JPH03221441A - Anticorrosive and oxidation-resistant material and manufacture thereof - Google Patents

Anticorrosive and oxidation-resistant material and manufacture thereof

Info

Publication number
JPH03221441A
JPH03221441A JP2017432A JP1743290A JPH03221441A JP H03221441 A JPH03221441 A JP H03221441A JP 2017432 A JP2017432 A JP 2017432A JP 1743290 A JP1743290 A JP 1743290A JP H03221441 A JPH03221441 A JP H03221441A
Authority
JP
Japan
Prior art keywords
oxidation
base material
resistant
protective layer
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017432A
Other languages
Japanese (ja)
Inventor
Tadashi Sasa
佐々 正
Yasuhiro Shigegaki
康弘 茂垣
Masahito Ishizaki
雅人 石崎
Kaoru Miyahara
宮原 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017432A priority Critical patent/JPH03221441A/en
Publication of JPH03221441A publication Critical patent/JPH03221441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enable corrosion resistance and oxidation-resistant material to be obtained, in which cracks, delaminations, and the like due to thermal hysteresis never happen thereon by providing a porous buffer layer between a base material and a protective layer. CONSTITUTION:Slurry is controlled by dispersing fine particles consisting of silicon carbide and an organic binder into ethanol, and a base material 1 is applied therewith by the use of a brush. Following this, it is sintered in an ambient atmosphere of argon in order to form a porous buffer layer 2 that is rigidly close-adhered to the base material 1. Next, it is housed within a CVD device so as to form a fine protective layer 3 consisting of silicon carbide in use of a raw material gas of silicon tetrachloride, methane, and hydrogen.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ガスタービンを構成する部材、原子炉部材、
ジェットエンジン部材、ロツケット部材、プラント部材
などに利用できる耐食性および耐酸化性に優れた材料お
よびその製造方法に係り、特に、熱遍歴を受ける条件下
で使用されても優れた耐食性耐酸化性を維持できる材料
とそれを得る方法に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention is applicable to gas turbine members, nuclear reactor members,
Materials with excellent corrosion resistance and oxidation resistance that can be used for jet engine parts, rocket parts, plant parts, etc., and methods for producing the same, in particular, maintain excellent corrosion and oxidation resistance even when used under conditions subject to thermal cycling. It is about the materials that can be produced and how to obtain them.

「従来の技術」 エネルギー、輸送(陸上および航空宇宙)、素材製造等
の分野では、耐食性および耐酸化性に優れた材料が必要
とされている。
``Prior Art'' Materials with excellent corrosion and oxidation resistance are required in fields such as energy, transportation (land and aerospace), and material manufacturing.

かかる用途における要求を完全に満たす材料を提供する
ことは困難であるが、一部を満足させる材料として、強
度的に優れた基材表面に直接、耐食性、耐酸化性に優れ
た緻密な保護層を形成したものが提供されている。
Although it is difficult to provide a material that completely satisfies the requirements for such applications, one material that partially satisfies the requirements is to form a dense protective layer with excellent corrosion resistance and oxidation resistance directly on the surface of a strong base material. is provided.

従来、かかる耐食性耐酸化性材料を製造する場合には、
化学量−相成長法によって基材表面に緻密な保護層を形
成′していた。
Conventionally, when producing such corrosion-resistant and oxidation-resistant materials,
A dense protective layer was formed on the surface of the substrate by stoichiometric phase growth.

「発明が解決“しようとする課題」 しかしながら、′前記従来の耐食性耐酸化性材料が熱遍
歴を受ける条件下で使用される場合は、基材と保護層と
の熱膨張率等の差により保護層に亀裂が入ったり、保護
層が剥離するのを防ぐ為に、保護層を薄く形成せざるを
得ない。
``Problems that the invention is intended to solve'' However, when the conventional corrosion-resistant and oxidation-resistant materials are used under conditions where they are subject to thermal cycling, protection is required due to the difference in thermal expansion coefficient between the base material and the protective layer. In order to prevent the layer from cracking or peeling off, the protective layer must be made thin.

このように、前記従来の耐食性耐酸化性材料を熱雇歴を
受ける条件下で使用する場合には保護層を厚く形成でき
ないため、耐食性、耐酸化性を十分向上てきない不満が
あった。
As described above, when the conventional corrosion-resistant and oxidation-resistant materials are used under conditions where they are subjected to thermal stress, the protective layer cannot be formed thickly, so there is a problem that the corrosion resistance and oxidation resistance cannot be sufficiently improved.

本発明は前記事情に鑑みて為されたちのて、十分な耐食
性、耐酸化性を付与できるように保護層を厚く形成して
も、熱遍歴による環装、剥離等の生じることのない耐食
性耐酸化性材料とその製造方法を提供することを目的と
するものである。
The present invention was developed in view of the above circumstances, and has been developed to provide corrosion and acid resistance that does not cause ringing, peeling, etc. due to thermal cycles even when the protective layer is formed thickly so as to provide sufficient corrosion resistance and oxidation resistance. The purpose of the present invention is to provide a chemical material and a method for producing the same.

「課題を解決するための手段」 上記目的を達成するため、本発明の耐食性耐酸化性材料
では、基材と保護層との間に多孔質な緩衝層を設けた。
"Means for Solving the Problems" In order to achieve the above object, in the corrosion-resistant and oxidation-resistant material of the present invention, a porous buffer layer is provided between the base material and the protective layer.

この耐食性耐酸化性材料をなす基材としては、鉄、コバ
ルト、ニッケル、チタン、ジルコニウム、ハフニウム、
バナジウム、ニオブ、タンタル、クロム、モリブデン、
タングステンまたは炭素のいずれかを主成分とするもの
や、炭素繊維で強化されたものを例示できる。これらか
らなる基材は、高温下でも良好な強度を有する点で好適
である。
The base materials that make up this corrosion-resistant and oxidation-resistant material include iron, cobalt, nickel, titanium, zirconium, hafnium,
vanadium, niobium, tantalum, chromium, molybdenum,
Examples include those whose main component is either tungsten or carbon, and those reinforced with carbon fibers. Base materials made of these materials are suitable because they have good strength even at high temperatures.

また保護層をなす物質としては、珪素、アルミニウム、
マグネシウム、クロムまたはジルコニウムの酸化物、窒
化物、炭化物あるいはホウ化物、ないしはそれらの複合
化合物等を例示できる。これらの材料は、耐食性および
耐酸化性に優れている点で望ましい。この保護層を形成
する方法としては、加熱されて前記化合物となるような
前駆体の溶液を塗布したあと焼成する液体前駆体塗布焼
成法や化学気相成長法(CVD法)等を利用できる。
In addition, materials forming the protective layer include silicon, aluminum,
Examples include oxides, nitrides, carbides, and borides of magnesium, chromium, and zirconium, and composite compounds thereof. These materials are desirable because they have excellent corrosion resistance and oxidation resistance. As a method for forming this protective layer, a liquid precursor coating and firing method, a chemical vapor deposition method (CVD method), and the like can be used, in which a solution of a precursor that is heated to form the compound is coated and then fired.

多孔質緩衝層をなすのに好適な物質としては、前記保護
層に付いて例示したものと同様のものを挙げることがで
きる。
Suitable materials for forming the porous buffer layer include the same materials as those exemplified for the protective layer.

この多孔質緩衝層を形成する方法としては、基材表面に
粉体化された原料を塗布したあとこれを焼成する方法が
好適である。粉体原料を塗布する方法としては、粉体原
料を有機バインダおよび分散媒と混合してスラリー状に
して塗布する方法など種々の方法を利用できる。塗布さ
れた粉体を焼成する条件等は、形成される緩衝層が所望
するもの(例えば空孔率が30〜60vo1%等)とな
るように適宜制御される。
A suitable method for forming this porous buffer layer is to apply a powdered raw material onto the surface of the base material and then sinter it. Various methods can be used to apply the powder raw material, such as a method in which the powder raw material is mixed with an organic binder and a dispersion medium to form a slurry and then applied. Conditions for firing the applied powder are appropriately controlled so that the formed buffer layer has a desired value (for example, a porosity of 30 to 60 vol. 1%).

「作用 」 本発明の耐食性耐酸化性材料に設けられた緩衝層は多孔
質なので、その空孔部か縮小あるいは拡大することによ
って歪みを吸収できる。温度変化を受けて熱膨張率の差
に起因するずれが基材と保護層との間で生じると、多孔
質な緩衝層が変形して無理なく基材−保護層間のずれを
許容する。
"Function" Since the buffer layer provided in the corrosion-resistant and oxidation-resistant material of the present invention is porous, strain can be absorbed by shrinking or expanding the pores. When a shift occurs between the base material and the protective layer due to a difference in coefficient of thermal expansion due to a temperature change, the porous buffer layer deforms and allows the shift between the base material and the protective layer without difficulty.

基材に緩衝層をなす成分からなる粉体原料を塗布して焼
成すると、粉体原料が互いに焼結してその間に空孔が形
成され、多孔質な緩衝層が形成される。
When a powder raw material consisting of a component forming a buffer layer is applied to a base material and fired, the powder raw materials are sintered with each other to form pores therebetween, thereby forming a porous buffer layer.

「実施例」 第1図は、本発明の耐食性耐酸化性材料の一実施例を示
すものである。
"Example" FIG. 1 shows an example of the corrosion-resistant and oxidation-resistant material of the present invention.

この耐食性耐酸化性材料は、基材1の表面に緩衝層2が
形成され、この緩衝層2上が保護層3で覆われたもので
ある。
In this corrosion-resistant and oxidation-resistant material, a buffer layer 2 is formed on the surface of a base material 1, and the buffer layer 2 is covered with a protective layer 3.

前記基材lは、炭素からなる母材が炭素繊維によって強
化された、炭素繊維強化炭素母材複合材料によって形成
されている。
The base material 1 is formed of a carbon fiber-reinforced carbon matrix composite material in which a base material made of carbon is reinforced with carbon fibers.

前記緩衝層2は、基材1をなす炭素よりも耐酸化性およ
び耐食性に優れている炭化珪素によって形成されている
。この緩衝層2は、多孔質に形成されており、その空孔
率は40%である。またこの緩衝層2の厚さは約50μ
mである。
The buffer layer 2 is made of silicon carbide, which has better oxidation resistance and corrosion resistance than the carbon forming the base material 1. This buffer layer 2 is porous and has a porosity of 40%. Also, the thickness of this buffer layer 2 is approximately 50 μm.
It is m.

保ff1層3は前記緩衝層2と同様に炭化珪素によって
形成されている。この保護層3は、前記緩衝層2と異な
り、酸素分子が通過し得ないように緻密に形成されてい
る。この保護層3の厚さは、約30μmである。
The buffer layer 3 is made of silicon carbide like the buffer layer 2 described above. This protective layer 3, unlike the buffer layer 2, is formed densely so that oxygen molecules cannot pass therethrough. The thickness of this protective layer 3 is approximately 30 μm.

次にこの耐食性耐酸化性材料の製造方法を説明する。Next, a method for manufacturing this corrosion-resistant and oxidation-resistant material will be explained.

この耐食性耐酸化性材料を製造するに当たっては、まず
基材lを次のように製造した。
In producing this corrosion-resistant and oxidation-resistant material, a base material 1 was first produced as follows.

まず太さ8μmの炭素繊維からなる織布にエポキシ樹脂
を含浸させたプリプレグを積層して加圧した。こうして
得られた板状成形体を窒素ガス中で1200でまで加M
L−エポキシM#脂を鶴分解・炭化させてこの繊維成形
体を製造した。繊維成形体においては、その体積の約5
0容積%が空隙であった。
First, a prepreg impregnated with an epoxy resin was laminated onto a woven fabric made of carbon fibers having a thickness of 8 μm and pressurized. The plate-shaped molded product thus obtained was heated to 1200 M in nitrogen gas.
This fibrous molded article was produced by decomposing and carbonizing L-epoxy M# fat. In a fiber molded article, approximately 5 of its volume
0% by volume was void.

ついでCV、D法によって、水素−15%プロパンの組
成の気体原料を用いて1300℃にて30時間の処理を
行ない、前記繊維成形体中に炭化水素ガスを含浸させる
とともに、含浸した炭化水素ガスを高温下で熱化学反応
を生じさせて、繊維成形体をなす各繊維の表面上に年輪
状に炭素皮膜を成長させ中間品を得た。この作業を、空
孔率30%まで進んだところで中止した。
Next, by the CV, D method, a treatment is performed at 1300° C. for 30 hours using a gaseous raw material having a composition of hydrogen-15% propane to impregnate the hydrocarbon gas into the fiber molded article and to remove the impregnated hydrocarbon gas. A thermochemical reaction was caused under high temperature to grow a carbon film in the form of tree rings on the surface of each fiber constituting the fiber molded product, thereby obtaining an intermediate product. This operation was stopped when the porosity reached 30%.

次ぎにこの中間品を、未硬化フェノール樹脂のエタノー
ル溶液に室温、98気圧の空気雰囲気中て浸漬し、残留
空札内に前記溶液を含浸させた。
Next, this intermediate product was immersed in an ethanol solution of an uncured phenol resin at room temperature in an air atmosphere of 98 atmospheres to impregnate the remaining empty tag with the solution.

このあとこのものを乾燥して、エタノールを除去した後
、150℃まで加熱し、フェノール樹脂を硬化させ、つ
いて窒素中で800°Cまで加熱して炭化させた。この
後この過程で再び生成される残存空孔内にさらに同じフ
ェノール樹脂エタノール溶液を含浸させる工程を繰り返
し、最終的に2000℃まで加熱して、開気孔率0、か
さ密度1.9g/cm’の緻密な基材lを得た。
This material was then dried to remove ethanol, heated to 150°C to cure the phenolic resin, and then heated to 800°C in nitrogen to carbonize. After this, the process of further impregnating the same phenolic resin ethanol solution into the remaining pores that are generated again in this process is repeated, and finally heated to 2000°C, resulting in an open porosity of 0 and a bulk density of 1.9 g/cm' A dense base material l was obtained.

つぎに炭化珪素からなる平均粒径5μ肩の粉体と有機バ
インダとをエタノールに分散させてスラリーを調整し、
これを前記基材lにハケを用いて塗布した。ついでこの
ものをアルゴンガス雰囲気下1600℃で焼成したとこ
ろ、塗布された粉体同士、および粉体と基材lとが焼結
して、基材lに強固に密着した多孔質な緩衝層2が形成
された。
Next, a slurry was prepared by dispersing silicon carbide powder with an average particle size of 5 μm and an organic binder in ethanol.
This was applied to the base material 1 using a brush. Then, when this material was fired at 1600° C. in an argon gas atmosphere, the applied powders and the powder and the base material 1 were sintered to form a porous buffer layer 2 firmly adhered to the base material 1. was formed.

次にこのものをCVD装置内に収容し、四塩化珪素メタ
ン、水素−2+ 0.5 : L5の原料ガスを用いて
、1500℃で炭化珪素からなる緻密な保護層3を形成
した。
Next, this product was placed in a CVD apparatus, and a dense protective layer 3 made of silicon carbide was formed at 1500° C. using a raw material gas of silicon tetrachloride methane and hydrogen-2+ 0.5:L5.

このようにして製造した耐食性耐酸化性材料を加熱炉に
収容し、1500℃の空気雰囲気下で100時間放置し
た。このあと材料の表面を観察したところ、保護層3に
割れは全く発見できなかった。また材料の重量の減少は
全く観測されなかった。
The corrosion-resistant and oxidation-resistant material thus produced was placed in a heating furnace and left in an air atmosphere at 1500° C. for 100 hours. After this, when the surface of the material was observed, no cracks were found in the protective layer 3. Also, no decrease in the weight of the material was observed.

つぎに製造した耐食性耐酸化性材料を高温炉に収容して
、室温;:1500°Cの無サイクルを100回繰り返
した。このあと材料表面を観察したところ、保護層3の
割れの発生は観察されなかった。
Next, the produced corrosion-resistant and oxidation-resistant material was placed in a high-temperature furnace, and a non-cycle at room temperature of 1500°C was repeated 100 times. After this, when the material surface was observed, no cracking in the protective layer 3 was observed.

(比較例) 基材1上にCVD法で直接保護層3を形成し、前記実施
例のものと緩衝層3を設けない点のみ異なる材料を製造
した。
(Comparative Example) A protective layer 3 was directly formed on a base material 1 by a CVD method to produce a material that differed from the example described above only in that the buffer layer 3 was not provided.

このものは製造直後から表面に割れが発生していた。ま
たこのものを実施例と同様の熱サイクル試験に供したと
ころ、割れが更に悪化した。
Cracks had appeared on the surface of this product immediately after manufacture. Furthermore, when this product was subjected to the same heat cycle test as in the example, the cracking became even worse.

ついでこのものを実施例と同様に、1500℃の空気雰
囲気下に置いたところ、10時間で基材lをなす炭素の
酸化による重量減が観測された。
This product was then placed in an air atmosphere at 1500° C. in the same manner as in the example, and a weight loss due to oxidation of the carbon forming the base material 1 was observed in 10 hours.

こ発明の効果」 以上の説明で明らかなように、本発明の耐食性耐酸化性
材料は、多孔質な緩衝層が基材と保護層との間に形成さ
れたものなので、熱膨張率の差に起因するずれが基材と
保護層との間で生じると、多孔質な緩衝層が変形して無
理なく基材−保護層間のずれを許容する。従って本発明
の耐食性耐酸化性材料によれば、基材を十分保護できる
厚さに保護層を形成することができ、材料の耐食性、耐
酸化性を向上することがてきる。
Effects of the Invention As is clear from the above explanation, the corrosion-resistant and oxidation-resistant material of the present invention has a porous buffer layer formed between the base material and the protective layer. When a misalignment occurs between the base material and the protective layer, the porous buffer layer deforms and easily allows the misalignment between the base material and the protective layer. Therefore, according to the corrosion-resistant and oxidation-resistant material of the present invention, the protective layer can be formed to a thickness that can sufficiently protect the base material, and the corrosion resistance and oxidation resistance of the material can be improved.

また本発明の耐食性耐酸化性材料の製造方法によれば、
基材の表面に、粉状原料を塗布したあとこれを焼成する
ことにより多孔質な緩衝層を形成する方法なので、粉体
原料が互いに焼結してその間に空孔が形成され、多孔質
な緩衝層を容易に形成することができる。
Further, according to the method for producing a corrosion-resistant and oxidation-resistant material of the present invention,
In this method, a porous buffer layer is formed by applying powdered raw materials to the surface of the base material and then firing them, so the powdered raw materials are sintered together and pores are formed between them, creating a porous layer. A buffer layer can be easily formed.

よって本発明によれば、金属材料、炭素系材料、非酸化
物系セラミック材料等、機械的強度、耐熱性等に優れて
いるものの、耐食性、耐酸化性が不十分てあった材料の
耐食性、耐酸化性を大幅に改善できる。そして、これら
の材料の特性を、高温の腐食性、酸化性雰囲気下で十分
発揮させることができる。
Therefore, according to the present invention, the corrosion resistance of materials such as metal materials, carbon materials, non-oxide ceramic materials, etc., which have excellent mechanical strength, heat resistance, etc., but have insufficient corrosion resistance and oxidation resistance, Oxidation resistance can be significantly improved. Further, the characteristics of these materials can be fully exhibited in a high-temperature corrosive and oxidizing atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の耐食性耐酸化性材料の一実施例を示す
断面図である。 l ・・・・・・基材、 2・・・・・・緩衝層、 3・・・・・・保護層
FIG. 1 is a sectional view showing an embodiment of the corrosion-resistant and oxidation-resistant material of the present invention. l...base material, 2...buffer layer, 3...protective layer

Claims (2)

【特許請求の範囲】[Claims] (1)基材の表面に、基材よりも耐食性耐酸化性に優れ
た保護層が形成された耐食性耐酸化性材料において、 前記基材と保護層との間に、多孔質な緩衝層が形成され
たことを特徴とする耐食性耐酸化性材料。
(1) In a corrosion-resistant and oxidation-resistant material in which a protective layer having better corrosion resistance and oxidation resistance than the base material is formed on the surface of the base material, a porous buffer layer is provided between the base material and the protective layer. Corrosion-resistant and oxidation-resistant material characterized by being formed.
(2)基材の表面に、粉状原料を塗布したあとこれを焼
成することにより多孔質な緩衝層を形成することを特徴
とする請求項1記載の耐食性耐酸化性材料の製造方法。
(2) The method for producing a corrosion-resistant and oxidation-resistant material according to claim 1, characterized in that a porous buffer layer is formed by applying a powdery raw material to the surface of the base material and then firing it.
JP2017432A 1990-01-26 1990-01-26 Anticorrosive and oxidation-resistant material and manufacture thereof Pending JPH03221441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017432A JPH03221441A (en) 1990-01-26 1990-01-26 Anticorrosive and oxidation-resistant material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017432A JPH03221441A (en) 1990-01-26 1990-01-26 Anticorrosive and oxidation-resistant material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03221441A true JPH03221441A (en) 1991-09-30

Family

ID=11943863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017432A Pending JPH03221441A (en) 1990-01-26 1990-01-26 Anticorrosive and oxidation-resistant material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03221441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031038A1 (en) * 2003-09-22 2005-04-07 Mtu Aero Engines Gmbh Wear-resistant layer, component comprising such a wear-resistant layer, and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031038A1 (en) * 2003-09-22 2005-04-07 Mtu Aero Engines Gmbh Wear-resistant layer, component comprising such a wear-resistant layer, and production method

Similar Documents

Publication Publication Date Title
US4425407A (en) CVD SiC pretreatment for carbon-carbon composites
US4671997A (en) Gas turbine composite parts
TW539612B (en) Composite carbonaceous heat insulator
岡村清人 et al. SiC-based ceramic fibers prepared via organic-to-inorganic conversion process-a review
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US6121169A (en) Porous interfacial coating for fiber reinforced ceramic matrix composites
JP2867536B2 (en) Corrosion and oxidation resistant materials
JPH03221441A (en) Anticorrosive and oxidation-resistant material and manufacture thereof
JP2976368B2 (en) Heat and oxidation resistant carbon fiber reinforced carbon composite material
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
JPH0848509A (en) Production of carbonaceous porous body
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3219314B2 (en) Method for producing boron carbide-based carbon material
Timofeev et al. Modern approaches to the manufacture of ceramic-matrix composite materials for long-term operation at temperatures above 1000° C. Review of world experience and capabilities of JSC “Kompozit”
JP3031853B2 (en) Heat and oxidation resistant carbon materials
Naslain Processing of non-oxide ceramic matrix composites: an overview
JPH06183863A (en) Production of oxidation-resistant carbon fiber-reinforced carbon composite material
JP2019178023A (en) METHOD OF PRODUCING SiC FIBER REINFORCED SiC COMPOSITE MATERIAL
Istomina et al. Fabrication of Carbon–Silicon Carbide Core–Shell Composite Fibers
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JP2004231508A (en) Oxidation-resistant coating method for carbon/carbon composite material
JPH03205358A (en) Production of carbon fiber-reinforced carbon composite material
JPH0274669A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof