JPH03220894A - Transmission system for television signal - Google Patents

Transmission system for television signal

Info

Publication number
JPH03220894A
JPH03220894A JP2015655A JP1565590A JPH03220894A JP H03220894 A JPH03220894 A JP H03220894A JP 2015655 A JP2015655 A JP 2015655A JP 1565590 A JP1565590 A JP 1565590A JP H03220894 A JPH03220894 A JP H03220894A
Authority
JP
Japan
Prior art keywords
signal
frequency
frame
motion
motion information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015655A
Other languages
Japanese (ja)
Other versions
JP2566026B2 (en
Inventor
Takao Suzuki
隆夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015655A priority Critical patent/JP2566026B2/en
Publication of JPH03220894A publication Critical patent/JPH03220894A/en
Application granted granted Critical
Publication of JP2566026B2 publication Critical patent/JP2566026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a movement detection error at a receiver side by providing a carrier generating means generating a carrier whose phase is inverted for each scanning line and each frame and having correlation with a frequency of a chrominance carrier fsc and a means applying low frequency conversion to movement information with the carrier and applying frequency multiplex the movement information subjected to low frequency conversion onto a television signal at a lower frequency than the frequency band of a chroma signal. CONSTITUTION:A movement adaptive C separation circuit 39 applies inter-line calculation by a comb-line filter 40 and inter-frame calculation by a frame comb-line filter 41 and a switch 42 is closed for a pattern with a rapid movement by moving coefficients K and 1-K from a multiplexer 38 to introduce a chroma signal C from the comb-line filter 40 and a switch 43 is closed for a picture with less movement or a still picture to introduce the chroma signal C from the frame comb-line filter 41, an adder 45 adds both of the chroma signals C to extract a moving adaptive chroma signal C. A subtractor 46 subtracts the chroma signal C from an inputted color television signal to extract a luminance signal YR.

Description

【発明の詳細な説明】 産業圭生赳里公立 本発明はテレビジョン信号の伝送方式に係り、特に現行
テレビジョン放送との両立性を有する第1世代HD T
 V (Extended Definition T
V)及び第2世代HDTVの画像を伝送するのに適した
テレビジョン信号の伝送方式に関するものである。
[Detailed Description of the Invention] The present invention relates to a television signal transmission system, and particularly to a first generation HDT that is compatible with current television broadcasting.
V (Extended Definition T
The present invention relates to a television signal transmission system suitable for transmitting images of V) and second generation HDTV.

藍来坐技歪 最近テレビジョン受像機の画面が大型化する傾向がある
が画面が大型化するとクロスカラーやドツト妨害、また
輝度信号や色信号の帯域の制限による解像度の不足或い
はインターレース(飛び越し走査)によるラインフリフ
カなどNTSC方式のしくみに起因する画質の劣化が目
立つようになってきた。これに対処するため現行の放送
方式には手を加えず受信側における信号処理の方法を工
夫してより高画質化をしようとするIDTV(Ispr
oved Definition TV)や現行のカラ
ーテレビジョン放送と互換性を持ちながら放送方式に改
良を加え受信側でも改良を加えて一層の高画質化を図ろ
うとするEDTVが開発されている。
Recently, the screens of television receivers have tended to become larger, but as the screens become larger, problems such as cross-color and dot interference, lack of resolution due to limits on the luminance signal and color signal bands, and interlace (interlaced scanning) occur. ) deterioration in image quality due to the mechanism of the NTSC system, such as line flickering, has become noticeable. To deal with this, IDTV (Ispr.
EDTV has been developed that attempts to achieve even higher picture quality by making improvements to the broadcasting system and making improvements to the receiving side while being compatible with oved Definition TV and current color television broadcasting.

IDTVではテレビジョン受信機側において、インター
レース画面をノンインターレース(順次走査)画面に変
更してラインフリッカを除去し、垂直解像度を向上させ
たり、また動き適応走査線補間或いは動き適応Y−C分
離を行い解像度の改善を行っている。またEDTVでは
上記I DTVによる受信側での改善に加え通信側でも
の輝度信号の高域成分を周波数シフトし色信号成分の帯
域に多重して高解像度化を図る■送信側のガンマ補正に
よる高彩度部の解像度劣化を補正する■色信号の広帯域
化を図る■テレビカメラの垂直解像度を高め信号源の改
善を図る■適応形エンファシスをかけてノイズの改善を
行う■映像搬送波の直交変調による高精細成分またはワ
イドスクリーン画像の両端画像を多重伝送する■ゴース
ト除去のための基準信号を挿入する等が実施或いは検討
されている。
In IDTV, the television receiver side changes the interlaced screen to a non-interlaced (successive scan) screen to eliminate line flicker and improve vertical resolution, and also uses motion adaptive scan line interpolation or motion adaptive Y-C separation. The resolution has been improved. In addition to the above-mentioned improvements on the receiving side by IDTV, EDTV also aims to achieve high resolution by frequency shifting the high frequency component of the luminance signal on the communication side and multiplexing it into the color signal component band ■High saturation due to gamma correction on the transmitting side - Correcting resolution deterioration in parts - Increasing the color signal bandwidth - Increasing the vertical resolution of the TV camera and improving the signal source - Improving noise by applying adaptive emphasis - High-definition by orthogonal modulation of the video carrier wave Multiplex transmission of components or images at both ends of a widescreen image (2) Insertion of a reference signal for ghost removal, etc., have been implemented or considered.

上述するようにIDTV、EDTV共にノンインターレ
ース方式、動き適応走査線補間及び動き通用Y−C分離
はいずれも受信機側で対応しているため、受信機に1フ
レーム間差或いは2フレ一ム間差の動き情報を検出する
大容量のフィールドメモリ或いはフレームメモリを必要
としていた。
As mentioned above, for both IDTV and EDTV, the non-interlace method, motion adaptive scanning line interpolation, and motion general Y-C separation are all supported on the receiver side. A large capacity field memory or frame memory is required to detect differential motion information.

明が”しようとする課題 上記従来技術では、受信側において1フレーム間差或い
はzフレーム間差をとって動き情報を検出しているので
、受信機側に大容量のメモリを含めた動き検出回路が必
要になって回路構成が複雑高価になる。また、放送局よ
り送信されて来る情報がインターレース信号であるため
、原理的に動き検出が不可能な画像がある0例えばちょ
うどフレーム周期1/30秒で動く画像は時間周波数f
tが30Hzであるため受信機側では動画であるにもか
かわらず静止画として検出されてしまうという問題があ
った。
In the above conventional technology, motion information is detected by taking the difference between one frame or the difference between z frames on the receiving side, so a motion detection circuit including a large capacity memory is required on the receiver side. The circuit configuration becomes complicated and expensive.Also, since the information transmitted from the broadcasting station is an interlaced signal, there are images for which motion detection is not possible in principle.For example, if the frame period is exactly 1/30, An image moving in seconds has a temporal frequency f
Since t is 30 Hz, there is a problem in that the receiver side detects the image as a still image even though it is a moving image.

i を2するための 本発明は前記の問題を解決するため、送信側より伝送さ
れる動き情報を復調□して受信側で動き適応処理を施す
高精細テレビジョン信号の伝送方式において、送信0!
!Iに動き情報を予じめ検出する動き情報検出手段と、
走査線毎及びフレーム毎に位相が反転し色副搬送波fS
Cの周波数と相関のある搬送波を発生させる搬送波発生
手段と、該搬送波により上記動き情報を低域変換する手
段とを備え、上記低域変換した動き情報をクロマ信号の
周波数帯域よりも低域側でテレビジョン信号に周波数多
重するようにした構成にする。
In order to solve the above-mentioned problem, the present invention for reducing i to 2 is a high-definition television signal transmission system that demodulates motion information transmitted from the transmitting side and performs motion adaptive processing on the receiving side. !
! a motion information detection means for detecting motion information in advance in I;
The phase is reversed for each scanning line and frame, and the color subcarrier fS
A carrier wave generating means for generating a carrier wave having a correlation with the frequency of C, and a means for converting the motion information to a lower frequency range using the carrier wave, The configuration is such that frequency multiplexing is performed on the television signal.

立−貝 送信側において動き検出回路で映像信号より動き情報を
検出し、該動き情報を搬送波発生回路より導出する走査
線毎及びフレーム毎に位相が反転する色副搬送波の周波
数に相関した周波数で変調し、この変調により低域変換
した動き情報をクロマ信号の周波数帯域より低域側で映
像信号に周波数多重したテレビジョン信号を導出し、該
テレビジョン信号を受信側に伝送する。受信側では上記
テレビジョン信号に重畳された動き情報を復調して、こ
の復調した動き情報に基づき動き適応処理を施す。
On the transmission side, a motion detection circuit detects motion information from the video signal, and the motion information is derived from a carrier wave generation circuit at a frequency correlated to the frequency of a color subcarrier whose phase is inverted for each scanning line and each frame. A television signal is derived by frequency-multiplexing the motion information that has been modulated and low frequency converted by this modulation onto a video signal in a frequency band lower than the frequency band of the chroma signal, and the television signal is transmitted to the receiving side. On the receiving side, the motion information superimposed on the television signal is demodulated and motion adaptive processing is performed based on the demodulated motion information.

夫」L明 第1図は本発明によるテレビジョン信号の伝送方式のエ
ンコーダ部を示すブロック図である。
FIG. 1 is a block diagram showing an encoder section of a television signal transmission system according to the present invention.

図において、1はフレーム周′#J11 /60秒のノ
ンインターレースでテレビジョン画像信号赤(R)、緑
(G)、青(B)信号を導出する順次走査カメラ、2゜
3.4は上記界(R〉、緑(G)、青(B)信号のアナ
ログ信号をディジタル信号に変換するアナログ/ディジ
タル(以下rA/DJという)変換器、5は上記A/D
変換器2,3.4の出力を輝度信号Y。
In the figure, 1 is a sequential scanning camera that derives red (R), green (G), and blue (B) television image signals in a non-interlaced manner with a frame period of '#J11/60 seconds, and 2°3.4 is the above-mentioned camera. An analog/digital (hereinafter referred to as rA/DJ) converter that converts analog signals of field (R), green (G), and blue (B) signals into digital signals; 5 is the above A/D;
The output of converters 2, 3.4 is a luminance signal Y.

色差信号1. Qに変換する変換回路であり、6は上記
輝度信号Y及び色差信号1. Qを525ライン/60
Hzのノンインターレース信号より525ライン/30
Hzのインターレース信号に変換する走査変換回路であ
る。7は上記走査変換回路6からの色差信号1.Qを色
副搬送波fSCで変調する変調器。
Color difference signal 1. 6 is a conversion circuit for converting the luminance signal Y and the color difference signal 1. Q 525 lines/60
525 lines/30 from Hz non-interlaced signal
This is a scan conversion circuit that converts into a Hz interlaced signal. 7 is the color difference signal 1.7 from the scan conversion circuit 6. A modulator that modulates Q with a color subcarrier fSC.

8は該変調器7で色副搬送波fSCにより変調されたク
ロマ信号と減算器9により後述する動き情報変調信号が
取り除かれた輝度信号Yとを加算して、NTSC方式の
テレビジョン信号を導出する加算器である。一方、LL
 12.13は動き検出回路であり、該動き検出回路1
1は順次走査カメラ1からのノンインターレースの輝度
信号Yの1フレ一ム間差より動き情報を検出し、動き検
出回路12はインターレース信号に変換された輝度信号
の17レーム間差より動き情報を検出し、動き検出回路
13はインターレース信号に変換されたクロマ信号の2
フレ一ム間差より動き情報を検出する。14.15゜1
6は上記各動き検出回路11.12.13の出力信号の
夫々の絶対値をとる絶対値変換回路であり、17は上記
絶対値変換回路14.15.16の最大値を選択する最
大値選択回路である。18は上記最大値選択回路17の
出力を人力とし、色副搬送波fSCを例えば2分周した
クロックμ0゛と該クロックμ0゛を半クロツクシフト
したクロック77で奇数番目の画素の動き検出信号と偶
数番目の画素の動き検出信号を分離するD型フリップフ
ロップであり、19.20は上記奇数番目と偶数番目の
画素の動き検出信号を直交変調する変調器であり、21
はこれらの直交変調した動き検出信号を加算する加算器
であり、該加算器21の出力は上記加算器8より導出す
るNTSC信号と加算する加算器10に導くと共に上記
減算器9に導く。22は上記加算器10からのディジタ
ル出力をアナログ信号に変換するディジタル/アナログ
(以下rD/A、という)変換器である。
8 adds the chroma signal modulated by the color subcarrier fSC by the modulator 7 and the luminance signal Y from which the motion information modulation signal, which will be described later, is removed by the subtracter 9 to derive an NTSC television signal. It is an adder. On the other hand, LL
12.13 is a motion detection circuit, and the motion detection circuit 1
1 detects motion information from the difference between 1 frame of the non-interlaced luminance signal Y from the progressive scanning camera 1, and the motion detection circuit 12 detects motion information from the difference between 17 frames of the luminance signal converted into an interlaced signal. The motion detection circuit 13 detects the two chroma signals converted into interlaced signals.
Motion information is detected from the difference between frames. 14.15゜1
6 is an absolute value conversion circuit that takes the absolute value of each of the output signals of the above-mentioned motion detection circuits 11, 12, and 13, and 17 is a maximum value selection circuit that selects the maximum value of the above-mentioned absolute value conversion circuits 14, 15, and 16. It is a circuit. Reference numeral 18 uses the output of the maximum value selection circuit 17 as a manual input, and uses a clock μ0'' obtained by dividing the frequency of the color subcarrier fSC by 2, and a clock 77 obtained by shifting the clock μ0'' by half a clock to detect the motion detection signals of the odd-numbered pixels and the even-numbered pixels. 19.20 is a D-type flip-flop that separates the motion detection signals of the odd and even pixels; 21 is a modulator that orthogonally modulates the motion detection signals of the odd and even pixels;
is an adder that adds these orthogonally modulated motion detection signals, and the output of the adder 21 is led to an adder 10 where it is added to the NTSC signal derived from the adder 8, and also to the subtracter 9. 22 is a digital/analog (hereinafter referred to as rD/A) converter that converts the digital output from the adder 10 into an analog signal.

本発明のエンコーダ部は以上の構成より戒り、以下にそ
の動作を説明する。
The encoder section of the present invention has the above configuration, and its operation will be explained below.

まず、順次走査カメラ1によりフレーム周期1/60秒
で走査して画像信号、赤(R)、緑(G)、青(B)の
信号を得る。これらの信号はA/Dコンバータ2.3.
4によりディジタル信号に変換後、変換回路5により輝
度信号(Y)と色差信号(■とQ)に変換し、更に走査
変換回路6によりインターレース信号に変換する。イン
ターレース信号に変換された輝度信号Y及び色差信号1
.Qのうち色差信号1、Qは変調器7により第2図(a
)に示す樺にある走査線と同一位相の隣接走査線がフィ
ールド毎に垂直の一方向に上昇する色副搬送波fSCで
変調されてクロマ信号Cを導出しく第2図(a)(b)
に於て、各丸印は走査線を表わし、その中の矢印が搬送
波の位相を表わす、上向きの矢印が位相θである搬送波
であるとすると、下向きの矢印は位相θ・πの搬送波で
ある)、加算器8により後述の動き情報変調信号が取り
除かれた輝度信号Yと加算されNTSCのテレビジョン
信号を得る。
First, the sequential scanning camera 1 scans at a frame period of 1/60 seconds to obtain image signals, red (R), green (G), and blue (B) signals. These signals are sent to A/D converters 2.3.
4, the signal is converted into a digital signal, a conversion circuit 5 converts it into a luminance signal (Y) and a color difference signal (■ and Q), and a scan conversion circuit 6 converts it into an interlaced signal. Luminance signal Y and color difference signal 1 converted into interlaced signals
.. Among the Q signals, the color difference signal 1 and Q are outputted by the modulator 7 as shown in FIG.
) is modulated by a color subcarrier fSC that rises in one vertical direction for each field to derive a chroma signal C.
In , each circle represents a scanning line, and the arrow inside represents the phase of the carrier wave.If the upward arrow is the carrier wave with phase θ, the downward arrow is the carrier wave with phase θ・π. ), the adder 8 adds the motion information modulation signal, which will be described later, to the removed luminance signal Y to obtain an NTSC television signal.

また、動き検出回路11では、フレーム周波数60Hz
の順次走査カメラlによる525ライン/60Hzで順
次走査した順次走査信号の走査線(第4図(a)に走査
線の位置関係を示す)のフレーム間差により第4図(b
)の斜線で示す周波数スペクトルの領域の動きを検出す
る。これによりフレーム周期1/30秒で動く画像の動
きも検出可能になる。更に動き検出回路12.13では
上記順次走査信号を走査変換回路6で走査変換した第5
図(a)に示す如き位置関係にある525ライン/30
Hzインタ一レース信号の走査線の1フレ一ム間差と2
フレ一ム間差により第5図(b) (c)の斜線で示す
周波数スペクトルの範囲の動きを検出する。上記動き検
出回路11゜12、13からのフレーム間差信号は、そ
れぞれ絶対値変換回路14.15.16により絶対値を
取った後、最大値選択回路17により3つのフレーム間
差信号のうちの最大値を選択し、これをその点の動き検
出信号として導出する。尚、動き検出信号はNTSCの
伝送帯域等を考慮し、各走査線につき色副搬送波fSC
でサンプリングした画素数で行う。
Furthermore, in the motion detection circuit 11, the frame frequency is 60Hz.
Figure 4 (b) is determined by the difference between frames of the scanning lines of the progressive scanning signal (the positional relationship of the scanning lines is shown in Figure 4 (a)), which was sequentially scanned at 525 lines/60 Hz by the progressive scanning camera l.
) is detected in the frequency spectrum region indicated by diagonal lines. This makes it possible to detect the movement of images that move at a frame period of 1/30 seconds. Furthermore, the motion detection circuits 12 and 13 scan-convert the sequential scanning signal by the scan conversion circuit 6 and generate a fifth signal.
525 lines/30 in the positional relationship as shown in figure (a)
The difference between one frame of the scanning line of the Hz interlaced signal and 2
The motion in the range of the frequency spectrum indicated by diagonal lines in FIGS. 5(b) and 5(c) is detected based on the inter-frame difference. The inter-frame difference signals from the motion detection circuits 11, 12, and 13 are converted into absolute values by absolute value conversion circuits 14, 15, and 16, respectively, and then the maximum value selection circuit 17 selects one of the three inter-frame difference signals. Select the maximum value and derive it as the motion detection signal for that point. Note that the motion detection signal is based on the color subcarrier fSC for each scanning line, considering the NTSC transmission band, etc.
This is done using the number of pixels sampled in .

上記の様にして得られた第3図の(A)に示す如き動き
検出した各画素(第1画素、第2画素、第3画素、第4
画素−・)信号より威る動き検出信号はD型フリップフ
ロップ18に導かれ、該り型フリップフロップ18によ
り色副搬送波fSCの周麺数を2分周した周波数(約1
.8MHz)で、走査線毎、フレーム毎に位相が反転す
る搬送波、例えば、第2図(a) (c)に示す様に色
副搬送波fSCと時間−垂直周波数の2次元周波数領域
で同一位相にある搬送波μ0或いは第2図(b) (d
)に示す様に上記搬送波μ0と共役な関係にある搬送波
μ0゛と、この搬送波μ0.μ0゛を半クロツクシフト
したクロック (TO+UO)で1画素ずつ間引いてサ
ンプリングして奇数番目の画素は第3図(B)に、偶数
番目の画素は第3図(C)に示すように2つの動き検出
信号に分離する。これらの第3図の(B) (C)に示
す分離した動き検出信号を上記搬送波μ0或いはμ0°
とπ/2だけ位相シフトした搬送波を用いて変調器19
、20で直交変調する。直交変調した2つの動き検出信
号はそれぞれ加算器21で加算する。また、受信側での
復調等の処理を考えこの動き情報変調信号の識別信号と
してfSC/2を垂直プクランキング期間などにバース
ト的に挿入しておく。上記加算器21より導出した動き
情報変調信号は上記減算器9に導き、該減算器9で予じ
め輝度信号Yの周波数領域からこの動き情報変調信号の
周波数領域(1,8MHz)を取り除く。最後に、加算
器10で上記カラーテレビジョン信号と上記動き情報変
調信号を周波数多重し、D/Aコンバータ22によりア
ナログ信号に変換して、新しいカラーテレビジョン信号
として導出する。
Each pixel (first pixel, second pixel, third pixel, fourth pixel,
The motion detection signal, which is more powerful than the pixel-.
.. 8 MHz), the carrier wave whose phase is inverted every scanning line and every frame. For example, as shown in Figure 2 (a) and (c), the carrier wave is in the same phase as the color subcarrier fSC in the two-dimensional frequency domain of time-vertical frequency. A certain carrier wave μ0 or Fig. 2(b) (d
), a carrier wave μ0゛ having a conjugate relationship with the carrier wave μ0, and this carrier wave μ0. Using the clock (TO+UO), which is half a clock shift from μ0, one pixel at a time is thinned out and sampled, and the odd-numbered pixels are sampled as shown in Figure 3 (B), and the even-numbered pixels are subjected to two movements as shown in Figure 3 (C). Separate into detection signals. These separated motion detection signals shown in (B) and (C) of FIG.
The modulator 19 uses a carrier wave whose phase is shifted by π/2.
, 20 for orthogonal modulation. The two orthogonally modulated motion detection signals are added by an adder 21, respectively. Further, in consideration of processing such as demodulation on the receiving side, fSC/2 is inserted in bursts during the vertical cranking period as an identification signal of this motion information modulated signal. The motion information modulated signal derived from the adder 21 is led to the subtracter 9, which removes the frequency domain (1.8 MHz) of this motion information modulated signal from the frequency domain of the luminance signal Y in advance. Finally, the adder 10 frequency-multiplexes the color television signal and the motion information modulation signal, and the D/A converter 22 converts the signal into an analog signal to derive a new color television signal.

第6図は本発明のテレビジョン信号伝送方式により周波
数多重されて伝送された複合カラーテレビジョン信号を
再生するデコーダ部のブロック図である。
FIG. 6 is a block diagram of a decoder section that reproduces a composite color television signal frequency-multiplexed and transmitted by the television signal transmission system of the present invention.

第6図において、32は入力端子31から入力される上
記複合カラーテレビジョン信号をA/D変換するA/D
変換器であり、33は上記A/D変換された複合カラー
テレビジョン信号の1フレ一ム分を記憶するフレームメ
モリ、34は上記複合カラーテレビジョン信号と上記フ
レームメモリ33で記憶されたlフレーム前の複合カラ
ーテレビジョン受信信号との差をとる減算器であって、
該減算器34の出力は1.8MHz帯域通過のバンドパ
スフィルタ(以下rBPF」という)35を介して動き
検出信号を復調するデコーダ37に導く。36は送信側
より送られて来る複合カラーテレビジョン信号の垂直ブ
ランキング期間内に挿入されている搬送波識別信号より
搬送波を復調する搬送波復調器であり、該搬送波復調器
36で復調された搬送波を上記デコーダ37に導き、直
交変調されている2つの動き検出信号を復調する。38
は上記動き検出信号を色副搬送波fSCの周波数で内挿
処理し、動き係数Kを導出するマルチプレクサである。
In FIG. 6, 32 is an A/D converter for A/D converting the composite color television signal inputted from the input terminal 31.
33 is a frame memory that stores one frame of the A/D-converted composite color television signal; 34 is a frame memory that stores the composite color television signal and one frame stored in the frame memory 33; A subtracter that takes a difference from a previous composite color television reception signal,
The output of the subtracter 34 is guided through a 1.8 MHz bandpass filter (hereinafter referred to as "rBPF") 35 to a decoder 37 that demodulates the motion detection signal. 36 is a carrier wave demodulator that demodulates a carrier wave using a carrier wave identification signal inserted in a vertical blanking period of a composite color television signal sent from the transmitting side; The signal is led to the decoder 37, where the two orthogonally modulated motion detection signals are demodulated. 38
is a multiplexer that interpolates the motion detection signal at the frequency of the color subcarrier fSC and derives the motion coefficient K.

39はラインくし形フィルタ40.フレームくし型フィ
ルタ41.上記動き係数にで閉成するスイッチ42.動
き係数1にで閉成するスイッチ43及び上記両スイッチ
42゜43の出力を加算する加算器45より成る動き適
応C分離回路であり、46は上記動き適応C分離回路3
9より分離したクロマ信号Cを上記A/D変換器32か
らの複合カラーテレビジョン信号より減算する減算器、
47は上記クロマ信号Cを色復調して色差信号■っ+Q
mを導出する色復調回路である。48は上記減算器46
及び色復調回路47の出力YR,I* +  Q*を人
力とし、ライン補間回路49.フィールド補間回路50
.上記マルチプレクサ38からの動き係数K及び1−に
で閉成するスイッチ51.52及び該スイッチ51.5
2の出力を加算する加算器53より威り、走査線補間輝
度信号Y1.走査線補間色差信号11.Q+を出力する
動き適応走査線補間回路である。54は上記輝度信号Y
、、色差信号1゜1QRに補間輝度信号Yl+補間色差
信号1+、Q+を挿入して、インターレース信号をノン
インターレース信号に変換する走査変換回路であり、5
5は上記走査変換回路54からの出力である輝度信号Y
D1色差信号1o、QoよりR,G、B信号を導出する
RGB変換回路であり、56.57.58は上記ディジ
タルR,G、B信号をアナログR,G、B信号に変換す
るD/A変換器である。
39 is a line comb filter 40. Frame comb filter 41. Switch 42, which closes at the above motion coefficient. A motion adaptive C separation circuit includes a switch 43 that closes when the motion coefficient is 1, and an adder 45 that adds the outputs of both the switches 42 and 43, and 46 is the motion adaptive C separation circuit 3.
a subtracter for subtracting the chroma signal C separated from the A/D converter 32 from the composite color television signal from the A/D converter 32;
47 color demodulates the above chroma signal C to generate a color difference signal ■+Q
This is a color demodulation circuit that derives m. 48 is the above subtractor 46
and the output YR, I* + Q* of the color demodulation circuit 47 by human power, and the line interpolation circuit 49. Field interpolation circuit 50
.. A switch 51.52 and a switch 51.5 closing at the motion coefficient K and 1- from the multiplexer 38.
The adder 53 adds the outputs of the scanning line interpolated luminance signals Y1. Scanning line interpolation color difference signal 11. This is a motion adaptive scan line interpolation circuit that outputs Q+. 54 is the luminance signal Y
,, is a scanning conversion circuit that inserts interpolated luminance signal Yl+interpolated color difference signal 1+, Q+ into color difference signal 1°1QR to convert interlace signal to non-interlace signal, 5
5 is a luminance signal Y which is the output from the scan conversion circuit 54.
D1 is an RGB conversion circuit that derives R, G, and B signals from the color difference signals 1o and Qo, and 56, 57, and 58 are D/A circuits that convert the digital R, G, and B signals to analog R, G, and B signals. It is a converter.

本発明の伝送方式で伝送される複合カラーテレビジョン
信号を再生するデコーダ部は以上のような構成より成り
、以下にその動作を説明する。
The decoder section for reproducing the composite color television signal transmitted by the transmission system of the present invention has the above-mentioned configuration, and its operation will be explained below.

第6図に於て、入力端子31から人力される上記複合カ
ラーテレビジョン信号はA/D変換器32によりディジ
タル信号に変換され、フレームメモリ33と減算器34
により色信号と動き情報変調信号が取り出される。これ
を更に1.8MHz帯域通過のバンドパスフィルタ35
を通し、動き情報変調信号を取り出す。また、搬送波復
調回路36で送られてきたテレビジボン信号中垂直ブラ
ンキング期間内に挿入されている搬送波識別信号より搬
送波μo’ (μ0或いはμ0゛であるが、今、μ0”
とする)を復調し、デコーダ37で直交変調されている
2つの動き検出信号を復調する。これをマルチプレクサ
38により色搬送波fSCの周波数で内挿処理し、動き
係数にとして取り出す。動き適応C分離回路39ではラ
インくし形フィルタ40によるライン間演算とフレーム
くし形フィルタ41によるフレーム間演’JEヲ行い、
上記マルチプレクサ38からの動き係数に及び1−にで
動きの激しい画面のときはスイッチ42を閉放して、ラ
インくし形フィルタ40よりクロマ信号Cを、また静止
画成いは動きの少い画面のときはスイッチ43を閉放し
てフレームくし形フィルタ41よりクロマ信号Cを導出
し、加算器45で上記両クロマ信号Cを加算して動き適
応クロマ信号Cを抽出する。減算器46では、入力され
て来るカラーテレビジョン信号から上記のクロマ信号C
を差し引き、輝度信号Ylを取り出し、また色復調回路
47では、上記のクロマ信号Cを色復調して色差信号I
、I、Qllを得る。また上記輝度信号Y、1と色差信
号I*、Q++は動き適応走査線補間回路48に導き、
ライン補間回路49で同一フィールドの中の一つ前の走
査線の画像を挿入するフィールド内袖間を行い、フィー
ルド補間回路50で前のフィールドの画像を走査線の間
に挿入するフィールド間補間を行う、そして、動きの激
しい画面の場合には上記動き係数Kによりスイッチ51
を閉放してライン補間回路49よりフィールド内補間信
号を、また静止画成いは静止画に近い動きの少い画面の
ときは、上記動き係数1−Kによりスイッチ52を閉放
してフィールド間補間信号をとり出し、加算器53でこ
れらの両補間信号を加算して補間輝度信号Y1.補間色
差信号I+、Q+を導出する。この補間輝度信号Y1.
補間色差信号1+、Q+は上記減算器46からの輝度信
号Yll及び上記色復調回路47からの色差信号1++
、Q*と共に走査変換回路54に導かれ、525ライン
/30Hzのインターレース信号から525ライン/6
0H2の順次走査信号である輝度信号Y、及び色差信号
IE1.QDを得る。
In FIG. 6, the composite color television signal input manually from the input terminal 31 is converted into a digital signal by an A/D converter 32, and then sent to a frame memory 33 and a subtracter 34.
A color signal and a motion information modulation signal are extracted. This is further passed through a 1.8MHz bandpass filter 35.
The motion information modulation signal is extracted through the . Furthermore, the carrier wave μo' (μ0 or μ0゛, but now μ0''
), and the decoder 37 demodulates the two motion detection signals that have been orthogonally modulated. This is interpolated at the frequency of the color carrier fSC by the multiplexer 38 and extracted as a motion coefficient. In the motion adaptive C separation circuit 39, a line comb filter 40 performs inter-line calculations and a frame comb filter 41 performs frame interoperation.
When the motion coefficient from the multiplexer 38 is set to 1-, the switch 42 is closed, and the chroma signal C is output from the line comb filter 40 when the screen is in rapid motion. When the switch 43 is closed, the chroma signal C is derived from the frame comb filter 41, and the adder 45 adds the two chroma signals C to extract the motion-adaptive chroma signal C. The subtracter 46 subtracts the above chroma signal C from the input color television signal.
The color demodulation circuit 47 demodulates the chroma signal C to obtain the color difference signal I.
,I,Qll is obtained. Further, the luminance signals Y, 1 and color difference signals I*, Q++ are led to a motion adaptive scanning line interpolation circuit 48,
The line interpolation circuit 49 performs intra-field interpolation in which the image of the previous scanning line in the same field is inserted, and the field interpolation circuit 50 performs interfield interpolation in which the image of the previous field is inserted between the scanning lines. In the case of a screen with rapid movement, switch 51 is activated according to the motion coefficient K.
When the switch 52 is closed, the intra-field interpolation signal is sent from the line interpolation circuit 49. When the screen is a still image or a screen with little movement close to a still image, the switch 52 is closed using the motion coefficient 1-K to perform inter-field interpolation. The adder 53 adds these two interpolated signals to produce an interpolated luminance signal Y1. Interpolated color difference signals I+ and Q+ are derived. This interpolated luminance signal Y1.
The interpolated color difference signals 1+ and Q+ are the luminance signal Yll from the subtracter 46 and the color difference signal 1++ from the color demodulation circuit 47.
, Q* to the scan conversion circuit 54 to convert the 525 lines/30Hz interlaced signal to 525 lines/6
A luminance signal Y, which is a sequential scanning signal of 0H2, and a color difference signal IE1. Get QD.

ノンインターレースの輝度信号Y、及び色差信号IゎI
QDはRGB変換回路55によりR,G、B信号に変換
され、更にD/A変換器56.57.58によりアナロ
グ信号に変換されて順次走査のR,G。
Non-interlaced luminance signal Y and color difference signal IゎI
The QD is converted into R, G, and B signals by an RGB conversion circuit 55, and further converted into analog signals by D/A converters 56, 57, and 58 to sequentially scan R, G signals.

B信号を導出する。Derive the B signal.

以上のようなデコーダ部により本発明の伝送方式によっ
て伝送される動き情報を周波数多重した複合カラーテレ
ビジョン信号は順次走査のRGB信号に復調することが
できる。
The decoder section described above can demodulate the composite color television signal, which is frequency-multiplexed motion information transmitted by the transmission method of the present invention, into a sequentially scanned RGB signal.

又里坐羞果 本発明は上記のような構成であるので、動き情報を多重
して伝送でき、受像機側での動き検出誤りを抑えること
が可能になると共に、受像機側に1フレ一ム間差、2フ
レーム間差等の大容量メモリを用いた動き検出回路を設
ける必要がなくなり受像機側の回路構成が簡単安価にな
る。
Since the present invention has the above configuration, motion information can be multiplexed and transmitted, motion detection errors on the receiver side can be suppressed, and one frame per frame can be transmitted on the receiver side. There is no need to provide a motion detection circuit using a large-capacity memory for detecting differences between frames, differences between two frames, etc., and the circuit configuration on the receiver side becomes simple and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図乃至第
5図は本発明の動作説明図であって、第2図(a) (
b)はそれぞれ色副搬送波及び動き情報用搬送波の位相
に関する走査線構造を示す模式図、第2図(C) (d
)はそれぞれ第2図(a)(b)に対応する3次周波数
空間における時間−垂直周波数平面での特性図、第3図
は画素の分離を説明するための図、第4図(a)はノン
インターレース信号の走査線の位置関係を示す図、第4
図(b)は第4図(a)に示す走査線の動き検出範囲を
示す周波数スペクトル図、第5図(a)はインターレー
ス信号の走査線の位置関係を示す図、第5図(b) (
c)はそれぞれ1フレーム差、2フレーム差における動
き検出範囲を示す周波数スペクトル図であり、第6図は
本発明の伝送方式により伝送された信号を復調する受信
機の要部のブロック図である。 10・・・加算器、 11.12.13・・〜動き検出
回路。 19、20−・−変調器、 24.25−搬送波発生回
路。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIGS. 2 to 5 are explanatory diagrams of the operation of the present invention.
b) is a schematic diagram showing the scanning line structure with respect to the phase of the color subcarrier and motion information carrier, respectively; FIG. 2(C) (d
) are characteristic diagrams on the time-vertical frequency plane in the third-order frequency space corresponding to FIGS. 2(a) and (b), respectively, FIG. 3 is a diagram for explaining pixel separation, and FIG. 4(a) 4 is a diagram showing the positional relationship of scanning lines of a non-interlace signal.
Figure (b) is a frequency spectrum diagram showing the motion detection range of the scanning lines shown in Figure 4 (a), Figure 5 (a) is a diagram showing the positional relationship of the scanning lines of the interlaced signal, Figure 5 (b) (
c) is a frequency spectrum diagram showing the motion detection range for one frame difference and two frame difference, respectively, and FIG. 6 is a block diagram of the main part of the receiver that demodulates the signal transmitted by the transmission method of the present invention. . 10...Adder, 11.12.13...~Motion detection circuit. 19, 20--modulator, 24.25-carrier generation circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)送信側より伝送される動き情報を復調して受信側
で動き適応処理を施す高精細テレビジョン信号の伝送方
式において、送信側に動き情報を予じめ検出する動き情
報検出手段と、走査線毎及びフレーム毎に位相が反転し
色副搬送波f_S_Cの周波数と相関のある搬送波を発
生させる搬送波発生手段と、該搬送波により上記動き情
報を低域変換する手段とを備え、上記低域変換した動き
情報をクロマ信号の周波数帯域よりも低域側でテレビジ
ョン信号に周波数多重するようにしたことを特徴とする
テレビジョン信号の伝送方式。
(1) In a high-definition television signal transmission system in which motion information transmitted from the transmitting side is demodulated and motion adaptive processing is performed on the receiving side, a motion information detection means for detecting motion information in advance on the transmitting side; a carrier wave generating means for generating a carrier wave whose phase is inverted for each scanning line and each frame and having a correlation with the frequency of the color subcarrier f_S_C; and a means for low-frequency converting the motion information using the carrier wave; A television signal transmission method characterized in that the motion information is frequency multiplexed onto the television signal in a frequency band lower than the frequency band of the chroma signal.
JP2015655A 1990-01-25 1990-01-25 Television signal transmission system Expired - Fee Related JP2566026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015655A JP2566026B2 (en) 1990-01-25 1990-01-25 Television signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015655A JP2566026B2 (en) 1990-01-25 1990-01-25 Television signal transmission system

Publications (2)

Publication Number Publication Date
JPH03220894A true JPH03220894A (en) 1991-09-30
JP2566026B2 JP2566026B2 (en) 1996-12-25

Family

ID=11894742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015655A Expired - Fee Related JP2566026B2 (en) 1990-01-25 1990-01-25 Television signal transmission system

Country Status (1)

Country Link
JP (1) JP2566026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111442A (en) * 2007-10-26 2009-05-21 Canon Inc Video transmission system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313977A (en) * 1987-06-17 1988-12-22 Hitachi Ltd Television signal transmission system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313977A (en) * 1987-06-17 1988-12-22 Hitachi Ltd Television signal transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111442A (en) * 2007-10-26 2009-05-21 Canon Inc Video transmission system and method

Also Published As

Publication number Publication date
JP2566026B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US4530004A (en) Color television signal processing circuit
KR910000548B1 (en) Progressive scan television system employing vertical detail
JP2588636B2 (en) Method and apparatus for compatibility between NTSC and HD television screen signals
JPH06113176A (en) Sequential scanning system
FI76471B (en) PROGRESSIVT SVEPANDE FAERGTELEVISIONSAOTERGIVNINGSAPPARAT.
US5161006A (en) Method for separating chrominance and luminance components of a television signal
KR930004822B1 (en) Television signal converting apparatus
JP2566026B2 (en) Television signal transmission system
JPH07162810A (en) Mode converting device for television signal
JP2566027B2 (en) Television signal receiver
KR100377815B1 (en) Image signal processing device
US4616251A (en) Progressive scan television system employing a comb filter
JP2928561B2 (en) Method and apparatus for forming television signal
JP2848946B2 (en) Television signal processing circuit
JP2607537B2 (en) Television signal processing circuit
JPS6264188A (en) Television signal generating device
JP2625693B2 (en) Transmission method of television signal
JP2735305B2 (en) Scanning line interpolation method and scanning line interpolation circuit
JPH0681298B2 (en) Television signal transmitter
JPH04322583A (en) Television signal converter
JPH06350975A (en) Method for constituting television signal
JPH0748848B2 (en) Television signal multiplex system
JPH03237894A (en) Television signal transmission system
JPS61261983A (en) High definition television receiver
JPH0251988A (en) System for transmitting color video signal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees