JPH03220888A - Projection type color television receiver - Google Patents

Projection type color television receiver

Info

Publication number
JPH03220888A
JPH03220888A JP2014927A JP1492790A JPH03220888A JP H03220888 A JPH03220888 A JP H03220888A JP 2014927 A JP2014927 A JP 2014927A JP 1492790 A JP1492790 A JP 1492790A JP H03220888 A JPH03220888 A JP H03220888A
Authority
JP
Japan
Prior art keywords
blue
circuit
cathode ray
speed
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014927A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
明 山元
Toshimitsu Watanabe
敏光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014927A priority Critical patent/JPH03220888A/en
Publication of JPH03220888A publication Critical patent/JPH03220888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

PURPOSE:To reduce saturation of blue color brightness at radiation of high density electron ray and to increase the white color brightness at a high current region by providing monochroic cathode ray tubes emitting three primary colors independently and applying horizontal scanning to only the blue cathode ray tube at a speed of an integral number of multiple of the scanning speed for the other 2 color cathode ray tubes. CONSTITUTION:A color difference signal B-Y obtained from a Y/C separation demodulation circuit 114 and a luminance signal Y obtained from a luminance signal processing circuit 113 are added by an adder circuit to obtain a blue primary color signal. The blue primary color signal is inputted to a double speed converter 112 together with horizontal synchronizing and vertical synchronizing signals and the blue primary color signal subject to double speed conversion and an horizontal synchronizing signal whose frequency is doubled (f=31.5kHz) are obtained as the outputs. A double speed deflection circuit 18 is operated by the horizontal synchronizing signal of 31.5kHz, its output is fed to a blue color horizontal deflection circuit 117 to apply horizontal scanning to the electron beam at a speed twice the speed of red and green colors. Moreover, the blue primary color signal subject to double speed conversion is fed to a blue projection tube 11 through a primary color signal processing circuit 17 and a blue cathode ray tube drive circuit 14.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、高輝度でかつハイライトの白色色調にすぐれ
た投写型カラーテレビジョンに関する。
TECHNICAL FIELD The present invention relates to a projection type color television with high brightness and excellent white tone of highlights.

【従来の技術】[Conventional technology]

Z n S : A gあるいはZ rI S : C
u t A Iで表される螢光体を電子線パルスで励起
して発光の時間積分強度を測定したとする。デユーティ
−を−定にしパルス幅を変えると、パルス幅が短いほど
急速に発光強度は増大する。このことはZnS系蛍光体
の輝度飽和の裏返しの現象で、−度に強いパルスを加え
るよりもこれを複数の弱いパルスに分けたほうが全体と
して輝度飽和が軽減されるためにおこる。このような現
象はジャーナル オヴジ エレクトロケミカル ソサイ
エティ 116巻、535ページ、1969 (Jou
rnal of theElectrochemica
l  5ociety 116535 (1969))
に報告されている。 NTSC方式の信号を画像プロセッサーにより周波数変
換し、2倍のフレーム周波数で受像管に送るシステムは
HDTVの考えに含まれており、例えばニスエムピーテ
ィー(SMPT)93巻、5号、470−476ページ
 (1980年)に概念が述べられている。
Z n S : A g or Z rI S : C
Assume that a phosphor represented by u t A I is excited with an electron beam pulse and the time-integrated intensity of luminescence is measured. When the duty is kept constant and the pulse width is changed, the emission intensity increases more rapidly as the pulse width becomes shorter. This is a reverse phenomenon of the brightness saturation of the ZnS-based phosphor, and occurs because the brightness saturation is reduced as a whole by dividing this into a plurality of weak pulses rather than adding a strong pulse to -degrees. This phenomenon was reported in the Journal of the Electrochemical Society, Volume 116, Page 535, 1969 (Jou
rnal of the Electrochemica
l 5ociety 116535 (1969))
has been reported. A system in which an NTSC signal is frequency-converted by an image processor and sent to a picture tube at twice the frame frequency is included in the idea of HDTV, for example, as described in SMPT Vol. 93, No. 5, pp. 470-476. (1980) describes the concept.

【発明が解決しようとする課題l 高精細、高輝度の画像システムの普及に伴い。 ブラウン管への入力が著しく増加される傾向にある。こ
の結果螢光面への負荷が増大して種々の問題を起こして
いる。例えば輝度が電流増加に比例せず、飽和の傾向を
示す現象(いわゆる輝度飽和)がある。いずれの螢光体
も電子線電流密度の増加に伴い輝度飽和を起こす傾向を
有するが、赤色に比べてZnS系の緑および青色螢光体
でその傾向が強いため、高電流密度において三原色のバ
ランスが崩れ、白色が赤色の方向にシフトする。 投射型ブラウン管の入力は直視管より2桁高いので、−
)、記の輝度飽和の問題はとくに重大である。 投射型ブラウン管の緑色には輝度飽和の少ない希土類螢
光体が使われているので、この場合には青色螢光体Zn
S:Ag、AlないしZ n S : A g 。 C1の輝度飽和が最大の問題である。輝度飽和の少ない
青色螢光体は神々開発されているが、低効率、短寿命等
の欠点があって実用化されているものはない。 【課題を解決するための手段】 螢光体材料の改良のみでは問題の解決に限界がある。そ
こで本発明においては、青色ブラウン管の水平走査速度
を赤色及び緑色のブラウン管のそれより高くし、青色螢
光体が受ける電子線パルスの幅が短くなる方式を取った
。これにより、時間平均した電子線電流値は同一でも、
前壁光体の輝度飽和が軽減される。 この方式を具体化する手段として、青色原色信号を一度
ラインメモリに記録し、つぎにこれを整数倍、例えば2
倍の速度で2回読み出しを行い。 走査速度が2倍の水平偏向回路を用い、読み出された原
色信号を2度にわたって出力することとした。
[Problems to be Solved by the Invention] With the spread of high-definition, high-brightness image systems. There is a tendency for the input to the cathode ray tube to be significantly increased. As a result, the load on the fluorescent surface increases, causing various problems. For example, there is a phenomenon in which brightness is not proportional to an increase in current and tends to saturate (so-called brightness saturation). All phosphors have a tendency to cause brightness saturation as the electron beam current density increases, but this tendency is stronger for ZnS-based green and blue phosphors than for red, so the balance of the three primary colors is affected at high current densities. collapses, and white shifts toward red. The input power of a projection type cathode ray tube is two orders of magnitude higher than that of a direct view tube, so -
), the brightness saturation problem described above is particularly serious. A rare earth phosphor with low brightness saturation is used for the green color of projection type cathode ray tubes, so in this case, the blue phosphor Zn is used.
S: Ag, Al or Z n S: Ag. The biggest problem is the brightness saturation of C1. Blue phosphors with low brightness saturation have been developed, but none have been put into practical use due to drawbacks such as low efficiency and short lifespan. [Means for Solving the Problems] There are limits to how the problems can be solved by improving the phosphor material alone. Therefore, in the present invention, the horizontal scanning speed of the blue cathode ray tube is made higher than that of the red and green cathode ray tubes, so that the width of the electron beam pulse received by the blue phosphor is shortened. As a result, even if the time-averaged electron beam current value is the same,
Brightness saturation of the front wall light is reduced. As a means of implementing this method, the blue primary color signal is once recorded in a line memory, and then it is multiplied by an integer, for example, 2.
Read twice at twice the speed. A horizontal deflection circuit with twice the scanning speed was used to output the read primary color signals twice.

【作用l ZnS:Agのように輝度飽和を示す螢光体について、
電子線パルスのデユーティ−を一定にしパルス幅を短く
すると発光の積分強度は増大する。 これは従来技術の説明で述べたように、単一パルスの積
分強度が相対的に減少するためである。パルス停止後の
発光強度を時間の関数として見ると。 輝度飽和が強いとは即ち減衰が早くなっているというこ
とである。デユーティ−でパルス幅を短くすると、各発
光のピーク高はパルス幅に応じて低下するが、減衰は緩
やかになりそれだけトータルの積分強度は増大する。 ラインメモリーにより、1フレ一ム時間内に同じ映像が
例えば2度送られるので、螢光体が受ける電子線パルス
の幅は1/2になる。このため前壁光体の輝度飽和のみ
が顕著に改善され、赤、緑色とのアンバランスが大幅に
解消される。 なおラインメモリからの出力周波数は入力輝度信号周波
数の整数倍であればよく、2倍でなければならないとは
限らない。 しかし、蛍光出力は原則として水平走査速度を増すほど
増加するが、電子線パルス間隔が蛍光減衰時間より短く
なると増加しなくなる。ZnS:、Ag、Alの発光が
初期値の1%にまで低下するのに1通常30〜50μs
を要するので、水平走査速度はこの点から見ると20〜
30 k Hz程度が望ましく、50kHz以上になる
と、次第に利点が少なくなる。 さらに、水平走査速度にほぼ比例して、偏向コイルの発
熱が増加し、現実的に大きな制約となる。 現在のコイルの材料では、NTSC方式の8倍程度まで
の高速化に耐えうると考えられるが、コスト面が大きな
犠牲となる。 以上を総合的に勘案すると、上記水平走査速度は、現行
の2〜3倍、望ましくは2倍に設定することが妥当であ
る。 [実施例] 以下、本発明を実施例により説明する。 実施例1゜ 組成式Y、0.:Eu3+で表される赤色発光螢光体を
塗布した赤色発光ブラウン管と1組成式Y。 (Al、Ga)soxz:Tb3+で表される緑色発光
螢光体とI n B Oa : T b 3+で表され
る緑色発光螢光体とを重量比8:2の割合で混合し塗布
した緑色発光ブラウン管と1組成式7. n S : 
A g eAlで表される青色発光螢光体を塗布した青
色発光ブラウン管とを光源として有する投写型カラーテ
レビジョンを作成した。青色ブラウン管の水平偏向出力
回路を他と独立させ、これにはNTSC方式の2倍、3
1.5kHzの偏向周波数の入力を行った。 第1図は本発明の一実施例を示すブロック図である。以
下動作を具体的に説明する。 同期分離回路115に入力されたNTSCビデオ信号は
それぞれH同期、■同期、輝度(Y)+クロマ(C)信
号に分離される。前記H,V同期信号はそれぞれ水平偏
向高圧発生回路111.垂直偏向回路110に加えられ
る。垂直偏向回路110の出力はR,G、Bの投射管1
3〜11に設けられた垂直偏向コイル122〜120に
加えられ、R,G、Bそれぞれの電子ビームの垂直走査
を行う。一方、水平偏向高圧発生回路111の高圧出力
はR,G、B投射管13〜11へ、水平偏向出力はR,
Gの投射管13.12に設けられた水平偏向コイル11
9,118に加えられ、RlGそれぞれの電子ビームの
水平走査を行う。R9Gそれぞれの投射管13.12を
駆動する信号は、Y/C分離復調回路114.輝度信号
処理回路113、色差信号処理回路19.R,Gブラウ
ン管駆動回路16.15により得るが、従来からある一
般的な回路構成である。 次に、Bの投射管の付属回路について説明する。 Y/C分離復調回路114から得た色差信号B−Yと輝
度信号処理回路113から得た輝度信号Yは、加算回路
123により加算され、青色原色信号を得る。前記青色
原色信号は、前記H,V同期信号とともに倍速変換器1
12に入力され、その出力として倍速変換された青色原
色信号と、周波数が2倍に変換されたH同期信号(f=
31.5kHz)を得る。31.5kHzのH同期信号
により、倍速水平偏向回路18が動作し、その出力はB
用水平偏向回路117に加えられ、電子ビームをR,G
に比べ倍速度で水平走査を行う、また倍速変換された青
色原色信号は原色信号処理回路17、B用ブラウン管駆
動回路14を通してB投射管11に加えられる。 本実施例においては、15.75kHz及び31.5k
Hzの水平AFC回路等については周知の技術であり、
動作説明は省略している。また倍速変換器はIHライン
メモリを用いた簡単な構成のもので十分実用になりうる
ものであり、特に形式は限定しない。同様に高圧発生回
路は倍速水平偏向回路18と回路を共用する構成でも、
二つの水平偏向回路111,118からまったく分離し
た形式でも良いことは周知である。 このようにして作成した回路で動作させた青色ブラウン
管の輝度をカソード電流に対してプロットすると第2図
の曲線24のようになる。これに対し、従来の方式で動
作させた同じブラウン管の輝度は第2同の曲線21のよ
うな特性を示した。 例えば電流5mAで青の輝度は約60%向上した。 同時に測定した赤色輝度を曲線22.緑色輝度を曲線2
3で示した。この結果白色輝度は大きく改弄され、1m
Aでは約15%向上した。同時に青色輝度の高電流にお
ける伸びが良いために三色のバランスがよくなり、白色
色調のシフトが少なくなった。 【発明の効果】 本発明によって、高密度電子線照射時の青色輝度飽和を
小さくして高電流域における白色輝度を十数%高くでき
るので、大画面・高精細の表示装置の高輝度化とハイラ
イトにおける白色調の改善を行うことができる。
[Effect l Regarding phosphors that exhibit luminance saturation such as ZnS:Ag,
When the duty of the electron beam pulse is constant and the pulse width is shortened, the integrated intensity of light emission increases. This is because, as mentioned in the description of the prior art, the integrated intensity of a single pulse is relatively reduced. Looking at the emission intensity as a function of time after the pulse stops. Strong luminance saturation means that attenuation is rapid. When the pulse width is shortened by the duty, the peak height of each light emission decreases in accordance with the pulse width, but the attenuation becomes gentler and the total integrated intensity increases accordingly. Because the line memory sends the same image twice within one frame time, the width of the electron beam pulse received by the phosphor becomes 1/2. Therefore, only the brightness saturation of the front wall light body is significantly improved, and the imbalance between red and green is largely eliminated. Note that the output frequency from the line memory only needs to be an integral multiple of the input luminance signal frequency, and does not necessarily have to be twice. However, although the fluorescence output generally increases as the horizontal scanning speed increases, it stops increasing when the electron beam pulse interval becomes shorter than the fluorescence decay time. It usually takes 30 to 50 μs for the luminescence of ZnS:, Ag, and Al to decrease to 1% of the initial value.
From this point of view, the horizontal scanning speed is 20~
A frequency of about 30 kHz is desirable, and as the frequency exceeds 50 kHz, the advantages gradually decrease. Furthermore, the heat generation of the deflection coil increases almost in proportion to the horizontal scanning speed, which poses a major practical constraint. Current coil materials are thought to be able to withstand speeds up to about 8 times that of the NTSC system, but this comes at a big cost. Taking the above into consideration comprehensively, it is appropriate to set the horizontal scanning speed to two to three times, preferably twice, the current speed. [Example] Hereinafter, the present invention will be explained with reference to Examples. Example 1゜Composition formula Y, 0. : A red-emitting cathode ray tube coated with a red-emitting phosphor represented by Eu3+ and 1 composition formula Y. (Al, Ga) A green color obtained by mixing and coating a green-emitting phosphor represented by soxz:Tb3+ and a green-emitting phosphor represented by InB Oa:Tb3+ at a weight ratio of 8:2. Luminescent cathode ray tube and 1 composition formula7. nS:
A projection-type color television was created which has a blue-emitting cathode ray tube coated with a blue-emitting phosphor represented by A g eAl as a light source. The horizontal deflection output circuit of the blue cathode ray tube is made independent from the others, and this includes twice or three times the NTSC system.
A deflection frequency of 1.5 kHz was input. FIG. 1 is a block diagram showing one embodiment of the present invention. The operation will be specifically explained below. The NTSC video signal input to the synchronization separation circuit 115 is separated into H synchronization, ■ synchronization, and luminance (Y)+chroma (C) signals, respectively. The H and V synchronization signals are respectively sent to the horizontal deflection high voltage generation circuit 111. applied to vertical deflection circuit 110. The output of the vertical deflection circuit 110 is the R, G, B projection tube 1.
It is added to the vertical deflection coils 122 to 120 provided in the vertical deflection coils 3 to 11, and performs vertical scanning of each of the R, G, and B electron beams. On the other hand, the high voltage output of the horizontal deflection high voltage generation circuit 111 is sent to the R, G, and B projection tubes 13 to 11, and the horizontal deflection output is sent to the R, G, and B projection tubes 13-11.
Horizontal deflection coil 11 provided in projection tube 13.12 of G
9 and 118, and horizontal scanning of each RlG electron beam is performed. The signals that drive the projection tubes 13.12 of each R9G are sent to the Y/C separation demodulation circuit 114. Luminance signal processing circuit 113, color difference signal processing circuit 19. This is obtained by an R, G cathode ray tube drive circuit 16.15, which has a conventional general circuit configuration. Next, the circuit attached to the projection tube B will be explained. The color difference signal B-Y obtained from the Y/C separation and demodulation circuit 114 and the luminance signal Y obtained from the luminance signal processing circuit 113 are added by an adding circuit 123 to obtain a blue primary color signal. The blue primary color signal is sent to the double speed converter 1 along with the H and V synchronizing signals.
12, and its output is a blue primary color signal which has been converted to a double speed, and an H synchronization signal whose frequency has been doubled (f=
31.5kHz). The double-speed horizontal deflection circuit 18 is activated by the 31.5kHz H synchronization signal, and its output is B.
horizontal deflection circuit 117 for R and G electron beams.
Horizontal scanning is performed at twice the speed as compared to the horizontal scanning speed, and the converted blue primary color signal is applied to the B projection tube 11 through the primary color signal processing circuit 17 and the B cathode ray tube drive circuit 14. In this example, 15.75kHz and 31.5kHz
The Hz horizontal AFC circuit etc. is a well-known technology.
The explanation of the operation is omitted. Further, the double speed converter has a simple structure using an IH line memory and can be put to practical use, and its format is not particularly limited. Similarly, even if the high voltage generation circuit is configured to share the circuit with the double-speed horizontal deflection circuit 18,
It is well known that the two horizontal deflection circuits 111 and 118 may be completely separated from each other. When the brightness of a blue cathode ray tube operated with the circuit thus prepared is plotted against the cathode current, the result is a curve 24 in FIG. 2. On the other hand, the brightness of the same cathode ray tube operated in the conventional manner exhibited a characteristic as shown in the second curve 21. For example, with a current of 5 mA, the brightness of blue color increased by about 60%. The red luminance measured at the same time is curve 22. Green brightness curve 2
3. As a result, the white brightness has been greatly altered, and 1 m
In A, it improved by about 15%. At the same time, the blue luminance spreads well at high currents, resulting in a better balance of the three colors and less shift in white tone. [Effects of the Invention] According to the present invention, the blue luminance saturation during high-density electron beam irradiation can be reduced and the white luminance in the high current range can be increased by more than 10%. It is possible to improve the white tone in highlights.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は青色ブラウン管の水平偏向周波数を2倍に上げ
た投写型カラーテレビジョン回路のブロック図、第2図
は第1図の回路により動作した各色ブラウン管の輝度と
カソード電流の関係及び従来のNTSC方式回路で動作
した青色ブラウン管の輝度とカソード電流の関係を示す
。 符号の説明 11・・・青色投射型ブラウン管、12・・・緑色投射
型ブラウン管、13・・・赤色投射型ブラウン管、14
.15.16・・・それぞれ青色、緑色、赤色ブラウン
管ドライブ回路、17・・・原色信号処理回路。 18・・・31.5kHzの水平偏向回路、19・・・
色差信号処理回路、、110・・・垂直偏向回路、11
1・・・水平偏向高圧発生回路、112・・・ラインメ
モリ、113・・・輝度信号処理回路、114・・・Y
/C分離復調回路、115・・・同期分離回路、曲線2
1.22.23・・・第1図の回路で駆動した青、赤、
緑色ブラウン管の輝度のカソード電流依存性、24・・
・従来のNTSC方式信号回路による青色輝度のカソー
ド電流依存性
Figure 1 is a block diagram of a projection color television circuit that doubles the horizontal deflection frequency of a blue cathode ray tube, and Figure 2 shows the relationship between the brightness and cathode current of each color cathode ray tube operated by the circuit in Figure 1, and the conventional one. This figure shows the relationship between the brightness and cathode current of a blue cathode ray tube operated with an NTSC circuit. Explanation of symbols 11... Blue projection type cathode ray tube, 12... Green projection type cathode ray tube, 13... Red projection type cathode ray tube, 14
.. 15.16...Blue, green, and red cathode ray tube drive circuits, respectively, 17...Primary color signal processing circuit. 18...31.5kHz horizontal deflection circuit, 19...
Color difference signal processing circuit, 110... Vertical deflection circuit, 11
DESCRIPTION OF SYMBOLS 1... Horizontal deflection high voltage generation circuit, 112... Line memory, 113... Luminance signal processing circuit, 114... Y
/C separation demodulation circuit, 115... synchronous separation circuit, curve 2
1.22.23...Blue, red, driven by the circuit shown in Figure 1
Cathode current dependence of brightness of green cathode ray tube, 24...
・Cathode current dependence of blue brightness using conventional NTSC signal circuit

Claims (1)

【特許請求の範囲】 1、三原色を発するおのおの独立の単色ブラウン管を有
し、その中の青色管のみが他2色のブラウン管の整数倍
の速度で水平走査されることを特徴とする投写型カラー
テレビジョン。 2、青色管のみが、他2色のブラウン管の2倍の速度で
水平走査されることを特徴とする特許請求の範囲第1項
記載の投写型カラーテレビジョン。 3、輝度信号を記録しこれを2倍ないしそれ以上の周波
数に変換して水平偏向回路に出力できるラインメモリを
青色管のみに備えたことを特徴とする特許請求の範囲第
1項記載の投写型カラーテレビジョン。
[Scope of Claims] 1. A projection type color tube having independent monochrome cathode ray tubes that emit three primary colors, of which only the blue tube is horizontally scanned at an integral multiple of the speed of the other two color cathode ray tubes. television. 2. The projection color television set as claimed in claim 1, wherein only the blue tube is horizontally scanned at twice the speed of the cathode ray tubes for the other two colors. 3. The projection according to claim 1, characterized in that only the blue tube is equipped with a line memory capable of recording a luminance signal, converting it to a frequency twice or more, and outputting it to a horizontal deflection circuit. type color television.
JP2014927A 1990-01-26 1990-01-26 Projection type color television receiver Pending JPH03220888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014927A JPH03220888A (en) 1990-01-26 1990-01-26 Projection type color television receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014927A JPH03220888A (en) 1990-01-26 1990-01-26 Projection type color television receiver

Publications (1)

Publication Number Publication Date
JPH03220888A true JPH03220888A (en) 1991-09-30

Family

ID=11874601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014927A Pending JPH03220888A (en) 1990-01-26 1990-01-26 Projection type color television receiver

Country Status (1)

Country Link
JP (1) JPH03220888A (en)

Similar Documents

Publication Publication Date Title
GB2171112A (en) Blue fluorescent materials
EP0138021B1 (en) Multi-beam projector
JPH03220888A (en) Projection type color television receiver
US3423621A (en) Color picture display containing a red-emitting europium-activated yttrium oxysulfide phosphor
EP0148110B1 (en) White-emitting phosphor
JP3326801B2 (en) Speed modulation device for three-tube projection television
JP3039668B2 (en) Display device
JPS59133283A (en) Green color luminescent and cathode ray tube
JPS632314B2 (en)
US4694217A (en) Cathode ray tube including white luminous phosphor screen
JP2751413B2 (en) Phosphor screen for cathode ray tube
JPH08264132A (en) Cathode-ray tube
JPS6354754B2 (en)
SU1458978A1 (en) Method of reproducing color video signal on screen of single-beam index picture tube
JPH10298547A (en) Cathode-ray tube and blue fluorescent substance
JPS6096685A (en) Color cathode ray tube
JPH0472873B2 (en)
US4845403A (en) Projection type color picture display system having green picture and blue picture producing CRTs with γ coefficients
US2790921A (en) Red-emitting cathodoluminescent devices
JP3232539B2 (en) Rare earth phosphor for monochrome CRT
JPS6219795B2 (en)
JPH0348832Y2 (en)
JPH0522750B2 (en)
JPS6212952B2 (en)
JPS6326155B2 (en)