JPH03220841A - Low frequency interrupt distortion equalizer - Google Patents

Low frequency interrupt distortion equalizer

Info

Publication number
JPH03220841A
JPH03220841A JP1740790A JP1740790A JPH03220841A JP H03220841 A JPH03220841 A JP H03220841A JP 1740790 A JP1740790 A JP 1740790A JP 1740790 A JP1740790 A JP 1740790A JP H03220841 A JPH03220841 A JP H03220841A
Authority
JP
Japan
Prior art keywords
frequency
transmission line
cut
distortion
cutoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1740790A
Other languages
Japanese (ja)
Inventor
Atsushi Asano
篤 浅野
Shigenobu Minami
重信 南
Shoichiro Yamazaki
彰一郎 山嵜
Takeshi Yamaguchi
武史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1740790A priority Critical patent/JPH03220841A/en
Publication of JPH03220841A publication Critical patent/JPH03220841A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the processing quantity and to converge the distortion in a short time by estimating a cut-off frequency of a low frequency cut-off of a transmission line from an electric distortion of a reception signal subjected from the transmission line and equalizing the low frequency cut-off distortion of the reception signal based on the estimated cut-off frequency. CONSTITUTION:Since the attenuation of a reception signal is increased as the transmission line is longer and the resistance of the transmission line is higher, the amplification factor of a gain control circuit 12 compensating the attenuation of the reception signal is proportional to the resistance of the transmission line. On the other hand, the cut-off frequency of the transmission line is proportional to the resistance of the transmission line. Then a coefficient correction circuit 16 estimates the cut-off frequency of the transmission line based on the amplification factor of the gain control circuit 12 to select a coefficient most suitable for the estimated cut-off frequency among a coefficient table 17 in which plural different coefficients for the cut-off frequencies of a filter 14 are prepared. Thus, since the coefficient of the filter 14 suitable for the cut-off frequency of the transmission line is selected with a simple processing based on the amplification factor of the gain control circuit 12, the distortion is converged in a short time.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、いわゆるメタリックケーブルか用いられた伝
送路により受信信号に生しる低域遮断歪を等化する低域
遮断歪等化装置に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention provides a low-frequency cutoff method that equalizes low-frequency cutoff distortion caused in a received signal by a transmission path using a so-called metallic cable. This invention relates to a distortion equalization device.

(従来の技術) 一般に、メタリックケーブルか用いられる伝送路では、
伝送路とトランシーバとの間に直流成分を遮断するため
のパルストランスや、伝送路を介して端末に供給される
電力を信号から分離するための電力分離フィルタが挿入
されることがある。
(Prior art) Generally, in transmission lines that use metallic cables,
A pulse transformer for blocking DC components or a power separation filter for separating the power supplied to the terminal from the signal via the transmission path may be inserted between the transmission path and the transceiver.

このような直流成分を遮断する素子が伝送路に挿入され
ると、伝送される信号の低域成分も遮断されるために受
信された信号に低域遮断歪を生じる。
When such an element that blocks direct current components is inserted into a transmission path, the low frequency components of the transmitted signal are also blocked, resulting in low frequency cutoff distortion in the received signal.

特に伝送に用いられる伝送路符号が直流平衡でない場合
には、伝送される信号のスペクトラムか直流付近に集中
するため、受信された信号には著しい低域遮断歪を生じ
てしまう。
In particular, if the transmission line code used for transmission is not DC balanced, the spectrum of the transmitted signal is concentrated near the DC, resulting in significant low-frequency cut-off distortion in the received signal.

例えば!SDN (Integrated 5ervi
ce Digital Network ;サービス統
合ディジタル網)においては、伝送路からl5DN端末
に電源を供給するため、電力分離フィルタが伝送路に挿
入されている。
for example! SDN (Integrated 5ervi)
In the CE Digital Network (Service Integrated Digital Network), a power separation filter is inserted into the transmission path in order to supply power from the transmission path to the I5DN terminal.

さらに、ANSI (American Nation
al 5tandard 1nstitute;アメリ
カ規格協会)により標準化されたl5DN基本速度加入
者線インタフェースの伝送路符号には2BIQ符号か採
用されている。
Furthermore, ANSI (American Nation
A 2BIQ code is adopted as the transmission path code of the 15DN basic rate subscriber line interface standardized by the American National Standards Institute.

この2BIQ′R号は冗長度のない4値打号で、その信
号のスペクトラムは低域に集中している。
This 2BIQ'R signal is a four-value signal with no redundancy, and the signal spectrum is concentrated in the low range.

従って、l5DN基本速度加入者線インタフェースでは
トランスや直流遮断フィルタにより受信される信号に著
しい低域遮断歪が生し、低域遮断歪の等化を行うことか
伝送誤りを威らすための必須条件となる。
Therefore, in the 15DN basic speed subscriber line interface, significant low-frequency cutoff distortion occurs in the signal received by the transformer and DC cutoff filter, and it is essential to equalize the low-frequency cutoff distortion or to prevent transmission errors. It is a condition.

ここで、伝送路の遮断特性と逆特性のフィルタを用いて
低域遮断歪を等化しようとするには、このフィルタの直
流での利P>か無阻大となり丈現には問題かある。
Here, if an attempt is made to equalize the low-frequency cut-off distortion by using a filter whose cut-off characteristic is inverse to that of the transmission line, there will be a problem in terms of performance, since the gain P> of this filter at direct current will be unimpeded.

そこで、いわゆる量子化帰還型等化装置が低域遮断歪を
等化するのに一般に用いられる。
Therefore, a so-called quantization feedback equalizer is generally used to equalize the low-frequency cutoff distortion.

この量子化帰還型等化装置の動作を第3図を用いて説明
する。
The operation of this quantization feedback type equalizer will be explained with reference to FIG.

第3図は量子化帰還型等化装置を用いた2BIQ符号ト
ランシーバの構成を示すブロック図である。
FIG. 3 is a block diagram showing the configuration of a 2BIQ code transceiver using a quantization feedback type equalizer.

同図において、伝送路(図示略。)から受信された受信
(8号はへ/D変換器1に入力され所定のサンプリング
タイミングでディジタル信号に変換される。
In the figure, a signal (No. 8) received from a transmission path (not shown) is input to a D/D converter 1 and converted into a digital signal at a predetermined sampling timing.

ディジタル信号に変換された受信信号は利得制御回路2
に送出され、所定の振幅に増幅される。
The received signal converted into a digital signal is sent to the gain control circuit 2.
and is amplified to a predetermined amplitude.

利得制御回路2から出力された受信信号は判定回路3に
送出され、vI+定回路3て4fi!!に量子化される
The received signal output from the gain control circuit 2 is sent to the determination circuit 3, where vI+constant circuit 3 determines 4fi! ! quantized to

量子化された受信信号はフィルタ4に人力され、さらに
量子化された受信信号からフィルタ4を通った受信信号
か差引かれたものか利得制御回路2の出力に加算される
The quantized received signal is input to the filter 4, and the received signal that has passed through the filter 4 is subtracted from the quantized received signal and added to the output of the gain control circuit 2.

また、判定回路3の入出力信号か最小誤差検出回路5に
人力され、その出ツノか係数修正回路6に人力されてい
る。
Further, input/output signals of the determination circuit 3 are inputted to the minimum error detection circuit 5, and output signals thereof are inputted to the coefficient correction circuit 6.

なお、7はフィルタ4の複数の遮断周波数の係数か用意
された係数テーブル、8a、8b、8cは加算器である
Note that 7 is a coefficient table prepared with coefficients of a plurality of cutoff frequencies of the filter 4, and 8a, 8b, and 8c are adders.

上述の構成において、伝送路の遮断特性をH(2)、フ
ィルタの特性をG (z) 、対向のトランシーバの送
信信号をX、判定回路3に入力される受信信号をYとし
、判定回路3の判定結果か正しいと仮定し、低域遮断歪
にのみ着目するとXとYの関係は次式で表される。
In the above configuration, the cutoff characteristic of the transmission path is H(2), the characteristic of the filter is G(z), the transmission signal of the opposite transceiver is X, the received signal input to the judgment circuit 3 is Y, and the judgment circuit 3 Assuming that the judgment result is correct and focusing only on the low cutoff distortion, the relationship between X and Y is expressed by the following equation.

Y、−(H(z)   +1−G   (z)  ) 
  ・ X−(1間式において、H(z)とG (z)
が等しいとき、即ち、伝送路の遮断特性とフィルタ4の
特性か等しいときに、YはXに等しくなり、低域遮断歪
が完全に等化される。
Y, -(H(z) +1-G(z))
・X-(1) In the equation, H (z) and G (z)
When they are equal, that is, when the cut-off characteristics of the transmission line and the characteristics of the filter 4 are equal, Y becomes equal to X, and the low-frequency cut-off distortion is completely equalized.

ところで、伝送路の抵抗値が伝送距離に応して変化する
のに伴って、伝送路の遮断周波数も第3図に示すように
伝送路の抵抗値に比例して変化する。
Incidentally, as the resistance value of the transmission line changes in accordance with the transmission distance, the cut-off frequency of the transmission line also changes in proportion to the resistance value of the transmission line, as shown in FIG.

そこで、十分な等化性能を得るために前述のトランシー
バ回路では、係数テーブル7にフィルタの遮断周波数を
決定する係数を異なる遮断周波数で複数用意し、それら
の中から低域辷断歪を等化するのに最も適した係数を選
択するようにしている。
Therefore, in order to obtain sufficient equalization performance, the above-mentioned transceiver circuit prepares multiple coefficients with different cut-off frequencies in the coefficient table 7 to determine the cut-off frequency of the filter, and equalizes the low-pass distortion from among them. We try to select the coefficients that are most appropriate for the purpose.

低域遮断歪の等化に最も適した係数は以下のようにして
選択される。
The coefficients most suitable for equalizing low-frequency cutoff distortion are selected as follows.

即ち、係数テーブル7に用意されている複数の係数の中
から 1つの係数か係数修正回路6により選択される。
That is, one coefficient is selected by the coefficient correction circuit 6 from among a plurality of coefficients prepared in the coefficient table 7.

選択された係数により受信信号を等化した時の残留誤差
か判定回路3の人力と出力の差から求められる。
The residual error when the received signal is equalized using the selected coefficients is determined from the difference between the human power and the output of the determination circuit 3.

同様にして全ての係数について順次残留誤差が求められ
、その中から残留誤差が最小となる係数か最小誤差検出
回路5により検出される。
Similarly, the residual errors are sequentially determined for all the coefficients, and the minimum error detection circuit 5 detects the coefficient with the minimum residual error among them.

そして、この残留誤差が最小となる係数か係数修正回路
6によって係数テーブル7より選択される。
Then, the coefficient correction circuit 6 selects from the coefficient table 7 the coefficient with which this residual error is the minimum.

このようにして従来の量子化帰還型等化装置では、低域
遮断歪の等化を適応化させていた。
In this way, the conventional quantization feedback type equalizer adapts the equalization of the low-frequency cutoff distortion.

しかしながら、フィルタ4に一般に用いられているII
R(lnrinite Impulse Re5pon
se )フィルタは係数か選択された後の収束に時間を
要する。
However, II
R(lnrinite Impulse Re5pon
se) The filter requires time to converge after the coefficients are selected.

従って、上述した量子化帰還型等化装置では用意された
全ての係数に対して係数選択や残留誤差の計算等の処理
を行うので、最適な係数が選択されるまでの処理量か多
く、等化装置か収束するまでの111f間か長いという
問題かあった。
Therefore, in the above-mentioned quantization feedback type equalizer, processing such as coefficient selection and residual error calculation is performed for all prepared coefficients, so the amount of processing required until the optimal coefficient is selected is large, etc. There was a problem that it took 111f for the conversion device to converge.

(発明か解決しようとする課題) このように、従来の低域遮断歪等化装置では収束に至る
までの処理量か多いので、収束914間か長いという課
題かあった。
(Problems to be Solved by the Invention) As described above, the conventional low-frequency cutoff distortion equalizer requires a large amount of processing to reach convergence, so there is a problem that the time for convergence 914 is long.

本発明はこのような課題を解決するためになされたしの
で、処理量を少なくして短いDlj間で収束することの
できる低域遮断歪等化装置を提供することを目的として
いる。
The present invention has been made to solve such problems, and therefore, it is an object of the present invention to provide a low-frequency cutoff distortion equalization device that can reduce the amount of processing and converge within a short Dlj interval.

[発明の構成] (課迦を舶′決するための手段) 本発明は、伝送路の低域連断特性により21572号に
生した低域遮断歪を所定の係数を用いて等化する等化丁
段と、前記受信信号か前記伝送路から受けた変量から前
記伝送路の辻斬周波数を推定する推定手段と、この推定
手段により推定された遮断周波数に基づいて前記等化手
段の係数を調整する:A整手段とを具備するものである
[Structure of the Invention] (Means for determining the load) The present invention provides an equalization method that uses a predetermined coefficient to equalize the low-frequency cut-off distortion caused in No. 21572 due to the low-frequency connection characteristics of the transmission line. an estimating means for estimating a cut-off frequency of the transmission line from the received signal or a variable received from the transmission line; and adjusting a coefficient of the equalizing means based on the cutoff frequency estimated by the estimating means. :A adjustment means.

伝送路の遮断周波数を推定するには、受信信号の振幅電
圧の減衰量、受信信号の電力の減衰量等から推定するこ
とができる。
The cutoff frequency of the transmission path can be estimated from the amount of attenuation of the amplitude voltage of the received signal, the amount of attenuation of the power of the received signal, and the like.

また、対向するトランシーバから信号を複数の周波数に
より送信し、伝送された信号が伝送路から受けた群遅延
特性や減衰特性などから伝送路の逸断周波数を推定する
こともてきる。
It is also possible to transmit signals from opposing transceivers at a plurality of frequencies, and estimate the break frequency of the transmission path from the group delay characteristics, attenuation characteristics, etc. that the transmitted signal receives from the transmission path.

(作 用) 本発明では、伝送路の低域遮断の遮断周波数を受信信号
か伝送路から受けた例えば電気的変量から推定し、推定
された遮断周波数に基づいて受信信号の低域遮断歪の等
化を行う。
(Function) In the present invention, the cutoff frequency of the low cutoff of the transmission line is estimated from the received signal or an electrical variable received from the transmission line, and the low cutoff distortion of the received signal is estimated based on the estimated cutoff frequency. Perform equalization.

従って、伝送路の遮断周波数に適応させるための処理量
か少なく済み、短い時間で収束することかできる。
Therefore, the amount of processing required to adapt to the cut-off frequency of the transmission path is reduced, and convergence can be achieved in a short time.

(実施例) 以下、本発明の実施例を図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係わる低域遮断歪等化装置
を用いた2BIQ符号トランシーバのブロック図である
FIG. 1 is a block diagram of a 2BIQ code transceiver using a low-frequency cutoff distortion equalizer according to an embodiment of the present invention.

同図に示すように、伝送路(図示略。)から受信された
受信信号はAl1)変換器11に入力され所定のサンプ
リングタイミングで例えば8ビツトのディジタル信号に
変換される。
As shown in the figure, a received signal received from a transmission path (not shown) is input to a converter 11 (Al1) and converted into, for example, an 8-bit digital signal at a predetermined sampling timing.

ディジタル信号に変換された受信信号は利得制御回路1
2に送出され、伝送路で減衰した受信信号の振幅か所定
の値になるよう増幅される。
The received signal converted into a digital signal is sent to the gain control circuit 1.
2, and is amplified so that the amplitude of the received signal attenuated on the transmission path reaches a predetermined value.

利得制御回路12により所定の振幅にまで増幅された受
信信号は判定回路13に送出され、判定回路13で4値
に量子化される。
The received signal amplified to a predetermined amplitude by the gain control circuit 12 is sent to the determination circuit 13, where it is quantized into four values.

量子化された受信信号はIIR形のバイパスフィルタで
あるフィルタ14に人力される。
The quantized received signal is input to a filter 14 which is an IIR type bypass filter.

さらに、量子化された受信信号からフィルタ14を通っ
た受信信号が加算器18aにより差引かれて、前述の従
来例に示した式(1)の(1−G(2))・Xに相当す
る受信信号か生成される。
Furthermore, the received signal that has passed through the filter 14 is subtracted from the quantized received signal by the adder 18a, and the result is equivalent to (1-G(2))·X in equation (1) shown in the conventional example described above. A received signal is generated.

この受信信号と利得制御回路12の出力か加算器18b
により加算され低域遮断歪は等化される。
This received signal and the output of the gain control circuit 12 are combined into an adder 18b.
is added and the low-frequency cutoff distortion is equalized.

なお、17はフィルタ14の複数の遮断周波数の係数か
用意された係数テーブルである。
Note that 17 is a coefficient table in which coefficients of a plurality of cutoff frequencies of the filter 14 are prepared.

二こて、受信信号の減衰量は伝送路が長く伝送路の抵抗
値が高いほど大きくなるので、受信信号の減衰量を補う
利得制御回路12の増幅率も第2図に示すように伝送路
の抵抗値に比例する。
Second, the longer the transmission line is and the higher the resistance value of the transmission line is, the greater the attenuation of the received signal becomes. Therefore, the amplification factor of the gain control circuit 12 that compensates for the attenuation of the received signal is also increased along the transmission line as shown in Figure 2. is proportional to the resistance value of

一方、先に第4図で示したように伝送路の遮断周波数は
伝送路の抵抗値に比例する。
On the other hand, as previously shown in FIG. 4, the cutoff frequency of the transmission line is proportional to the resistance value of the transmission line.

このことから、伝送路の遮断周波数を利得制御回路12
の増幅率から推定することが可能であることがわかる。
From this, the cutoff frequency of the transmission line can be set by the gain control circuit 12.
It can be seen that it is possible to estimate from the amplification factor of .

そこで、この実施例では利得制御回路12の増幅率に基
づいて係数修正回路16により伝送路の遮断周波数か推
定され、フィルタ14の複数の異なる遮断周波数の係数
か用意された係数テーブル17の内から、推定された遮
断周波数に最も適した係数か選択される。
Therefore, in this embodiment, the cutoff frequency of the transmission line is estimated by the coefficient correction circuit 16 based on the amplification factor of the gain control circuit 12, and the coefficients of the filter 14 for a plurality of different cutoff frequencies are selected from the prepared coefficient table 17. , the coefficient most suitable for the estimated cutoff frequency is selected.

従って、伝送路の遮断周波数に適したフィルタ14の係
数が利得制御回路12の増幅率に基づいて簡単な処理に
よって選択されるので、短い時間で収束できる。
Therefore, the coefficients of the filter 14 suitable for the cut-off frequency of the transmission path are selected by simple processing based on the amplification factor of the gain control circuit 12, so that convergence can be achieved in a short time.

なお、上述した実施例では受信信号をディジタル化して
ディジタル回路で処理する場合について説明したが、受
信信号をアナログ回路を用いてアナログ信号として処理
してもよい。
Note that in the above-described embodiment, a case has been described in which the received signal is digitized and processed by a digital circuit, but the received signal may be processed as an analog signal by using an analog circuit.

また、本実施例では受信信号の振幅電圧の減衰量から伝
送路の遮断周波数を推定する例について説明したが、本
発明はこれに限定されるものではなく、受信信号の振幅
電圧以外にも受信信号の電力の減衰量等から伝送路の遮
断周波数を推定してもよい。
Further, in this embodiment, an example has been described in which the cutoff frequency of the transmission line is estimated from the amount of attenuation of the amplitude voltage of the received signal, but the present invention is not limited to this. The cutoff frequency of the transmission path may be estimated from the amount of attenuation of the signal power.

さらに、苅向するトランシーバから信号を複数の周波数
を用いて送信させ、伝送された信号か伝送路から受けた
群遅延特性や減衰特性なとから伝送路の遮断周波数を推
定してもよく、この場合にはより正確な遮断周波数を推
定することかできる。
Furthermore, the cutoff frequency of the transmission line may be estimated from the transmitted signal or the group delay characteristics and attenuation characteristics received from the transmission line by transmitting signals from a transceiver facing in the direction using multiple frequencies. In some cases, a more accurate cutoff frequency can be estimated.

また、本発明は上述した2HIQ符号以外の伝送符号の
トランシーバに適用しても同様の効果か得られることは
勿論である。
Furthermore, it goes without saying that the same effects can be obtained even when the present invention is applied to a transceiver for a transmission code other than the above-mentioned 2HIQ code.

また、本発明に従来の残留誤差からフィルタの係数を選
択する方法を併用すれば、より正確かつ短時間で収束す
ることができる低域遮断歪等化装置を実現することもで
きる。
Furthermore, if the present invention is combined with the conventional method of selecting filter coefficients from residual errors, it is possible to realize a low-frequency cutoff distortion equalization device that can achieve more accurate convergence in a shorter time.

[発明の効果] 上述したように本発明では、伝送路の低域遮断の遮断周
波数を受信信号が伝送路から受けた例えば電気的変孟か
ら推定し、推定された遮断周波数に基づいて受信信号の
低域遮断歪の等化を行う。
[Effects of the Invention] As described above, in the present invention, the cutoff frequency of the low-frequency cutoff of the transmission path is estimated from, for example, the electrical variation that the received signal receives from the transmission path, and the received signal is adjusted based on the estimated cutoff frequency. Equalizes the low-frequency cutoff distortion.

従って、伝送路の遮断周波数に適応させるための処理量
が少なく済み、短い時間で収束することができる。
Therefore, the amount of processing required to adapt to the cutoff frequency of the transmission path is small, and convergence can be achieved in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる低域遮断歪等化装置
を用いた2BIQ符号トランシーバのブロック図、第2
図は利得制御増幅器の増幅率と伝送路の抵抗値との関係
を示す図、第3図は従来の低域遮断歪等化装置を用いた
2BIQ符号トランシーバのブロック図、第4図は伝送
路の遮断周波数と抵抗値の関係を示す図である。 11・・・A/D変換器、12・・・利得制御回路、1
3・・判定回路、14・・・フィルタ、16・・・係数
修正回路、17・・係数テーブル。 第 コ 第 ・コ 8c、□ 第 図 第4図
FIG. 1 is a block diagram of a 2BIQ code transceiver using a low-frequency cut-off distortion equalizer according to an embodiment of the present invention;
The figure shows the relationship between the amplification factor of the gain control amplifier and the resistance value of the transmission line, Figure 3 is a block diagram of a 2BIQ code transceiver using a conventional low cutoff distortion equalizer, and Figure 4 shows the transmission line. FIG. 3 is a diagram showing the relationship between cut-off frequency and resistance value. 11... A/D converter, 12... Gain control circuit, 1
3... Judgment circuit, 14... Filter, 16... Coefficient correction circuit, 17... Coefficient table. Fig. 8c, □ Fig. 4

Claims (1)

【特許請求の範囲】[Claims] (1)伝送路の低域遮断特性により受信信号に生じた低
域遮断歪を所定の係数を用いて等化する等化手段と、 前記受信信号が前記伝送路から受けた変量から前記伝送
路の遮断周波数を推定する推定手段と、この推定手段に
より推定された遮断周波数に基づいて前記等化手段の係
数を調整する調整手段とを具備することを特徴とする低
域遮断歪等化装置。
(1) Equalizing means for equalizing low frequency cutoff distortion caused in the received signal due to the low frequency cutoff characteristic of the transmission line using a predetermined coefficient; and the transmission line based on the variable received by the received signal from the transmission line. 1. A low-frequency cutoff distortion equalization device, comprising: estimating means for estimating a cutoff frequency of said estimating means; and adjusting means for adjusting coefficients of said equalizing means based on the cutoff frequency estimated by said estimating means.
JP1740790A 1990-01-25 1990-01-25 Low frequency interrupt distortion equalizer Pending JPH03220841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1740790A JPH03220841A (en) 1990-01-25 1990-01-25 Low frequency interrupt distortion equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1740790A JPH03220841A (en) 1990-01-25 1990-01-25 Low frequency interrupt distortion equalizer

Publications (1)

Publication Number Publication Date
JPH03220841A true JPH03220841A (en) 1991-09-30

Family

ID=11943145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1740790A Pending JPH03220841A (en) 1990-01-25 1990-01-25 Low frequency interrupt distortion equalizer

Country Status (1)

Country Link
JP (1) JPH03220841A (en)

Similar Documents

Publication Publication Date Title
US8005135B1 (en) Receiver system with interdependent adaptive analog and digital signal equalization
US7394849B2 (en) Decision feedback equalizer with dynamic feedback control
US7203233B2 (en) Adaptive coefficient signal generator for adaptive signal equalizers with fractionally-spaced feedback
US8880017B1 (en) Active resistive summer for a transformer hybrid
US8315301B1 (en) Feedforward equalizer for DFE based detector
US7327995B1 (en) Active resistance summer for a transformer hybrid
US6501792B2 (en) Serial digital data communications receiver with improved automatic cable equalizer, AGC system, and DC restorer
US20070230557A1 (en) Adaptive signal equalizer with adaptive error timing and precursor/postcursor configuration control
US4609787A (en) Echo canceller with extended frequency range
US5228058A (en) Adaptive equalizer
EP0592747B1 (en) Adaptive equalizing apparatus and method for token ring transmission systems using unshielded twisted pair cables
US7035330B2 (en) Decision feedback equalizer with dynamic feedback control
US6466631B1 (en) Device and method of changing the noise characteristic in a receiver of a data transmission system
US6741644B1 (en) Pre-emphasis filter and method for ISI cancellation in low-pass channel applications
EP0588161A2 (en) Adaptive equalizer method and apparatus
JPH03220841A (en) Low frequency interrupt distortion equalizer
US7016487B1 (en) Digital echo cancellation device
US6324232B1 (en) Adaptive DC-compensation
US4837780A (en) Transmit line buildout circuits
JPS59139717A (en) Automatic equalizer
US7180998B2 (en) Regulator for impedance balance of a transmission wire pair
CA1266896A (en) Transmit line buildout circuits
JPH07221677A (en) Waveform equalizer
JPH0832492A (en) Line equalizer
JPS60223256A (en) Automatic equalizer