JPH03221704A - Combustion and burner - Google Patents

Combustion and burner

Info

Publication number
JPH03221704A
JPH03221704A JP8736690A JP8736690A JPH03221704A JP H03221704 A JPH03221704 A JP H03221704A JP 8736690 A JP8736690 A JP 8736690A JP 8736690 A JP8736690 A JP 8736690A JP H03221704 A JPH03221704 A JP H03221704A
Authority
JP
Japan
Prior art keywords
flame
cooling
combustion
cooling pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8736690A
Other languages
Japanese (ja)
Other versions
JP2583337B2 (en
Inventor
Nobuhiro Tsuchiya
順裕 土屋
Toshihiko Mishima
美島 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Publication of JPH03221704A publication Critical patent/JPH03221704A/en
Application granted granted Critical
Publication of JP2583337B2 publication Critical patent/JP2583337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the quantity of the NOx generation without increasing the quantity of CO generation by making a cooling liquid flow in a cooling pipe installed in visible flame and extracting a specified quantity of heat that is generated in a gas burner, cooling part of the flame, and making the CO that is formed in the cooling section contact with the adjacent flame above the cooling section. CONSTITUTION:A U-shaped cooling pipe is installed above a unit burner 1 (the space in which visible flame is formed) and, as the cooling liquid is passed as in the arrow marks a, b, and c, flame 3' is formed with gas combustion. With this combustion of the combustion gas a flame cooling face Fc is formed in the section of the flame 3' which is in contact with the cooling pipe 5 and cooled and in the section of the flame 3' which is subject to radiation cooling by passing in the nearest distance to the cooling pipe 5 are formed, and the other sections form a normal flame Fn. The cooling of the flame by a cooling pipe consists of the extraction of sensible heat in the gap between the flame and the cooling pipe and the extraction of condensation heat of the steam in the gas formed in the combustion, and extraction of evaporation heat by reevaporation of the condensed steam in combination, and 2-4.5% of the heat generated in the visible flame is extracted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料ガスを燃焼せしめる方法および同装置に
係り、特に、NOxの発生を制御するように改良した燃
焼方法および燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for combusting fuel gas, and particularly to a combustion method and apparatus improved to control the generation of NOx. be.

〔従来の技術〕[Conventional technology]

ガスを燃料とする燃焼装置は給湯器や暖房器に広く用い
られており、コンパクト化、高負荷化の改良が進められ
ている。
Combustion devices that use gas as fuel are widely used in water heaters and space heaters, and improvements are being made to make them more compact and have higher loads.

一方、公害防止の立場からNo工の発生を抑制すること
が社会的要請となっている。
On the other hand, from the standpoint of pollution prevention, it has become a social demand to suppress the occurrence of No-No-works.

ところが、ガス燃焼技術において燃焼用器具のコンパク
ト・高負荷化とN○χ低減とは両立し難いという問題が
有る。
However, there is a problem in gas combustion technology that it is difficult to achieve both compactness and high-load combustion equipment and reduction of N○χ.

flE、低Noよ化バーナとしては、シュバンクバーナ
のような完全予混合式のバーナや、1次燃焼室を持った
2次火炎形成式ブンゼンバーナ等が公知であるが、いず
れも燃焼量範囲を広くとれないことや、1次空気比の制
御が難しいことや、構造が複雑で製造コストが高いこと
等の不具合が有る。
As flE and low No. conversion burners, fully premixed burners such as Schwanck burners and secondary flame formation Bunsen burners with a primary combustion chamber are well known, but all of them have a combustion amount range. There are disadvantages such as the inability to obtain a wide range of air pressure, difficulty in controlling the primary air ratio, and the complicated structure and high manufacturing cost.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

NOxの発生量を抑制するための公知の手法は、これを
原理的に分類すると a、火炎冷却法、b。
Known methods for suppressing the amount of NOx generated can be categorized in principle: a. flame cooling method; b.

濃淡燃焼法、C0二段燃焼法、d、排ガス再循環等とな
るが、いずれも既製の燃焼装置に適用しようとするバー
ナの交換ないし大改造を必要とし、経済的でない。
These methods include the concentration combustion method, CO two-stage combustion method, d, exhaust gas recirculation, etc., but all of them require replacement or major modification of the burner to be applied to an existing combustion device, and are not economical.

さらに、単にNo工を低減させるだけであれば前記の火
炎冷却法が有効であるが、火炎を冷却することによって
C0発生量が増加するという不具合を伴う。
Furthermore, although the flame cooling method described above is effective if it merely reduces the number of no-cuts, it is accompanied by the problem that the amount of CO generated increases by cooling the flame.

本発明は」二連の事情に鑑みて為されたもので、在来形
のバーナ本体部分に改造を加える必要が無く、従って在
来形バーナの燃焼量範囲や負荷性能や燃焼性能に悪影響
を及ぼすこと無く、しかも、C0発生量を増加させるこ
となくN○χ発生量を抑制し得る燃焼方法、および燃焼
装置を提供することを目的とする。
The present invention has been made in view of two circumstances: it does not require any modification to the main body of a conventional burner, and therefore does not adversely affect the combustion range, load performance, or combustion performance of the conventional burner. It is an object of the present invention to provide a combustion method and a combustion device capable of suppressing the amount of N○χ generated without causing any adverse effects or increasing the amount of CO generated.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明に係る燃焼方法は、 ガスバーナによって燃料ガスを燃焼させる方法において
In order to achieve the above object, a combustion method according to the present invention includes: A method of burning fuel gas using a gas burner.

前記ガスバーナによって形成される可視火炎内に冷却用
パイプを配置するとともに、該冷却用パイプ内に冷却用
液体を流通せしめて、該ガスバーナで発生する熱量の2
〜4.5%を抜熱し、上記の抜熱により火炎の一部を冷
却してNOxの発生を抑制し、 かつ、火炎が冷却された部分で発生したCOを、冷却部
よりも上方で隣接火炎に触れさせて完全燃焼させること
を特徴とする。
A cooling pipe is disposed within the visible flame formed by the gas burner, and a cooling liquid is passed through the cooling pipe to reduce the amount of heat generated by the gas burner by 2.
~4.5% of the heat is removed, and the above heat removal cools a part of the flame to suppress the generation of NOx, and the CO generated in the part where the flame has been cooled is removed from the adjacent area above the cooling part. It is characterized by complete combustion when exposed to flame.

また、本発明に係る燃焼装置は。Moreover, the combustion device according to the present invention is as follows.

複数の炎孔群によって構成される火炎形成面を有する燃
焼装置において、 上記のガスバーナによって火炎が形成される空間内に設
けられたほぼ水平な冷却用パイプと、上記冷却用パイプ
内に冷却用液体を流通せしめる手段と、を具備している
ことを特徴とする。
In a combustion device having a flame forming surface constituted by a plurality of flame hole groups, a substantially horizontal cooling pipe is provided in a space where a flame is formed by the gas burner, and a cooling liquid is provided in the cooling pipe. It is characterized by comprising a means for distributing the.

〔作用〕[Effect]

前記の本発明方法によれば火炎の一部を冷却するので、
冷却部においてはNOxの発生が抑制されるとともにC
0発生量が増加する。
According to the method of the present invention described above, a part of the flame is cooled, so
In the cooling section, the generation of NOx is suppressed and C
0 generation amount increases.

しかし、上記冷却部が可視火炎の中に位置するので、こ
の部分で発生したCOは上昇しつつ周囲の火炎に触れて
完全燃焼せしめられてCO2となる。
However, since the cooling part is located within the visible flame, the CO generated in this part rises and touches the surrounding flames, where it is completely combusted and becomes CO2.

このようにして、C0発生量を増加せしめることなくN
o、e発生量が抑制される。
In this way, N can be reduced without increasing the amount of C0 generated.
The amount of o and e generation is suppressed.

そして、前記の冷却による抜熱量が発生熱量の4.5%
を越えると冷却用パイプに水滴が付着してバーナ上に滴
下するおそれが有り、2%未満であると冷却用液体の流
通量の制御が困難で、冷媒が水の場合は突沸を生しるお
それが有るが、前述のごとく抜熱量を発生熱量の2〜4
.5%とすることによってこれらの困難を解消できる。
The amount of heat removed by the above cooling is 4.5% of the amount of heat generated.
If it exceeds 2%, there is a risk that water droplets will adhere to the cooling pipe and drip onto the burner, and if it is less than 2%, it will be difficult to control the flow rate of the cooling liquid, and if the refrigerant is water, bumping will occur. However, as mentioned above, the amount of heat removed should be 2 to 4 times the amount of heat generated.
.. By setting it to 5%, these difficulties can be overcome.

また、前記の本発明装置によれば、可視火炎が形成され
る空間に冷却用パイプが設けられるとともに、該冷却用
パイプに冷却液を流通させる手段が設けられているので
、可視火炎の中から容易に抜熱することができる。
Further, according to the above-mentioned apparatus of the present invention, a cooling pipe is provided in the space where visible flame is formed, and a means for circulating a cooling liquid through the cooling pipe is provided. Heat can be easily removed.

しかも、バーナの火炎形成面がほぼ水平であり冷却用パ
イプもほぼ水平であるから、上記の火炎が立体的に並ん
でいる場合も合理的に抜熱することができる。
Furthermore, since the flame forming surface of the burner is substantially horizontal and the cooling pipe is also substantially horizontal, heat can be efficiently removed even when the flames are arranged three-dimensionally.

冷却パイプは厳密に水平に配置しなくても良く。Cooling pipes do not have to be placed strictly horizontally.

はぼ水平とする。その理由は冷却パイプ内の冷却液(例
えば水)を抜き取る場合は僅かな勾配を有している方が
良いこと、および、僅かな勾配が有れば気泡が滞留しに
くいカ鵠、並びに僅かな勾配を有していれば複数の火炎
に対する相対的な位置が僅かずつ変化するので多様な燃
焼状態に対応し易いことによる。
It should be horizontal. The reason for this is that when drawing out the coolant (for example, water) from the cooling pipe, it is better to have a slight slope. This is because the slope allows the relative positions of the plurality of flames to change little by little, making it easier to accommodate various combustion conditions.

〔実施例〕〔Example〕

第S図は、本発明の一実施例において適用の対象とした
従来例のガスバーナを対比参考のために示したものであ
り、同図(A)は正面図、(B)は側面図である。
Fig. S shows a conventional gas burner to which an embodiment of the present invention is applied, for comparison and reference; (A) is a front view, and (B) is a side view. .

1は単位バーナであって、ノズル2から噴出される燃料
ガスを空気と混合させて上方へ吹き出して燃焼させ、火
炎3を形成する。
Reference numeral 1 denotes a unit burner, which mixes fuel gas ejected from a nozzle 2 with air, blows it upward, and burns it to form a flame 3.

この単位バーナ1は、紙面の奥行方向に多数列設され、
その火炎形成面は水平面りに揃えられている。4は火炎
形成面付近に設けられた整流用の金網である。
A large number of unit burners 1 are arranged in rows in the depth direction of the page,
The flame forming surface is aligned horizontally. Reference numeral 4 denotes a wire mesh for rectification provided near the flame formation surface.

前記の火炎3は図示のごとく内炎発光部3a。The flame 3 is an inner flame light emitting part 3a as shown in the figure.

CO危険域3b、最高温度領域3c、および外炎発光帯
3dよりなる可視火炎と、その外周部の不可視火炎3e
とによって形成されている。
A visible flame consisting of a CO danger zone 3b, a maximum temperature zone 3c, and an outer flame emitting zone 3d, and an invisible flame 3e at its outer periphery.
It is formed by.

本実施例の装置は上記の可視火炎内にほぼ水平に冷却用
パイプを配設する。
In the apparatus of this embodiment, a cooling pipe is arranged approximately horizontally within the visible flame.

第2図は、前記第5図の単位バーナ1の上方に、可視火
炎内を貫通するように冷却用パイプ5を配設した状態を
示しており、その全体的斜視図は第1図のごとくである
FIG. 2 shows a cooling pipe 5 disposed above the unit burner 1 shown in FIG. 5 so as to penetrate through the visible flame, and its overall perspective view is as shown in FIG. 1. It is.

第1図に示すように、本例の冷却用パイプ5はU字管状
をなし、その平行部の一方は往管5a。
As shown in FIG. 1, the cooling pipe 5 of this example has a U-shaped tube shape, and one of its parallel parts is an outgoing pipe 5a.

他方は反響5bである。The other is echo 5b.

図示しない通水手段により、冷却液(本例では冷却水)
が矢印aのごとく供給され、矢印す、cのごとく通水さ
れる。
Cooling fluid (cooling water in this example) is
Water is supplied as indicated by arrow a, and water is passed as indicated by arrows S and C.

本例においては往管5aに僅かな上がり勾配を付し、反
響5bに僅かな下り勾配を付しである。
In this example, the outgoing pipe 5a has a slight upward slope, and the reverberation pipe 5b has a slight downward slope.

その結果、第2図(A)に現われている往管5aの高さ
H3は反響5bの高さH2に比して僅かに低い。
As a result, the height H3 of the outgoing tube 5a appearing in FIG. 2(A) is slightly lower than the height H2 of the echo 5b.

第2図(B)では往管5aと反響5bとがほとんど重な
っている。
In FIG. 2(B), the outgoing tube 5a and the echo 5b almost overlap.

このように勾配を付しておくと水抜き操作に好都合であ
り、パイプ内に気泡が4流しにくく、かつ、後に詳述す
るごとく適応ili丁能な燃焼状態の範囲が広くなる。
Having a slope in this way is convenient for draining water, makes it difficult for air bubbles to flow into the pipe, and widens the range of combustion conditions that can be accommodated, as will be described in detail later.

本例においては(第2図参照) 火炎3′の幅W、 = s o圓 往M5aと反響5bとの間隔W2=40mm火炎3′の
高さH1=70m++ 往管5aの高さH3#戻管5bの高さH2# 30 m
である。
In this example (see Figure 2), Width W of flame 3' = s o Distance between outgoing pipe M5a and echo 5b W2 = 40 mm Height of flame 3' H1 = 70 m++ Height of outgoing pipe 5a H3# return Height of pipe 5b H2# 30 m
It is.

以上のように構成された本発明の燃焼装置の一実施例を
用いて本発明に係る燃焼方法を実施した1例について次
に述べる。
An example of implementing the combustion method according to the present invention using an embodiment of the combustion apparatus according to the present invention configured as described above will be described next.

第1図に示すように単位バーナ1が列設されて、これら
の単位バーナによって構成される炎孔群が火炎形成面を
構成している燃焼装置において、これら単位バーナlの
上方(すなわち可視火炎が形成さる八き空間)に、U字
状の冷却パイプを配設して冷却用液体(本例では水)を
、矢印a、b。
As shown in FIG. 1, in a combustion apparatus in which unit burners 1 are arranged in a row and a group of flame holes constituted by these unit burners constitutes a flame formation surface, the unit burners 1 are arranged above the unit burners 1 (that is, visible flame A U-shaped cooling pipe is installed in the space formed by the arrows a and b to supply cooling liquid (water in this example).

Cのごとく流通させながら、ガス燃焼を行わせて火炎3
′を形成させる。
While circulating as shown in C, gas combustion is performed to create flame 3.
′ is formed.

このようにして燃料ガスの燃焼を行わせると第3図に示
すごとくになる。即ち、 火炎3′のうち、冷却パイプ5に触れて冷却される部分
、および冷却パイプ5の至近距離内を通って放射冷却を
受ける部分で火炎冷却面Fcを形成し、その他の部分(
冷却を受けない部分)は通常火炎Fnを形成する。概鴫
的に見れば、冷却パイプ5の周囲および上方に冷却ゾー
ンFc’が形成される。
When the fuel gas is combusted in this manner, the result is as shown in FIG. 3. That is, the part of the flame 3' that is cooled by touching the cooling pipe 5 and the part that passes within close range of the cooling pipe 5 and receives radiation cooling form the flame cooling surface Fc, and the other part (
The part not subjected to cooling) normally forms a flame Fn. Generally speaking, a cooling zone Fc' is formed around and above the cooling pipe 5.

上記の冷却パイプによる火炎の冷却は、火炎と冷却パイ
プとの間の熱伝導による顕熱の抜熱と、燃焼生成ガスの
中の水蒸気の凝縮熱の抜熱と、凝縮した水蒸気の再蒸発
による蒸発熱の抜熱とが複合して行われ、可視火炎中か
ら抜熱される。
The cooling of the flame by the cooling pipe described above is achieved by removing sensible heat through heat conduction between the flame and the cooling pipe, removing heat of condensation from water vapor in the combustion gas, and re-evaporating the condensed water vapor. This is done in combination with the removal of heat of evaporation, and heat is removed from the visible flame.

上記抜熱により火炎冷却面Fcは温度が低くなり、NO
xの発生が抑制される。
Due to the above heat removal, the temperature of the flame cooling surface Fc becomes lower, and NO
Generation of x is suppressed.

前記の冷却パイプ5によるブラフボディ効果のため、火
炎冷却面Fc付近に排ガス再循環領域(第3図において
、ガスの流れを矢印で示す)が成形される。この、部分
的な排ガス自己再循環によってパイプ直上の冷却未燃ガ
スおよび、さらに上側のホットな燃焼ガスが逐次混合さ
れ、滞留時間を延ばされながら燃焼するため、NOxの
発生量はいっそう抑制される。
Due to the bluff body effect of the cooling pipe 5, an exhaust gas recirculation region (in FIG. 3, the gas flow is indicated by an arrow) is formed near the flame cooling surface Fc. Through this partial exhaust gas self-recirculation, the cooled unburned gas directly above the pipe and the hot combustion gas further above are mixed in sequence and burn while extending the residence time, further suppressing the amount of NOx generated. Ru.

しかしながら、前述のごとく火炎の1部分が冷却される
と、冷却によるNoよ低減効果が得られる反面、冷却に
よってCO発生量が増加するという不具合を生じる。従
って、このC○発生量増加を防止しなければ実用価値が
無い。
However, when a portion of the flame is cooled as described above, although the cooling effect reduces the amount by more than 100%, the problem arises that the amount of CO generated increases due to the cooling. Therefore, there is no practical value unless this increase in the amount of C○ generation is prevented.

この実施例においては、冷却パイプ5付近で発生したC
○は前述の排ガス再循環領域(多数の小矢印で表わされ
ている)に流入し、渦状流動しつつ隣接する通常火炎F
nに触れて燃焼せしめられCO2となる。
In this embodiment, C generated near the cooling pipe 5
○ flows into the aforementioned exhaust gas recirculation region (represented by many small arrows), flows in a spiral shape, and flows into the adjacent normal flame F.
When it comes into contact with n, it is combusted and becomes CO2.

第4図は横軸に抜熱量をとり、縦軸にNoχ低減を示し
た図表である。
FIG. 4 is a chart in which the horizontal axis shows the amount of heat removed and the vertical axis shows the Noχ reduction.

抜熱量は、当該ガスバーナの定格発生熱量に対するパー
センテージで表わしである。
The amount of heat removed is expressed as a percentage of the rated amount of heat generated by the gas burner.

N○χ低減率は、従来例(第5図)におけるN○χ発生
量に比しての減少率をパーセンテージで示しである。
The N○χ reduction rate is expressed as a percentage compared to the amount of N○χ generated in the conventional example (FIG. 5).

この実施例では、抜熱量4%付近にNoよ低減率のピー
クが認められる。
In this example, a peak of the reduction rate is observed around 4% of the amount of heat removed.

抜熱量は冷却水の流入温度と流出温度との温度差ΔTに
流量を乗じて求められるが、4%の抜熱をする場合に流
量と温度差との組合せはいろいろに変えることができる
The amount of heat removed is obtained by multiplying the temperature difference ΔT between the inflow temperature and the outflow temperature of the cooling water by the flow rate, but when removing 4% heat, the combination of flow rate and temperature difference can be changed in various ways.

本第4図において、実線カーブは温度差ΔT=6℃の場
合、破線カーブは温度差ΔT=50℃の場合である。
In FIG. 4, the solid line curve is for a temperature difference ΔT=6°C, and the broken line curve is for a temperature difference ΔT=50°C.

本例において、具体的には、ΔT=6℃の場合の入水温
17℃、出水部23℃である。またΔT=50℃の場合
の入水温17℃、出水部67℃である。
In this example, specifically, when ΔT=6°C, the inlet water temperature is 17°C, and the water outlet is 23°C. Further, when ΔT=50°C, the inlet water temperature is 17°C, and the water outlet temperature is 67°C.

上記の温度差ΔTの変化に伴ってNOx低減効果に若干
の差はあるが、いずれの場合も抜熱量が4%付近のとき
に最良の結果を得た。
Although there are some differences in the NOx reduction effect as the temperature difference ΔT changes, the best results were obtained in all cases when the amount of heat removed was around 4%.

本発明者らの実験によると、ガスバーナの仕様や熱量ガ
スの組成が変わると、最良の結果を得る抜熱量も変化す
るが、おおむね2〜4.5%の範囲内にある。
According to experiments conducted by the present inventors, when the specifications of the gas burner and the composition of the calorific gas change, the amount of heat removed to obtain the best results also changes, but it is generally within the range of 2 to 4.5%.

さらに、次の理由によって抜熱量がこの範囲から外れる
ことは好ましくない。
Furthermore, it is not preferable for the amount of heat removed to deviate from this range for the following reasons.

抜熱量を少なくするには、具体的には冷却パイプの径を
細くするとともに冷却液の流量を絞ることになるが、径
を細くするには自ずから限度が有るので、2%未満とい
った小さい抜熱量を得るには冷却液の流量をかなり小さ
くしなければならない。実際問題として流量を小さくす
ると流量制御が困難になる。而して流量制御が不適切で
あると冷却液が突沸を生じるおそれが有る。
In order to reduce the amount of heat removed, specifically, the diameter of the cooling pipe is made smaller and the flow rate of the coolant is reduced, but since there is a limit to making the diameter smaller, the amount of heat removed is as small as less than 2%. To obtain this, the flow rate of the coolant must be considerably reduced. As a practical matter, reducing the flow rate makes flow control difficult. Therefore, if the flow rate control is inappropriate, there is a risk that the coolant will cause bumping.

また、抜熱量を4.5%よりも大きくすると、冷却パイ
プの外周面に凝縮した水が滴下する。この水は硝酸に類
した窒素化合物を含んでいてバーナを腐食させるので不
都合である。こうした理由により、抜熱量は2〜4.5
%とすることが適当である。冷却パイプの径は、上記の
抜熱量が得られるよう適宜に設定すれば良い。
Moreover, when the amount of heat removed is made larger than 4.5%, water condensed on the outer circumferential surface of the cooling pipe drips. This water is disadvantageous because it contains nitrogen compounds similar to nitric acid and corrodes the burner. For these reasons, the amount of heat removed is 2 to 4.5
% is appropriate. The diameter of the cooling pipe may be appropriately set so as to obtain the above-mentioned amount of heat removal.

(第2図参照)火炎の高さHlに対する冷却パイプ5a
の高さは厳密に規制するを要しないが、本発明者らの実
験によれば冷却パイプの高さを火炎高さHlの0.4強
にすると好都合が得られた。
(See Figure 2) Cooling pipe 5a relative to flame height Hl
Although the height of the flame does not need to be strictly regulated, according to experiments conducted by the present inventors, it is advantageous to set the height of the cooling pipe to 0.4 or more of the flame height Hl.

ところが、火炎高さHlは、当該ガス燃焼装置の負荷の
大小によって変化する。このため、あらゆる負荷状態に
おいても最善であるような冷却パイプ高さは得られない
However, the flame height Hl changes depending on the load on the gas combustion device. Therefore, it is not possible to obtain the optimum cooling pipe height under all load conditions.

本実施例の冷却パイプ5には勾配が付されていて、その
高さがH2+ H3を含んで無段階に変化しているので
、あらゆる負荷状態において冷却パイプの何処かで最良
の状態が得られる。その結果、負荷状態が変化しても可
視炎内に冷却パイプが入っている状態の範囲については
、NOxの低減率がほぼ一定となる。
The cooling pipe 5 of this embodiment has a slope and its height changes steplessly including H2 + H3, so the best condition can be obtained somewhere in the cooling pipe under all load conditions. . As a result, even if the load state changes, the NOx reduction rate remains approximately constant within the range where the cooling pipe is inside the visible flame.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る燃焼方法によれば、
バーナ本体部に改造を加える必要無く、従ってバーナの
燃焼量範囲や負荷性能に悪影響を及ぼすおそれ無く、し
かもC○の発生量を増加させることなくNo工発生量を
抑制することができる。
As explained above, according to the combustion method according to the present invention,
There is no need to modify the burner main body, and therefore there is no risk of adversely affecting the burner combustion range or load performance, and the amount of NO generation can be suppressed without increasing the amount of C○ generated.

また、本発明の燃焼装置は可視火炎が形成される空間内
に設けられたほぼ水平な冷却用パイプと、該冷却用パイ
プ内に冷却用液体を流通せしめる手段とを具備している
ので、前記の発明方法を容易に、かつ確実に実施するこ
とができる。
Furthermore, since the combustion apparatus of the present invention is equipped with a substantially horizontal cooling pipe provided in a space where a visible flame is formed, and means for causing a cooling liquid to flow through the cooling pipe, the above-mentioned The invented method can be easily and reliably implemented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃焼装置の一実施例を示す斜視図
である。 第2図(A)は上記実施例の正面図、第2図(B)は同
じく側面図である。 第3図は上記実施例の燃焼装置を用いて本発明に係る燃
焼方法を実施した1例における燃焼状態の説明図である
。 第4図は上記実施例における効果を説明するための図表
である。 第5図は従来例の燃焼装置を示し、同図(A)は正面図
、同図(B)は側面図である。 工・・・単位バーナ、2・・・ノズル、3,3′・・・
火炎、3a・・・内炎発光部、3b・・・CO危険域、
3C・・最高温度領域、3d・・・外炎発光帯、3e・
・・不可視火炎、4 ・金網、5・・冷却パイプ、5a
・・・冷却パイプの往管、5b・・・冷却パイプの反骨
FIG. 1 is a perspective view showing an embodiment of a combustion apparatus according to the present invention. FIG. 2(A) is a front view of the above embodiment, and FIG. 2(B) is a side view of the same. FIG. 3 is an explanatory diagram of a combustion state in one example in which the combustion method according to the present invention is implemented using the combustion apparatus of the above embodiment. FIG. 4 is a chart for explaining the effects of the above embodiment. FIG. 5 shows a conventional combustion device, with FIG. 5(A) being a front view and FIG. 5(B) being a side view. Engineering...unit burner, 2...nozzle, 3,3'...
Flame, 3a... Inner flame light emitting part, 3b... CO danger area,
3C... Maximum temperature range, 3d... Outer flame emitting zone, 3e...
・・Invisible flame, 4 ・Wire mesh, 5・・Cooling pipe, 5a
... Outgoing pipe of cooling pipe, 5b... Rebellion of cooling pipe.

Claims (1)

【特許請求の範囲】 1、ガスバーナによって燃料ガスを燃焼させる方法にお
いて、 前記ガスバーナによって形成される可視火炎内に冷却用
パイプを配置するとともに、該冷却用パイプ内に冷却用
液体を流通せしめて、該ガスバーナで発生する熱量の2
〜4.5%を抜熱し、 上記の抜熱により火炎の一部を冷却してNOxの発生を
抑制し、 かつ、火炎が冷却された部分で発生したCOを、冷却部
よりも上方で隣接火炎に触れさせて燃焼させることを特
徴とする燃焼方法。 2、複数の炎孔群によって構成される火炎形成面を有す
る燃焼装置において、 上記のガスバーナによって可視火炎が形成される空間内
に設けられたほぼ水平な冷却用パイプと、 上記冷却用パイプ内に冷却用液体を流通せしめる手段と
、を具備していることを特徴とする燃焼装置。
[Claims] 1. A method of burning fuel gas with a gas burner, comprising: arranging a cooling pipe within a visible flame formed by the gas burner, and flowing a cooling liquid through the cooling pipe; 2 of the amount of heat generated by the gas burner
~4.5% of the heat is removed, and the above heat removal cools a part of the flame to suppress the generation of NOx, and the CO generated in the part where the flame has been cooled is removed from the adjacent area above the cooling part. A combustion method characterized by combustion by contact with flame. 2. In a combustion device having a flame forming surface constituted by a plurality of flame hole groups, a substantially horizontal cooling pipe provided in the space where a visible flame is formed by the gas burner; A combustion device characterized by comprising: means for circulating a cooling liquid.
JP2087366A 1989-11-28 1990-04-03 Method of burning fuel gas in domestic gas combustion device and combustion device Expired - Fee Related JP2583337B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13681889 1989-11-28
JP1-136818 1989-11-28

Publications (2)

Publication Number Publication Date
JPH03221704A true JPH03221704A (en) 1991-09-30
JP2583337B2 JP2583337B2 (en) 1997-02-19

Family

ID=15184225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087366A Expired - Fee Related JP2583337B2 (en) 1989-11-28 1990-04-03 Method of burning fuel gas in domestic gas combustion device and combustion device

Country Status (1)

Country Link
JP (1) JP2583337B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123634U (en) * 1979-02-26 1980-09-02
JPS6078247A (en) * 1983-10-04 1985-05-02 Tokyo Gas Co Ltd Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof
JPH0331603A (en) * 1989-06-28 1991-02-12 Noritz Corp Hot water supplier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123634U (en) * 1979-02-26 1980-09-02
JPS6078247A (en) * 1983-10-04 1985-05-02 Tokyo Gas Co Ltd Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof
JPH0331603A (en) * 1989-06-28 1991-02-12 Noritz Corp Hot water supplier

Also Published As

Publication number Publication date
JP2583337B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US5224851A (en) Low NOx burner
US4478158A (en) Condensing furnaces
CN212481282U (en) Horizontal full-premixing low-nitrogen gas boiler
JPH03221704A (en) Combustion and burner
JP2008202902A (en) Hydrogen and oxygen mixed gas mixed combustion burner
JP2533804Y2 (en) Combustion equipment
JP5501198B2 (en) Low NOx / low dust combustion method and boiler combustion chamber
JP2529067Y2 (en) Combustion equipment
CN210861032U (en) Novel low-nitrogen energy-saving steam generator
CN115419916B (en) Aircraft engine reflow combustion chamber adopting MILD combustion and reflow combustion method
JP3617063B2 (en) Gas water heater
KR102236937B1 (en) Stage Combustion Firing Burner for Gas
JP2698887B2 (en) Gas combustion equipment
RU2700308C1 (en) Boiler with injector gas burners
US20170138634A1 (en) Method and Apparatus for Firetube Boiler and Ultra Low NOx Burner
KR100398050B1 (en) Gas boiler
JPH09145001A (en) Water tube boiler and combustion method thereof
JP3071006B2 (en) Gas burner
JP3891531B2 (en) Gas combustion heating device
SU1695038A2 (en) Screened furnace chamber
JP3107713B2 (en) Burner for oil water heater
JP2509994Y2 (en) Gas duct burner for reheating
JPH08312913A (en) Tow-stage combustion device
JP3517810B2 (en) Oil fired boiler
JPS5856049B2 (en) gas combustion equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees