 1 notebook 2B fuel assembly for a boiling water reactor, in which (a) is a plan view;
b) is a front view. FIG. 7 is a schematic diagram for explaining the state of a two-phase flow rising in a channel of a conventional boiling water reactor fuel assembly around the upper tie plate. [Explanation of symbols of main parts] 1...Fuel rod 2...Upper tie plate 5
... 1-ta channel pipe 10 ... fuel assembly

Claims (2)

【特許請求の範囲】[Claims] (1)核燃料を装填した燃料棒と、特に高ボイド領域で
の効果的な中性子減速効果を得るための大口径ウォータ
チャンネル管とを備えた燃料集合体において、 前記燃料棒の上端を支持する、中央部を上方に高く形成
した上部タイプレートを有することを特徴とする沸騰水
型原子炉用燃料集合体。
(1) In a fuel assembly comprising a fuel rod loaded with nuclear fuel and a large-diameter water channel pipe for obtaining an effective neutron moderation effect particularly in a high void region, supporting the upper end of the fuel rod; A fuel assembly for a boiling water reactor, characterized by having an upper tie plate with a central portion raised upward.
(2)中央に向って階段状に形成された上部タイプレー
トを有することを特徴とする特許請求の範囲(1)に記
載の沸騰水型原子炉用燃料集合体。
(2) The fuel assembly for a boiling water reactor according to claim (1), characterized in that it has an upper tie plate formed in a stepped manner toward the center.
JP2016275A 1990-01-29 1990-01-29 Fuel assembly for boiling water reactor Pending JPH03221894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016275A JPH03221894A (en) 1990-01-29 1990-01-29 Fuel assembly for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016275A JPH03221894A (en) 1990-01-29 1990-01-29 Fuel assembly for boiling water reactor

Publications (1)

Publication Number Publication Date
JPH03221894A true JPH03221894A (en) 1991-09-30

Family

ID=11911996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016275A Pending JPH03221894A (en) 1990-01-29 1990-01-29 Fuel assembly for boiling water reactor

Country Status (1)

Country Link
JP (1) JPH03221894A (en)

Similar Documents

Publication Publication Date Title
EP0311037A2 (en) Debris-resistant bottom nozzle for a nuclear fuel assembly
US6512805B1 (en) Light water reactor core and fuel assembly
US3349001A (en) Molten metal proton target assembly
JPH0395486A (en) Fuel assembly for two-phase pressure fall reduction type boiling water reactor
JPH0816710B2 (en) Fuel bundle with extended fuel height in a boiling water reactor
US4649021A (en) BWR fuel assembly with water flow mixing chamber at fuel bundle/water cross entrance
Buongiorno Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation
US6470061B1 (en) Control rod for nuclear reactor
JPH07306285A (en) Reactor core of nuclear reactor
US4738819A (en) Boiling water nuclear reactor fuel assembly with cross-flow elimination at upper spacer locations
US3218237A (en) Fuel element for a steam superheat boiling water nuclear reactor
US5154880A (en) Nuclear fuel bundle with coolant bypass channel
US4753774A (en) Orificing of water cross inlet in BWR fuel assembly
JPH03221894A (en) Fuel assembly for boiling water reactor
US10176897B2 (en) Floating filter screen in a lower tie plate box of a nuclear fuel assembly
JP2006343321A (en) Fuel element for fast reactor, fast reactor and erection method of fast reactor facility
JPH05215878A (en) Fuel bundle of boiling water type nuclear reactor
JP2520181B2 (en) Fuel assembly and reactor core and lower tie plate
JPS5857718B2 (en) composite fuel assembly
JPS6318152B2 (en)
JP3900438B2 (en) Fuel assemblies for boiling water reactors
US20130114780A1 (en) Nuclear core component
JP2015219064A (en) Fuel assembly
JPH0618689A (en) Fuel aggregate for boiling water type reactor
JP4028088B2 (en) Fuel assembly