JPH03220134A - Continuous production of organic compound accompanying exothermic reaction - Google Patents

Continuous production of organic compound accompanying exothermic reaction

Info

Publication number
JPH03220134A
JPH03220134A JP1171590A JP1171590A JPH03220134A JP H03220134 A JPH03220134 A JP H03220134A JP 1171590 A JP1171590 A JP 1171590A JP 1171590 A JP1171590 A JP 1171590A JP H03220134 A JPH03220134 A JP H03220134A
Authority
JP
Japan
Prior art keywords
reaction
solvent
heat
raw materials
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171590A
Other languages
Japanese (ja)
Inventor
Setsuo Shishido
宍戸 節雄
Yoshiaki Arai
新居 善紀
Kenji Shimada
賢治 島田
Shuji Kawada
修司 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP1171590A priority Critical patent/JPH03220134A/en
Publication of JPH03220134A publication Critical patent/JPH03220134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To remove reaction heat by latent heat in evaporation by separately and continuously feeding two or more kinds of raw materials to main part of reaction in the presence of a solvent, bringing these raw materials into contact with each other for a short time to react these raw materials and introducing the reaction mixture into a subsidiary reaction part having a larger volume and a lower pressure than main part of reaction. CONSTITUTION:The inside of a reaction device 4 is kept at 40mmHg pressure and a cyclohexane solution of PCl3 and n-propyl alcohol are cooled to -5 to -4 deg.C, each fed from lines 1 and 2 to a static mixer 3 with 6 stages, and the cyclohexane solution is brought into contact with n-propyl alcohol for 0.4sec. The reaction mixture is scattered in atomized state because of a reduced pressure of the reaction device and dropped along a device wall by a direct drop- preventing umbrella (temperature sensor 16 is -2 deg.C). The evaporated solution is passed through a line 11 and entered a receiver 15 and product is entered a receiver 10. The reaction mixture may be dropped inside a spiral pipe. Thereby reaction heat is quickly removed and subsidiary reaction is suppressed, and the objective product can be inexpensively obtained in good yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は反応速度が非常に太きいとか単位時間当りの反
応熱が非常に大きい反応に対してもより効果的に利用出
来る有機化合物の連続的製造法如関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a continuous organic compound that can be used more effectively even for reactions that have a very high reaction rate or a large amount of reaction heat per unit time. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

反応熱を除去して反応をコントロールする方法としては
、反応系内にコイルを入れ、コイル内に冷媒を通して冷
却するか反応系の外部ジャケットに冷媒を通して冷却し
て、反応熱を除去し、反応をコントロールする方法や冷
却面積をより多く取る為にポンプを利用して外部冷却器
内に反応系内液を循環させ冷却する方法が知られている
To control the reaction by removing the heat of reaction, a coil is placed inside the reaction system and a refrigerant is passed through the coil to cool it, or a refrigerant is passed through the external jacket of the reaction system to remove the heat of reaction and control the reaction. There are known methods for controlling the temperature and for cooling the reaction system by using a pump to circulate the liquid within the reaction system within an external cooler in order to increase the cooling area.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

反応系を直接冷却する方法では反応温度を保つ為に単位
容積当りの冷却面積が不足する為、単位容積当りの濃度
を低くして反応する必要がある。その結果生産能力の低
下による固定費の増加もさることながら製品当りの溶媒
回収量が増加し、この溶媒を回収し、精製して再利用す
るにも、産業廃棄物として処理するにしても多大な費用
を要する。工業的に経済的な方法とはいえなし・。
In the method of directly cooling the reaction system, the cooling area per unit volume is insufficient to maintain the reaction temperature, so it is necessary to lower the concentration per unit volume for the reaction. As a result, not only fixed costs increase due to decreased production capacity, but also the amount of solvent recovered per product increases, and it costs a lot of money to collect, refine and reuse the solvent, or dispose of it as industrial waste. It costs a lot of money. It is not an industrially economical method.

して大きく取れるけれども、反応系と冷却系との接続配
管部は元より反応系内においても反応熱により昇温して
、反応系と冷却系に許容出来ない温度差が生じて収率の
低下や製品々質の劣化を招く大きな要因となり工業的に
経済的な方法とはいえない。
However, the temperature increases not only at the connecting piping between the reaction system and the cooling system, but also within the reaction system due to the reaction heat, creating an unacceptable temperature difference between the reaction system and the cooling system, resulting in a decrease in yield. This is not an industrially economical method because it is a major cause of deterioration in product quality.

〔課題を解決するための手段〕[Means to solve the problem]

経済的な単位容積当りの濃度で、しかも所望の温度を保
って反応させる為には除熱速度や除熱容量を上げる必要
がある。
In order to carry out the reaction at an economical concentration per unit volume while maintaining the desired temperature, it is necessary to increase the heat removal rate and heat removal capacity.

本発明者らは溶媒の蒸発潜熱を利用して反応熱を除去し
て反応させる方法を見い出した。即ちボイルシャールの
法則:PV/T=一定(但しこの式でPは圧力単位at
m:Vは容積単位t。
The present inventors have discovered a method of removing reaction heat and causing a reaction using the latent heat of vaporization of a solvent. In other words, Boyleschard's law: PV/T = constant (however, in this formula, P is the pressure unit at
m:V is the unit of volume t.

Tは絶対温度単位°にである。)の式に於いてV(容積
)一定の系では圧力と温度は逆比例し、所定の溶媒に於
ける気液平(資)によって律せられることを利用するこ
とにより本発明に到達した。
T is in absolute temperature units °. ) The present invention was achieved by utilizing the fact that in a system where V (volume) is constant, pressure and temperature are inversely proportional and are governed by the gas-liquid ratio in a given solvent.

すなわち本発明は、二種以上の原料化合物を各々溶媒の
存在下反応主要部に別々に連続的に供給し短時間接触し
反応させ次いで反応混合物を該主要反応部よりも、容積
が犬でかつ圧力が低い副反応部(反応槽)に排出せしめ
、溶媒の蒸発潜熱を利用して反応熱を除去することを特
徴とする、発熱反応を伴う有機化合物の連続的製造法に
関する。
That is, in the present invention, two or more raw material compounds are separately and continuously fed to a main reaction part in the presence of a solvent, brought into contact for a short time to react, and then the reaction mixture is transferred to a reactor with a volume smaller than that of the main reaction part. The present invention relates to a method for continuously producing an organic compound accompanied by an exothermic reaction, which is characterized by discharging the solvent into a side reaction section (reaction tank) with low pressure and removing the reaction heat using the latent heat of vaporization of the solvent.

本発明によれば除熱速度や除熱容量を上げる点について
は非常に有効な方法である。
According to the present invention, it is a very effective method for increasing the heat removal rate and heat removal capacity.

水溶謀で反応する場合を例に取れば、水約1000g当
りの蒸発潜熱は約54 Q kcalである。この値は
水約1,000gの水を約540°C上昇させる:て相
当する熱量に相当し、しかも除熱速度も非常に速く反応
の温度コントロールも容易となるのである。
Taking the case of a water-soluble reaction as an example, the latent heat of vaporization per about 1000 g of water is about 54 Q kcal. This value corresponds to the amount of heat equivalent to raising about 1,000 g of water by about 540°C, and the heat removal rate is also very fast, making it easy to control the temperature of the reaction.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に利用できる発熱反応としては例えば以下の反応
をあげることができるが本発明はこれらに限定されるも
のではない。
Examples of exothermic reactions that can be used in the present invention include the following reactions, but the present invention is not limited thereto.

ニトリルとアルコールとから塩酸の存在下でイミノエー
テル化合物を製造する反応、3ハロゲン化燐とアルコー
ルとからフォスファイト化合物を製造する反応、ジケテ
ンとアミンとからアミド化合物を製造する反応、フリー
ゾルタラフッ反応の塩アルミニウム錯体の分解反応、オ
レフィンへハロゲンを付加してジハロ体を製造する反応
、無@酸と無機塩基の中和反応、カルベン類付加反応、
リン酸クロライドとフェノール類を反応させリン酸エス
テルを製造する反応。
Reactions for producing iminoether compounds from nitriles and alcohols in the presence of hydrochloric acid, reactions for producing phosphite compounds from trihalogenated phosphorus and alcohols, reactions for producing amide compounds from diketenes and amines, free sol fluoride Reaction salt Decomposition reaction of aluminum complex, reaction of adding halogen to olefin to produce dihalo compound, neutralization reaction of non-acid and inorganic base, addition reaction of carbenes,
A reaction that produces phosphoric acid esters by reacting phosphoric acid chloride with phenols.

カルボン酸クロライドとアルコール類又はフェノール類
を反応させてカルボン酸エステルヲ製造する反応、過酸
化物の分解、エポキシドとアミン類又はハロゲン化水素
を反応させてアミノヒドリン又はハロヒドリンを製造す
る反応、ラジカルの付加又は置換反応、アミン又はアニ
リン類とハロゲン化水素を反応させノ・ロゲン化アンモ
ニウムナ製造する反応、ヒドロキシルアミンとカルボン
酸エステルを反応させてヒドロキサム酸を製造する反応
、ニトリルとアルコールを反応させてイミノエーテルを
製造する反応、イミノエーテルとアミン類を反応させて
アミジンを製造する反応、クロロホルムとオレフィンを
反応させてジクロロシクロプロパンを製造スる反応、ア
クリル酸エステルを重合させてポリアクリル酸エステル
を製造する反応、カルボン酸クロライドとアミン類を反
応させてカルボン酸アミドを製造する反応、トリアルキ
ルホスファイトと2−クロロケトンを反応させてリン酸
エステルを製造する反応。
Reactions to produce carboxylic acid esters by reacting carboxylic acid chlorides with alcohols or phenols, decomposition of peroxides, reactions to produce aminohydrins or halohydrins by reacting epoxides with amines or hydrogen halides, addition of radicals, or Substitution reaction, reaction of reacting amines or anilines with hydrogen halides to produce ammonium halides, reaction of reacting hydroxylamine with carboxylic acid ester to produce hydroxamic acid, reaction of reacting nitriles with alcohols to produce iminoethers reaction to produce amidine by reacting iminoether with amines, reaction to produce dichlorocyclopropane by reacting chloroform and olefin, and production of polyacrylic ester by polymerizing acrylic ester. reaction, a reaction in which a carboxylic acid chloride and an amine are reacted to produce a carboxylic acid amide, and a reaction in which a trialkyl phosphite is reacted with a 2-chloroketone to produce a phosphoric acid ester.

又本光明で用いることのできる反応溶媒としては所定圧
力、所定温度で蒸発し、又反応を防害しない適当なもの
が好ましく例えば水;メタノール、エタノール、グロパ
ノール、シクロヘキサノールなどのアルコール類:アセ
トン、メチルエチルケトンシクロヘキサノンなどのケト
類:酢酸メチル、酢酸エチルなどのエステル類;ヘキサ
ン、シクロヘキサン、ヘプタン、四塩化炭素、1−クロ
ロ−ペンタン、1.2−ジクロロプロパンなどの脂肪族
炭化水素類:ベンゼン、トルエン、キシレン、モノクロ
ロベンゼン、p−クロロトルエンなどの芳香族炭化水素
類+ N。
The reaction solvent that can be used in the present invention is preferably a suitable solvent that evaporates at a predetermined pressure and temperature and does not inhibit the reaction, such as water; alcohols such as methanol, ethanol, gropanol, and cyclohexanol; acetone; Ketos such as methyl ethyl ketone cyclohexanone; Esters such as methyl acetate and ethyl acetate; Aliphatic hydrocarbons such as hexane, cyclohexane, heptane, carbon tetrachloride, 1-chloro-pentane, and 1,2-dichloropropane: benzene, toluene , aromatic hydrocarbons such as xylene, monochlorobenzene, p-chlorotoluene + N.

N−ジメチルホルムアミド、N−メチルアセトアミドな
どのアミド類;ジメチルスルホキシド;2−ピロリドン
;スルホランなどがあるが、これらに限定されるもので
はない。
Examples include, but are not limited to, amides such as N-dimethylformamide and N-methylacetamide; dimethylsulfoxide; 2-pyrrolidone; and sulfolane.

次に本発明の方法を次の反応例を用いて説明する。Next, the method of the present invention will be explained using the following reaction example.

P CI3 + 3 C1h Cl12 CH20H→
(CH3CH2CH20)2 P OH+CH3CH2
CH2CI + 2 HC1この時の反応熱は約48 
Kca11モルであり、高温では重合反応等の副反応が
速い為、反応温度を低温に保って制御することは非常に
重要なことである。即ち、工業的に実用的な溶媒濃度例
えば三塩化燐の原料濃度シクロヘキサン100m11モ
ルとノルマルプロピルアルコール(無希釈)の各々の原
料を最初の液温を0℃とし、内部に直径約2rnMの球
状のビーズ玉を充填した直径約8rEIRのガラス管中
での反応では、比熱を0、6 cal/g、’C,比重
を0.93 g/ml(−5°C)管及び充填物の熱容
量を無視、又放熱も無視と仮定して計算すると液温か約
113℃になる。
P CI3 + 3 C1h Cl12 CH20H→
(CH3CH2CH20)2 P OH+CH3CH2
CH2CI + 2 HC1 The heat of reaction at this time is approximately 48
Kca is 11 mol, and side reactions such as polymerization reactions occur rapidly at high temperatures, so it is very important to keep and control the reaction temperature at a low temperature. That is, an industrially practical solvent concentration, for example, a raw material concentration of phosphorus trichloride, 100ml of cyclohexane, 11 moles, and n-propyl alcohol (undiluted) are each used at an initial liquid temperature of 0°C, and a spherical shape with a diameter of about 2rnM is placed inside. For a reaction in a glass tube with a diameter of about 8 rEIR filled with beads, the specific heat is 0.6 cal/g, 'C, the specific gravity is 0.93 g/ml (-5 °C), and the heat capacity of the tube and packing is If we ignore this and assume that heat radiation is also ignored, the liquid temperature will be approximately 113°C.

そこで本発明者らは液体窒素による冷却方法も試みたが
窒素気体に同伴して飛散される溶媒の回収が非常に困難
であり、又液体窒素の消費量が多くて工業的な方法とは
なり得なかった。
Therefore, the present inventors tried a cooling method using liquid nitrogen, but it was extremely difficult to recover the solvent that was scattered along with the nitrogen gas, and the amount of liquid nitrogen consumed was large, making it impractical to use as an industrial method. I didn't get it.

不発明は例えば第1図のような反応装置を用いて行うこ
とができる。予めコンデンサー12のジャケットに一1
5±2°Cのブラインを通しておくと共に反応機4内が
所定圧力になるようにライン14を通して真空ポンプ等
で調整しておく。次に3塩化燐のシクロヘキサン溶液と
ノルマルピルアルコール溶液をそれぞれ1,2の原料、
!I7.2+、、 Wより送液ポンプを用いて、スター
ティクミキサー3に送液され、混合されて反応を開始す
る。3を通過した液は反応機4にフラッシュされ、己と
同時に所定温度、所定圧力になるような気液平衡状態に
なる。尚温度は温度センサー16により表示される。反
応熱により所定圧力に於ける温度以上に昇温しでいる時
は該溶媒の蒸発潜熱により瞬時に冷却される。蒸発溶媒
はライン11を通りコンデンサー12で冷却凝縮され、
ライン13を通り受器15に入る。−1混合液にサポー
タ−7,8で4に固定された直接落下防止車5によって
4の内部機壁をったって反応しながら落下する。
The invention can be carried out using, for example, a reaction apparatus as shown in FIG. 11 on the jacket of condenser 12 in advance
Brine at 5±2° C. is passed through the reactor 4 and adjusted using a vacuum pump or the like through a line 14 so that the inside of the reactor 4 reaches a predetermined pressure. Next, add 1 and 2 raw materials to a cyclohexane solution and a n-pyl alcohol solution of phosphorus trichloride, respectively.
! I7.2+, W is used to send the liquid to the static mixer 3 using a liquid sending pump, and the mixture is mixed to start the reaction. The liquid that has passed through the reactor 3 is flushed to the reactor 4, and is brought into a vapor-liquid equilibrium state where the liquid reaches a predetermined temperature and a predetermined pressure at the same time. Note that the temperature is displayed by a temperature sensor 16. When the temperature rises above the temperature at a predetermined pressure due to the heat of reaction, it is instantaneously cooled down by the latent heat of vaporization of the solvent. The evaporated solvent passes through line 11 and is cooled and condensed in condenser 12.
It passes through line 13 and enters receiver 15. -1 mixed liquid reacts and falls down the internal machine wall of 4 by a direct fall prevention vehicle 5 fixed to 4 by supports 7 and 8.

直接落下防止車5の役割は重要であって、反応により生
成したフォスファイトが各原料と混合して副反応を起こ
すことを極力防止することと反;不光分で次の受器への
ショートパスを防止することである。このような目的の
ためには、その他に例えば第2図のような均圧を保つ為
に上部又は側部に適度な穴17をあけた液受は傘18付
きスパイラル式パイプ19を用いるのも効果的な方法で
ある。しかし本発明ではこれらに限定されるものではな
い。
The role of the direct drop prevention vehicle 5 is important, and is to prevent as much as possible the phosphite produced by the reaction from mixing with each raw material and causing side reactions; The goal is to prevent For this purpose, it is also possible to use a spiral pipe 19 with an umbrella 18 for a liquid receiver with an appropriate hole 17 in the top or side to maintain equal pressure, as shown in Fig. 2. This is an effective method. However, the present invention is not limited to these.

本発明の原料である3塩化燐に対するノルマルプロピル
アミンのモル比は通常0.90〜1.20好ましくは1
.00〜1.07使用するのがよい。
The molar ratio of n-propylamine to phosphorus trichloride, which is the raw material of the present invention, is usually 0.90 to 1.20, preferably 1.
.. It is preferable to use 00 to 1.07.

又反応温度については−10°C〜+15℃好ましくは
一7°C〜0℃になるように蒸発潜熱によって又必要に
応じて更に例えば第1図の反応機4の外部又は内部より
冷却して制御することが出来る。両原料の混合は出来る
だけ速やかに行うのが好ましく、ラインミキサー法又は
スプレーノズル方式が良い方法である。ラインミキサー
としては例えば第1図のスターティクミキサー3や強制
撹拌型のラインミキサーが利用出来る。
The reaction temperature is maintained at -10°C to +15°C, preferably -7°C to 0°C, by latent heat of vaporization, and if necessary, further cooled, for example, from the outside or inside of the reactor 4 in Figure 1. It can be controlled. It is preferable to mix both raw materials as quickly as possible, and a line mixer method or a spray nozzle method is a good method. As the line mixer, for example, the static mixer 3 shown in FIG. 1 or a forced stirring type line mixer can be used.

又スプレーノズル方式についてもいかに短時間で両液を
混合するかに主眼をおいたものが好ましく・。その後肢
混合液は下記圧力系の反応機などにフラノン−され溶媒
の蒸発潜熱を利用して冷却されるのであるが、本発明の
場合の圧力は3塩化リンとノルマルプロピルアルコール
トノ反応に限らず、通常0.5 mmHg 〜760 
mmHgである。圧力は低い方が低温反応になり好まし
いが溶媒の回収とし・う点からは圧力が低すぎても問題
があり10〜400 mm1gが実用的に好ましい範囲
である。
Also, regarding the spray nozzle method, it is preferable to use one that focuses on mixing both liquids in a short time. The hindlimb mixture is transferred to a reactor with the pressure system described below and is cooled using the latent heat of vaporization of the solvent. However, in the case of the present invention, the pressure is not limited to the reaction between phosphorus trichloride and normal propyl alcohol. , usually 0.5 mmHg ~ 760
mmHg. A lower pressure is preferable because it allows for a low-temperature reaction, but from the point of view of recovering the solvent, there is a problem if the pressure is too low, so a range of 10 to 400 mm/g is practically preferable.

又本発明において反応の大部分は主反応部3(例えばス
ターティクミキサー)で起るが、ここでの反応時間は好
ましくは01〜10秒に調節するのが好ましい。
Further, in the present invention, most of the reaction occurs in the main reaction section 3 (for example, a static mixer), and the reaction time here is preferably adjusted to 0.1 to 10 seconds.

又溶媒は多い方が反応条件のコントロール、収率面から
は有利であるが使用溶媒のリサイクル等を考慮すると溶
媒は少ない方が好ましい。
Further, although it is advantageous to use a large amount of solvent in terms of control of reaction conditions and yield, it is preferable to use a small amount of solvent in consideration of recycling of the solvent used.

3塩化燐に対する総溶媒量は例えば2.00〜5.00
0m11モルであり好ましくは300〜1.000m1
1モルである。
The total amount of solvent for phosphorus trichloride is, for example, 2.00 to 5.00
0m11 mole, preferably 300 to 1.000m1
It is 1 mole.

反応終了ff1O,0ジノルマルプロピルフオスフアイ
ト(I)は常法例えば減圧で溶媒回収した後、減圧精密
蒸留されて製品化出来る。
The reaction completed ff1O,0 di-n-propyl phosphorite (I) can be manufactured into a product by recovering the solvent by a conventional method, for example, under reduced pressure, and then precision distilling under reduced pressure.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は発熱量の大きい反応熱を迅速に除去し副
反応を抑制し、好収率で化合物を工業的に安価に製造で
きる方法である。
The method of the present invention is a method that quickly removes the reaction heat with a large calorific value, suppresses side reactions, and can industrially produce compounds at high yields and at low cost.

以下実施例をあげて本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例〕 第1図の装置を用いて反応機4内が約40mmHgにな
るようにライン14を通して真空ポンプを作動させてお
く。次に三塩化燐20モルを6,000m1のシクロヘ
キサンに溶かした溶液とノルマルプロピルアルコール6
3モルの液ヲそれぞれ−5〜−4℃に冷却し、それぞれ
1.2の原料導入管より送液ポンプを用いて各々約5分
で増速で流れるように6段スターティクミキサー3に送
液した。
[Example] Using the apparatus shown in FIG. 1, a vacuum pump was operated through the line 14 so that the pressure inside the reactor 4 was approximately 40 mmHg. Next, a solution of 20 mol of phosphorus trichloride dissolved in 6,000 ml of cyclohexane and 6 ml of n-propyl alcohol were added.
Each of the 3 mol liquids was cooled to -5 to -4°C, and sent to the 6-stage static mixer 3 through the raw material introduction pipes 1.2 and 3 using a liquid feeding pump so that they each flowed at an increased speed in about 5 minutes. It liquefied.

3における平衡接触時間は約0.4秒であり、3を通過
した液は反応機4が減圧の為、霧状に飛散し、直接落下
防止車5によって40機壁をつたって落下する。16の
温度センサーは約−2℃であった。
The equilibrium contact time in 3 is about 0.4 seconds, and the liquid that has passed through 3 is dispersed in the form of a mist due to the reduced pressure in the reactor 4, and directly falls down the wall of the 40 machine by the fall prevention vehicle 5. 16 temperature sensors were approximately -2°C.

反応生成物は、10の反応液受器に送られて、ガスクロ
分析したところ、純量3.1 s 7 g (純収率三
塩化燐基準95%)であった。
The reaction product was sent to 10 reaction liquid receivers and subjected to gas chromatography analysis, and the pure amount was 3.1 s 7 g (95% pure yield based on phosphorus trichloride).

〔比較例〕[Comparative example]

2OAの反応機に3塩化燐20モルとシクロヘキサン6
.000m1を仕込み、外部ジャケットを約−13℃の
温度のグラインで冷却しなから内温を一2℃に保つよう
に一5°Cに冷却したノルマルプロピルアルコールを滴
下するのに冷却律速の為、約50分を要した。
20 mol of phosphorus trichloride and 6 cyclohexane in a 2OA reactor
.. 000 ml was charged, the outer jacket was cooled with grain at a temperature of about -13°C, and normal propyl alcohol cooled to -5°C was added dropwise to maintain the internal temperature at -2°C due to cooling rate control. It took about 50 minutes.

反応生成物はガスクロ分析して純量2923g(純収率
88%)であった。
Gas chromatography analysis revealed that the reaction product had a pure amount of 2923 g (88% pure yield).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施態様に使用する反応機及びフ
ローチャートの例である。 第2図は、第1図の傘に替えて、液受は傘付きスパイラ
ル式パイプを用いた反応機の例を示す。 1・・・原料導入管、2・・・原料導入管、3・・・ス
ターティックミキサー 4・・・反応機、5・・・傘、
61.。 ライン、7・・・サポータ−8・・・サポータ−9・・
・撹拌機、10・・・反応液受器、11・・・ライン、
12・・・コンデンサー 13・・・ライン、14・・
・ライン、15・・・受器、16・・・温度センサー 
17・・・穴、18・・・液受は傘、19・・・スパイ
ラル式パイプ
FIG. 1 is an example of a reactor and a flowchart used in one embodiment of the present invention. FIG. 2 shows an example of a reactor in which a spiral pipe with an umbrella is used as the liquid receiver instead of the umbrella shown in FIG. 1... Raw material introduction pipe, 2... Raw material introduction pipe, 3... Static mixer 4... Reactor, 5... Umbrella,
61. . Line, 7...Supporter-8...Supporter-9...
- Stirrer, 10... Reaction liquid receiver, 11... Line,
12... Capacitor 13... Line, 14...
・Line, 15... Receiver, 16... Temperature sensor
17...hole, 18...liquid receiver is umbrella, 19...spiral pipe

Claims (5)

【特許請求の範囲】[Claims] (1)二種以上の原料化合物を各々溶媒の存在下反応主
要部に別々に連続的に供給し短時間接触し反応させ次い
で反応混合物を該主要反応部よりも、容積が大でかつ圧
力が低い副反応部(反応槽)に排出せしめ、溶媒の蒸発
潜熱を利用して反応熱を除去することを特徴とする発熱
反応を伴う有機化合物の連続的製造法。
(1) Two or more raw material compounds are each fed separately and continuously to the main reaction part in the presence of a solvent, brought into contact for a short time to react, and then the reaction mixture is transferred to a reactor with a larger volume and a lower pressure than the main reaction part. A method for continuous production of organic compounds accompanied by an exothermic reaction characterized by discharging the solvent into a low-temperature side reaction section (reaction tank) and removing the reaction heat using the latent heat of vaporization of the solvent.
(2)主反応部における反応時間を0.1〜10秒に調
節する特許請求の範囲第(1)項の製造法。
(2) The manufacturing method according to claim (1), wherein the reaction time in the main reaction section is adjusted to 0.1 to 10 seconds.
(3)主反応部における反応圧力を0.5〜760mm
Hgに調節する特許請求の範囲第(1)項の製造法。
(3) Reaction pressure in the main reaction section from 0.5 to 760 mm
The manufacturing method according to claim (1), in which Hg is adjusted.
(4)未反応原料と反応生成物との混合を極力防止する
為に機壁をつたって落下させながら反応させることを特
徴とする特許請求の範囲第(1)、(2)又は(3)項
の方法。
(4) Claims (1), (2), or (3) characterized in that the reaction is carried out while falling down the machine wall in order to prevent mixing of unreacted raw materials and reaction products as much as possible. Section method.
(5)未反応原料と反応生成物との混合を極力防止する
為にスパイラル状に落下させながら反応させることを特
徴とする特許請求の範囲第(1)、(2)又は(3)項
の方法。
(5) Claim No. (1), (2) or (3) characterized in that the reaction is carried out while falling in a spiral in order to prevent mixing of unreacted raw materials and reaction products as much as possible. Method.
JP1171590A 1990-01-23 1990-01-23 Continuous production of organic compound accompanying exothermic reaction Pending JPH03220134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171590A JPH03220134A (en) 1990-01-23 1990-01-23 Continuous production of organic compound accompanying exothermic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171590A JPH03220134A (en) 1990-01-23 1990-01-23 Continuous production of organic compound accompanying exothermic reaction

Publications (1)

Publication Number Publication Date
JPH03220134A true JPH03220134A (en) 1991-09-27

Family

ID=11785740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171590A Pending JPH03220134A (en) 1990-01-23 1990-01-23 Continuous production of organic compound accompanying exothermic reaction

Country Status (1)

Country Link
JP (1) JPH03220134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705175B2 (en) 2005-01-18 2010-04-27 Nippoh Chemicals Co., Ltd. Method for producing imide ether compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705175B2 (en) 2005-01-18 2010-04-27 Nippoh Chemicals Co., Ltd. Method for producing imide ether compound

Similar Documents

Publication Publication Date Title
JP3023343B2 (en) Method for producing lithium hexafluorophosphate
US20100233057A1 (en) Methods and reactor designs for producing phosphorus pentafluoride
US20100065416A1 (en) 6-chloro-2-trichloromethyl pyridine preparation method
CN102574768B (en) Process for nitroalkane recovery by aqueous phase recycle to nitration reactor
JPH03220134A (en) Continuous production of organic compound accompanying exothermic reaction
EP2628709A1 (en) Method for producing phosphorus pentafluoride
US4468356A (en) Diketene chlorination method
JP2899883B2 (en) Oxalic acid diester formation in the vapor state.
CN112094203B (en) Preparation method of 1-cyano-2-propenyl acetate
JPS6212211B2 (en)
JP2679557B2 (en) Continuous production of methyl isocyanate
CN114225855A (en) Vinyl sulfate synthesis device and method
US2697115A (en) Process of producing lower alkyl esters of monohaloacetic acid from ketene, halogens, and alcohols
US3070601A (en) Process for the production of cyanuric chloride
IE64775B1 (en) Process for the reaction of a low-molecular hydroxyl compound with a carboxylic acid halide
CN111320549A (en) Continuous production method and device for propanil
CN114213454B (en) Method for continuously synthesizing O-ethyl-S-sec-butyl thiophosphoryl chloride
JP2579238B2 (en) Process for producing a mixture of 1,1-dichloro-1-fluoroethane and 1-chloro-1,1-difluoroethane by continuously reacting hydrogen fluoride and 1,1,1-trichloroethane in a liquid phase
EP0823427A1 (en) High purity 1,3-dialkyl-2-imidazolidinone and preparation process of same
US6455702B1 (en) Process for the production of N,N-carbonyl diimidazole
US3941568A (en) Apparatus for the production of ethylene dichloride
CA2232607C (en) Process for the production of azomethines and alpha-haloacetanilides
JPS63503063A (en) Method for producing methyl isocyanate
JP2523936B2 (en) Method for producing dicarbonyl fluoride
JPH05301851A (en) Production of n-vinyl formamide