JPH03221521A - Wholly aromatic polyester, film and molded product thereof - Google Patents

Wholly aromatic polyester, film and molded product thereof

Info

Publication number
JPH03221521A
JPH03221521A JP1756690A JP1756690A JPH03221521A JP H03221521 A JPH03221521 A JP H03221521A JP 1756690 A JP1756690 A JP 1756690A JP 1756690 A JP1756690 A JP 1756690A JP H03221521 A JPH03221521 A JP H03221521A
Authority
JP
Japan
Prior art keywords
aromatic polyester
wholly aromatic
acid
formulas
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1756690A
Other languages
Japanese (ja)
Inventor
Tokuaki Koseki
徳昭 小関
Kunio Kimura
邦生 木村
Atsushi Hara
厚 原
Yasuo Kato
康夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1756690A priority Critical patent/JPH03221521A/en
Publication of JPH03221521A publication Critical patent/JPH03221521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the subject melt moldable polyester, composed of respective specific four kinds of recurring units, having respective specified melting point and reduced specific viscosity and convertible from a crystal state into an optically isotropic melt by and capable of providing films and molded products with hardly any anisotropy of physical properties. CONSTITUTION:The objective polyester, obtained by polymerizing p- hydroxybenzoic acid, etc., hydroquinone, etc., isophthalic acid, etc., and 1,4-bis(hydroxybenzoyloxy)butane or 1,4-bis(phenoxy)butane-4,4'-dicarboxylic acid, etc., so that the amounts (mol%) x<1> and y<1> of recurring units expressed by formula I in formula V are preferably within the range surrounded by curves (A) and (C) or the amounts (mol%) x<2> and y<2> of recurring units expressed by formula II in formula VI are preferably within the range surrounded by curves (D) and (F) and having the recurring units expressed by formulas I to IV, <=350 deg.C melting point and >=0.4dl/g reduced specific viscosity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な全芳香族ポリエステル及びそのフィルム
または成形品に関する。更に詳しくは融点が約350℃
以下で且つ、融解により結晶状態から光学的等方性融体
となる全芳香族ポリエステル及び該全芳香族ポリエステ
ルからなる物性異方性の少ないフィルムまたは成形品に
関する。該全芳香族ポリエステルは、溶融成形が可能で
あり、優れたしかもバランスのとれた物性と化学的性質
を有するため、フィルム、成形品ばかりではなく繊維用
素材としても有用である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a novel wholly aromatic polyester and a film or molded article thereof. More specifically, the melting point is approximately 350°C.
The following relates to a wholly aromatic polyester which changes from a crystalline state to an optically isotropic melt upon melting, and to a film or molded article comprising the wholly aromatic polyester and having little anisotropy in physical properties. The wholly aromatic polyester can be melt-molded and has excellent and well-balanced physical and chemical properties, so it is useful not only for films and molded products but also as a material for fibers.

(従来の技術) 近年、技術の高度化により、物理的化学的に高性能を有
する素材の要求が高まっているが、かかる素材として、
例えばp−ヒドロキシ安息香酸、2−ヒドロキシ−6−
ナフトエ酸等やテレフタル酸、ハイドロキノン等を主成
分として溶融下で光学的異方性を示す液晶ポリマーが種
々提案されている。
(Conventional technology) In recent years, with the advancement of technology, there has been an increasing demand for materials with high physical and chemical performance.
For example, p-hydroxybenzoic acid, 2-hydroxy-6-
Various liquid crystal polymers have been proposed that contain naphthoic acid, terephthalic acid, hydroquinone, etc. as main components and exhibit optical anisotropy when melted.

従来より樹脂、繊維、フィルム等各種分野に広く使用さ
れているポリエチレンテレフタレートに比べ、かかる液
晶ポリマーは確かに高いヤング率、融点等を有しており
、優れた素材ということができるが、その高い分子間力
の故に、溶融成形すると一軸方向に配向しやすく、配向
方向(機械軸方向)とそれに垂直な方向の物性の間に異
方性が生してしまうという問題点がある。
Compared to polyethylene terephthalate, which has been widely used in various fields such as resins, fibers, and films, this liquid crystal polymer certainly has a higher Young's modulus and melting point, and can be said to be an excellent material. Due to intermolecular forces, melt molding tends to cause orientation in a uniaxial direction, resulting in anisotropy between the orientation direction (mechanical axis direction) and the physical properties in a direction perpendicular thereto.

一般的にはこの物性異方性を緩和する方法としてガラス
繊維やタルクなどの強化材や充填剤を添加する方法が用
いられるが、その配合量に限界があり、またポリマーの
長所である軽量性を損なうので、フィルム分野へ用途展
開できないと言う欠点がある。
Generally, adding reinforcing materials or fillers such as glass fiber or talc is used as a method to alleviate this physical anisotropy, but there is a limit to the amount of reinforcing materials and fillers that can be added. It has the disadvantage that it cannot be used in the film field because it impairs the quality of the film.

一方、溶融下で光学的に等方性で且つポリエチレンテレ
フタレートより芳香族性、分子剛直性の高いものとして
ボリエナレン2.6−ナフタレートや4,4“−(エチ
レンジオキシ)安息香酸とエチレングリコールとを縮合
し得られるポリエステルが知られている。しかし、これ
らについては物性異方性はないものの上述の特性が未だ
充分とは言い難い。
On the other hand, polyenalene 2,6-naphthalate, 4,4"-(ethylenedioxy)benzoic acid, and ethylene glycol are optically isotropic in the melt and have higher aromaticity and molecular rigidity than polyethylene terephthalate. Polyesters obtained by condensing are known. However, although these do not have physical anisotropy, the above-mentioned properties are still far from satisfactory.

また、ボリアリレート(例えばテレフタル酸残基、イソ
フタルfII残基、および2,2−ビス(4ヒドロキシ
フエニル)プロパン残基から成るポリエステル)の場合
には物性異方性はなく耐熱性も向上するが、ポリマーが
非品性であるため、耐溶剤性、耐油性等で問題を有して
いた。
Furthermore, in the case of polyarylates (for example, polyesters consisting of terephthalic acid residues, isophthalic fII residues, and 2,2-bis(4hydroxyphenyl)propane residues), there is no physical anisotropy and heat resistance is improved. However, because the polymer was inferior, it had problems with solvent resistance, oil resistance, etc.

Erdesir らはヒドロキシ安息香酸、ヒドロキノ
ンとイソフタル酸とから構成される全芳香族ポリエステ
ルを種々合威し、ポリ(p−オキシベンゾイル)部(以
後A部と省略する)とポリ(pフェニレンイソフタレー
ト)部(以後B部と省略する)のモル比が43157 
(=A部/B部)以下の組成のものは融解後、結晶状態
から光学的等方融体となると報告している(Polym
er、29,441(1986) ) 、 Lかし、A
部33モル%以下の総酸に関して詳細な検討は行われて
おらず、物性異方性についてはなんら報告されていない
Erdesir et al. synthesized various wholly aromatic polyesters composed of hydroxybenzoic acid, hydroquinone, and isophthalic acid, and produced poly(p-oxybenzoyl) part (hereinafter abbreviated as part A) and poly(p-phenylene isophthalate). The molar ratio of part (hereinafter abbreviated as part B) is 43157
(=Part A/Part B) It has been reported that after melting, the following composition changes from a crystalline state to an optically isotropic melt (Polym
er, 29, 441 (1986)), L. Kashi, A.
No detailed study has been conducted regarding the total acid content of 33 mol% or less, and no reports have been made regarding the anisotropy of physical properties.

もし、融点が約350℃以下であり、且つ融解により結
晶状態から光学的等方性融体となる全芳香族ポリエステ
ルが得られれば、容易に成形可能であり、優れた物性を
有し、しかも物性異方性の少ないバランスのとれたフィ
ルムや成形品として有望である。
If a wholly aromatic polyester with a melting point of about 350°C or less and which changes from a crystalline state to an optically isotropic melt upon melting can be obtained, it can be easily molded, has excellent physical properties, and has different physical properties. It is promising as a well-balanced film or molded product with little orientation.

(発明が解決しようとする諜B) 上述したように従来技術では、全芳香族ポリエステルで
あって、溶融成形が可能で、かつ融解により結晶状態か
ら光学的等方性融体となるポリマーは未だ得られていな
い。また、このようなポリマーから威る物性異方性の少
ないフィルムや成形品は知られていない。
(Intelligence B to be Solved by the Invention) As described above, in the prior art, it has not yet been possible to obtain a wholly aromatic polyester polymer that can be melt-molded and that changes from a crystalline state to an optically isotropic melt upon melting. Not yet. Furthermore, films and molded products with less anisotropy of physical properties are known from such polymers.

(課題を解決するための手段) 前記課題を解決するため本発明者らは鋭意、研究、検討
した結果、特定のモノマーの組み合せから威る限られた
組成において上記目的を達成することを見い出し、遂に
本発明を完成するに到った。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have diligently researched and considered, and as a result, have discovered that the above objects can be achieved with a limited composition that is achieved by a combination of specific monomers, We have finally completed the present invention.

すなわち本発明は下記一般式(I)〜(IV)〜(IV
)を繰返し構成単位とし、融点が約350℃以下、還元
比粘度が0 、 4 dl/g  以上であり、かつ融
解により結晶状態から光学的等方性融体となることを特
徴とする全芳香族ポリエステルである。
That is, the present invention relates to the following general formulas (I) to (IV) to (IV
) as a repeating structural unit, a wholly aromatic polyester having a melting point of about 350° C. or less, a reduced specific viscosity of 0.4 dl/g or more, and changing from a crystalline state to an optically isotropic melt upon melting. It is.

(IV) (但し、R1はエーテル基またはカルボニル基を、R1
はカルボニル基を示し、nは0または1である、) また本発明は該全芳香族ポリエステルから得られるフィ
ルム及び成形品である。
(IV) (However, R1 is an ether group or a carbonyl group, R1
represents a carbonyl group, and n is 0 or 1.) The present invention also relates to films and molded articles obtained from the wholly aromatic polyester.

以下本発明について更に詳細に説明する0本発明におけ
る全芳香族ポリエステルは下記−数式で示されるP−ヒ
ドロキシ安息香酸またはその誘導体(V)、ヒドロキノ
ンまたはその誘導体(Vl)、イソフタル酸またはその
誘導体(■)と1,4−ビス(ヒドロキシベンゾイロキ
シ)ブタンまたはその誘導体あるいは1.4−ビス(フ
ェノキシ)ブタン−4,4”−ジカルボン酸またはその
誘導体(VW)とを、重合体の還元比粘度が0.4dl
/g以上に達するまで璽合して製造される。
The present invention will be explained in more detail below. The fully aromatic polyester in the present invention is represented by the following formula: P-hydroxybenzoic acid or its derivative (V), hydroquinone or its derivative (Vl), isophthalic acid or its derivative ( (2) and 1,4-bis(hydroxybenzoyloxy)butane or its derivative or 1,4-bis(phenoxy)butane-4,4''-dicarboxylic acid or its derivative (VW) at the reduction ratio of the polymer. Viscosity is 0.4dl
/g or more.

または 上記式中R3は水素原子、炭素原子数7以下の低級アル
カノイル基、ベンゾイル基であり R4は水素原子また
は炭素原子数6〜12のアリール基であり R5,Rh
、R9およびR′。はそれぞれ炭素原子数7以下の低級
アルカノイル基、ベンゾイル基であり Hff、Re、
R■およびR口はそれぞれ水素原子または炭素原子数6
〜12のアリール基より選ばれる。
Or in the above formula, R3 is a hydrogen atom, a lower alkanoyl group having 7 or less carbon atoms, or a benzoyl group, and R4 is a hydrogen atom or an aryl group having 6 to 12 carbon atoms, and R5,Rh
, R9 and R'. are lower alkanoyl groups and benzoyl groups having 7 or less carbon atoms, respectively; Hff, Re,
R■ and R port each have a hydrogen atom or 6 carbon atoms
~12 aryl groups.

前記−数式(V)、(Vl)、(■)および(■)で表
わされる化合物の具体例としてはp−ヒドロキシ安息香
酸、p−ホルミルオキシ安息香酸、p−アセトキシ安息
香酸、p−プロピルカルボニルオキシ安息香酸、p−ベ
ンゾイルオキシ安息香酸、p−ヒドロキシ安息香酸フェ
ニル、p−ヒドロキシ安息香酸トリル、p−ヒドロキシ
安息香酸p−ブチルフェニル、p−ヒドロキシ安息香酸
βナフチル、ヒドロキノン、1.4−ジアセトキノベン
ゼン、14−ジプロピルカルボニルオキシベンゼン、1
4−ジベンゾイルオキシベンゼン、イソフタル酸、イソ
フタル酸ジフェニル、イソフタル酸ジトリル、イソフタ
ル酸ジp−ブチルフェニル、イソフタル酸ジp−クロル
フェニル、14−ビス(フェノキシ)ブタン−4,4゜
ジカルボン酸、1.4−ビス(フェノキシ)ブタン−4
4゛−ジカルボン酸ジフェニル、14−ビス(フェノキ
シ)ブタン−4,4゛−ジカルボン酸ジトリル、1,4
−ビス(フェノキシ)ブタン−4,4“−ジカルボン酸
ジp−ブチルフェニル、1.4−ビス(フェノキシ)ブ
タン−4,4′−ジカルボン酸ジp−クロルフェニル、
1.4−ビス(ヒドロキシベンゾイロキシ)ブタン、1
.4−ビス(アセトキシヘンゾイロキシ)ブタン、1.
4−ビス(プロボキシヘンゾイロキシ)ブタン、1.4
−ビス(ジベンゾイロキシ)ブタン等を挙げることがで
きる。
Specific examples of the compounds represented by formulas (V), (Vl), (■) and (■) include p-hydroxybenzoic acid, p-formyloxybenzoic acid, p-acetoxybenzoic acid, and p-propylcarbonyl. Oxybenzoic acid, p-benzoyloxybenzoic acid, phenyl p-hydroxybenzoate, tolyl p-hydroxybenzoate, p-butylphenyl p-hydroxybenzoate, β-naphthyl p-hydroxybenzoate, hydroquinone, 1,4-di Acetoquinobenzene, 14-dipropylcarbonyloxybenzene, 1
4-dibenzoyloxybenzene, isophthalic acid, diphenyl isophthalate, ditolyl isophthalate, diphenyl isophthalate, diphenyl isophthalate, diphenyl isophthalate, 14-bis(phenoxy)butane-4,4°dicarboxylic acid, 1 .4-bis(phenoxy)butane-4
Diphenyl 4′-dicarboxylate, 14-bis(phenoxy)butane-4,4′-dicarboxylic acid ditolyl, 1,4
-bis(phenoxy)butane-4,4′-dicarboxylic acid di p-butylphenyl, 1,4-bis(phenoxy)butane-4,4′-dicarboxylic acid di p-chlorophenyl,
1.4-bis(hydroxybenzoyloxy)butane, 1
.. 4-bis(acetoxyhenzoyloxy)butane, 1.
4-bis(proboxyhenzoyloxy)butane, 1.4
-bis(dibenzoyloxy)butane and the like.

本発明の全芳香族ポリエステルが融点約350℃以下、
かつ融解により結晶状態から光学的等方性融体となるに
は前記繰返し構成単位(1)〜NV)のモル比が非常に
重要である。
The fully aromatic polyester of the present invention has a melting point of about 350°C or less,
In addition, the molar ratio of the repeating structural units (1) to NV) is very important in order to change from a crystalline state to an optically isotropic melt by melting.

前記−数式(IV)のillがエーテル基で、R2がカ
ルボニル基の場合前記繰り返し単位(1)〜(■)の各
々のモル%を下記の様にχ1 とylで表わすと、χ1
およびylが第1図中の斜線部内(曲線Aと曲線Cで囲
まれた範囲)にあることが好ましい。
When ill in the above-mentioned formula (IV) is an ether group and R2 is a carbonyl group, when the mole % of each of the repeating units (1) to (■) is expressed as χ1 and yl as shown below, χ1
and yl are preferably within the shaded area in FIG. 1 (the range surrounded by curves A and C).

χ (χ1およびy + はモル%を表わす)およびylの
値がこの範囲外であると、得られたポリマーの融点が3
50℃より高いか、または、融解後光学的異方性融体と
なってしまう。
If the values of χ (χ1 and y + represent mol%) and yl are outside this range, the melting point of the resulting polymer will be lower than 3.
If the temperature is higher than 50°C, or the melt becomes an optically anisotropic melt.

特にχ1およびyl の値が第1図中の曲線Bと曲線C
で囲まれた範囲内にあることが好ましい。
In particular, the values of χ1 and yl are curves B and C in Figure 1.
It is preferable that the range is within the range enclosed by .

また、前記−数式NV)の81がカルボニル基で、R1
がエーテル基の場合前記繰り返し単位(1)〜(IV)
の各々のモル数を下記の樟にχ2とyZで表わすと、χ
2及びy2が第2図中の斜線部内(曲線りと曲線Fで囲
まれた範囲)にあることが好ましい。
Further, 81 in the formula NV) is a carbonyl group, and R1
is an ether group, the repeating units (1) to (IV)
When the number of moles of each of is expressed as χ2 and yZ in the box below, χ
2 and y2 are preferably within the shaded area in FIG. 2 (the range surrounded by the curved line and curve F).

(χ2およびyZ はモル%を表わす)χχおよびyZ
の値が範囲外にあると、前述と同様の理由で目的とする
ポリエステルは得られない、特にχ2およびyZ値が第
2図中の曲MEと曲線Fで囲まれた範囲内にあることが
好ましい。
(χ2 and yZ represent mol%) χχ and yZ
If the value of is outside the range, the desired polyester cannot be obtained for the same reason as mentioned above. In particular, if the χ2 and yZ values are within the range surrounded by curve ME and curve F in Figure 2. preferable.

本発明の全芳香族ポリエステルを得る方法としては、従
来公知のポリエステルの重縮合方法に準して製造するこ
とができる。
The wholly aromatic polyester of the present invention can be produced in accordance with conventionally known polyester polycondensation methods.

製法については特に制限はないが、代表的な製法として
例えば次の1)及び2)の方法を挙げることができる。
Although there are no particular restrictions on the manufacturing method, typical manufacturing methods include the following methods 1) and 2).

(1)  上記芳香族ヒドロキシカルボン酸のエステル
化合物、上記芳香族ジオールのエステル化合物と上記芳
香族ジカルボン酸から脱モノカルボン酸重縮合反応によ
り製造する方法。
(1) A method for producing the above-mentioned ester compound of aromatic hydroxycarboxylic acid, the above-mentioned ester compound of aromatic diol, and the above-mentioned aromatic dicarboxylic acid by demonocarboxylic acid polycondensation reaction.

(2)  上記芳香族ヒドロキシカルボン酸のフェニル
エステル化合物、上記芳香族ジオールと上記芳香族ジカ
ルボン酸のジフェニルエステル化合物から脱フエノール
重縮合反応により製造する方法。
(2) A method for producing the phenyl ester compound of the aromatic hydroxycarboxylic acid, the aromatic diol, and the diphenyl ester compound of the aromatic dicarboxylic acid by dephenol polycondensation reaction.

両方法とも必要に応して、従来公知である触媒や分解抑
制剤としてリン化合物を使用することができる。また、
必要に応して固相重合を行っても差し支えない。
In both methods, a conventionally known phosphorus compound can be used as a catalyst or decomposition inhibitor, if necessary. Also,
Solid phase polymerization may be performed if necessary.

このようにして得られた全芳香族ポリエステルは380
℃以下で溶融成形が可能である。具体的には通常の溶融
押し出し装置を用いてフィルムや射出成形品が得られる
が、溶媒キャスト法や圧縮成形法等を用いてもよい。
The wholly aromatic polyester thus obtained was 380
Melt molding is possible at temperatures below ℃. Specifically, a film or an injection molded product can be obtained using an ordinary melt extrusion device, but a solvent casting method, a compression molding method, or the like may also be used.

本発明の全芳香族ポリエステルより威るフィルムや成形
品は耐熱性に優れており、且つ機械軸方向とそれに垂直
な方向の物性比が0.7以上163以下と物性異方性が
少ないと言う特徴を有している0機械軸方向とそれに垂
直な方向の物性比は0.8以上1.2以下が好ましく、
特に0.9以上1.1以下が好ましい。
Films and molded products that are superior to the fully aromatic polyester of the present invention have excellent heat resistance, and have a physical property ratio of 0.7 to 163 in the mechanical axis direction and the direction perpendicular to it, which is said to have little physical property anisotropy. The physical property ratio between the 0 mechanical axis direction and the direction perpendicular thereto is preferably 0.8 or more and 1.2 or less,
Particularly preferred is 0.9 or more and 1.1 or less.

また、フィルムや成形品は融点以下の温度で熱処理し分
子量増大や結晶化を行い物性を向上させることも可能で
ある。
It is also possible to heat-treat films and molded products at temperatures below their melting point to increase their molecular weight and crystallize them, thereby improving their physical properties.

なお本発明の全芳香族ポリエステルには、多種熱可塑性
ポリマー 紫外線吸収剤等の安定剤、酸化防止剤、可塑
剤、充填剤あるいはガラス繊維、炭素繊維、アスへスト
等の如き強化材などを必要に応して配合してもよい。
The wholly aromatic polyester of the present invention requires various thermoplastic polymers, stabilizers such as ultraviolet absorbers, antioxidants, plasticizers, fillers, or reinforcing materials such as glass fiber, carbon fiber, ashest, etc. It may be blended accordingly.

以下本発明において用いた測定法を説明する。The measurement method used in the present invention will be explained below.

融゛   点:バーキンエルマー社製DSC−7を用い
昇温速度20°(/minで測定した。
Melting point: Measured using Birkin Elmer's DSC-7 at a heating rate of 20°/min.

光学的性質:柳本製作所製稟クロ融点測定器を用い、直
交ニコル下、2枚のガラス板にはさんだ試料の溶融状態
での視野明暗により測定した。暗視野となった場合は光
学的等方性融体、明視野となった場合は光学的異方性融
体である。
Optical properties: Measured using a Renkuro melting point measuring instrument manufactured by Yanagimoto Seisakusho under crossed Nicol conditions by observing the brightness and darkness of the field of view in the molten state of a sample sandwiched between two glass plates. When it becomes a dark field, it is an optically isotropic melt, and when it becomes a bright field, it is an optically anisotropic melt.

還元比粘度:p−クロルフェノール/テトラクロルエタ
ン(75/25重量比)の混合溶媒を用い、1.0g/
diの濃度で30℃で測定した。
Reduced specific viscosity: 1.0g/using a mixed solvent of p-chlorophenol/tetrachloroethane (75/25 weight ratio)
Measurements were made at 30°C at the concentration of di.

引っ張り試験:東洋ボールドウィン製テンシロンを用い
て測定した。
Tensile test: Measured using Tensilon manufactured by Toyo Baldwin.

(実施例) 以下に実施例を用いて本発明を具体的に示すが、これら
でもって本発明が限定されるものではない。
(Examples) The present invention will be specifically illustrated below using Examples, but the present invention is not limited by these.

実施例1 撹拌器、冷却管および窒素導入管を備え付けた反応槽に
p−アセトキシ安息香酸5.48 g (3,04xi
o−”モル)、  1.4−ジアセトキシベンゼン11
゜40 g (5,87X10−”% ル) 、イソ7
9 ル酸10.26g (6,18X10−”モル)、
1.4−ビス(アセトキシベンゾイロキシ)ブタン1.
28g (3,09xlO−ゴモル)および酢酸40m
1を入れ窒素雰囲気下に加熱し、反応の結果生じる酢酸
を除去しながら305℃で1時間反応させた。その後徐
々に系を減圧し、20分かけて絶対圧約0.5−8gと
して1時間反応せしめた0反応温度を350℃にし、こ
の状態で更に10分間反応せしめた。取り出したポリマ
ーは粉砕乾燥後、230℃で固相重合した0表1に示す
ように得られたポリマーの還元比粘度は2.82dl/
gであり319℃に融点を有し、融解により結晶状態か
ら光学的等方性融体となった。
Example 1 5.48 g of p-acetoxybenzoic acid (3,04 xi
o-”mol), 1,4-diacetoxybenzene 11
゜40 g (5,87X10-”% le), iso7
9 Ruic acid 10.26 g (6,18×10-” mole),
1.4-bis(acetoxybenzoyloxy)butane1.
28 g (3,09xlO-gomol) and 40 m acetic acid
1 was added, heated under a nitrogen atmosphere, and reacted at 305° C. for 1 hour while removing acetic acid produced as a result of the reaction. Thereafter, the pressure of the system was gradually reduced, and the reaction was carried out for 1 hour at an absolute pressure of about 0.5-8 g over 20 minutes.The zero reaction temperature was then raised to 350°C, and the reaction was continued in this state for an additional 10 minutes. The taken out polymer was pulverized and dried, and then solid-phase polymerized at 230°C.As shown in Table 1, the reduced specific viscosity of the obtained polymer was 2.82 dl/
g and had a melting point of 319°C, and upon melting, it changed from a crystalline state to an optically isotropic melt.

このポリマーを350℃でヒートプレスし未延伸フィル
ムを得た。フィルムの中心より放射状方向を機械軸方向
と定め、機械軸方向とこれに垂直な方向の物性をダンベ
ル型試料を用いて測定した。
This polymer was heat pressed at 350°C to obtain an unstretched film. The radial direction from the center of the film was defined as the mechanical axis direction, and the physical properties in the mechanical axis direction and the direction perpendicular to this direction were measured using a dumbbell-shaped sample.

その結果表1に示すように物性比はほぼlに近くほとん
ど物性異方性のないフィルムが得られた。
As a result, as shown in Table 1, a film with a physical property ratio close to 1 and almost no physical anisotropy was obtained.

実施例2〜7および比較例1〜3 第1表に示した条件以外は実施例1と全く同様にして重
合を行なった。但し、実施例7及び比較例2.3ば固相
重合を行わなかった。その結果それぞれ得られたポリマ
ーの融点、光学的性質および物性比を第1表に併記する
。なお実施例1.7及び比較例1で得られたポリマーの
赤外線スペクトルをそれぞれ第3図、第4図及び第5図
に示す。
Examples 2 to 7 and Comparative Examples 1 to 3 Polymerization was carried out in exactly the same manner as in Example 1 except for the conditions shown in Table 1. However, in Example 7 and Comparative Examples 2 and 3, solid phase polymerization was not performed. The melting points, optical properties, and physical property ratios of the resulting polymers are also listed in Table 1. The infrared spectra of the polymers obtained in Example 1.7 and Comparative Example 1 are shown in FIGS. 3, 4, and 5, respectively.

以下余白 (発明の効果) 以上かかる構成よりなる本発明全芳香族ポリエステルは
、溶融成形が可能で、かつ融解により結晶状態から光学
的等方性融体となるため、優れた物性、化学的性質を有
し、しかも物性異方性の少ないバランスのとれたフィル
ムまたは成形品を得ることができ、産業界に寄与するこ
と大である。
The following margin (effects of the invention) The wholly aromatic polyester of the present invention having the above structure can be melt-molded and changes from a crystalline state to an optically isotropic melt upon melting, so it has excellent physical and chemical properties. However, it is possible to obtain a well-balanced film or molded product with less anisotropy of physical properties, which will greatly contribute to the industrial world.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明全芳香族ポリエステルの光学
的等方性領域と組成の関係を示グラフである。 また、第3図、第4図及び第5図は、各々実施例1.7
及び比較例1で得られたポリマーの赤外線吸収スペクト
ルを示す。
FIGS. 1 and 2 are graphs showing the relationship between the optically isotropic region and the composition of the wholly aromatic polyester of the present invention. In addition, FIGS. 3, 4, and 5 show Example 1.7, respectively.
and shows the infrared absorption spectrum of the polymer obtained in Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] (1)下記一般式( I )〜(IV)を繰返し構成単位と
し、融点が約350℃以下、還元比粘度が0.4dl/
g以上であり、かつ融解により結晶状態から光学的等方
性融体となることを特徴とする全芳香族ポリエステル。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) ▲数式、化学式、表等があります▼(IV) (但し、R^1はエーテル基またはカルボニル基を、R
^2はカルボニル基を示し、nは0または1である。)
(1) The following general formulas (I) to (IV) are used as repeating structural units, the melting point is approximately 350°C or less, and the reduced specific viscosity is 0.4 dl/
A wholly aromatic polyester, which has a molecular weight of at least 100 g and is characterized in that it changes from a crystalline state to an optically isotropic melt upon melting. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼( IV) (However, R^1 is an ether group or carbonyl group, R
^2 represents a carbonyl group, and n is 0 or 1. )
(2)特許請求の範囲第1項記載の全芳香族ポリエステ
ルから得られるフィルム。
(2) A film obtained from the wholly aromatic polyester according to claim 1.
(3)特許請求の範囲第1項記載の全芳香族ポリエステ
ルから得られる成形品。
(3) A molded article obtained from the wholly aromatic polyester according to claim 1.
JP1756690A 1990-01-26 1990-01-26 Wholly aromatic polyester, film and molded product thereof Pending JPH03221521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1756690A JPH03221521A (en) 1990-01-26 1990-01-26 Wholly aromatic polyester, film and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1756690A JPH03221521A (en) 1990-01-26 1990-01-26 Wholly aromatic polyester, film and molded product thereof

Publications (1)

Publication Number Publication Date
JPH03221521A true JPH03221521A (en) 1991-09-30

Family

ID=11947467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1756690A Pending JPH03221521A (en) 1990-01-26 1990-01-26 Wholly aromatic polyester, film and molded product thereof

Country Status (1)

Country Link
JP (1) JPH03221521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488221A2 (en) * 1990-11-28 1992-06-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyarylate film having optical isotropy and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488221A2 (en) * 1990-11-28 1992-06-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyarylate film having optical isotropy and production process thereof

Similar Documents

Publication Publication Date Title
US4814417A (en) Process for producing a liquid crystalline polyester polymer of a cyclohexanedicarboxylic acid and an aromatic diol with pyridine/thionyl chloride catalyst
JPS61197629A (en) High-modulus cholesteric liquid crystal polyester
KR930009411B1 (en) Liquid-crystalline polymer
JPH03221521A (en) Wholly aromatic polyester, film and molded product thereof
KR101831878B1 (en) Polyester fiber using binder Having Advanced Adhesive Strength
US4609720A (en) Wholly aromatic polyester
JP3009412B2 (en) Aromatic polyester
JPH0859809A (en) Preparation of polyester with high degree of polymerization
US5006631A (en) Aromatic polyester carbonate from diphenol mixture
EP0399512B1 (en) Wholly aromatic copolyester
JPH02120317A (en) Melt anisotropic polyester
JPS63146927A (en) Aromatic copolyesteramide
JPH0523570B2 (en)
JPS63105027A (en) Liquid crystal polymer
JPH024822A (en) Polyester of cyclohexanedicarboxylic acid
JPH0717741B2 (en) Copolyester
JP2867550B2 (en) Copolyester
JP2614999B2 (en) Thermotropic liquid crystalline polyester
JPS63118325A (en) Production of copolymerized polyester
KR960007607B1 (en) Method for manufacturing polyester copolymer
JPH02279722A (en) Aromatic polyester carbonate and its production
JPH0681783B2 (en) Aromatic polyester with improved fluidity
JPH0649192A (en) Thermotropic copolyester
JPH03188133A (en) Polyester film
JPS6173730A (en) Liquid crystal polyester