JPH0321959B2 - - Google Patents

Info

Publication number
JPH0321959B2
JPH0321959B2 JP8216684A JP8216684A JPH0321959B2 JP H0321959 B2 JPH0321959 B2 JP H0321959B2 JP 8216684 A JP8216684 A JP 8216684A JP 8216684 A JP8216684 A JP 8216684A JP H0321959 B2 JPH0321959 B2 JP H0321959B2
Authority
JP
Japan
Prior art keywords
downstream
vehicle
ultrasonic transceiver
ultrasonic
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8216684A
Other languages
Japanese (ja)
Other versions
JPS60225300A (en
Inventor
Joji Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8216684A priority Critical patent/JPS60225300A/en
Publication of JPS60225300A publication Critical patent/JPS60225300A/en
Publication of JPH0321959B2 publication Critical patent/JPH0321959B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は道路及び道路網に於ける自動車交通量
の監視に利用する交通流計測装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a traffic flow measuring device used for monitoring vehicle traffic on roads and road networks.

従来例の構成とその問題点 第1図は従来の交通流計測装置を示している。
以下この従来例の構成について第1図とともに説
明する。第1図において、1は超音波送受器2に
接続された車両感知器、3は超音波送受器4に接
続された車両感知器である。超音波送受器2,4
は道路の路側帯部に略横向きに、又は道路の車線
中央上方部に略下向きに設置され、超音波信号の
送受信方向を車線内の車両走行ゾーンに向けて発
射して車両の走行を検知するものである。また、
車両感知器1,3は必要に応じて路側帯部に取り
付けられた筐体等に収納される。車両進行方向の
下流側に、車両感知器3は車両進行方向の上流側
に設置される。5は速度演算部、6は変調装置、
7は復調装置、8は中央装置で各々図示の如く結
線接続され交通流計測装置を構成する。
Configuration of conventional example and its problems Figure 1 shows a conventional traffic flow measuring device.
The configuration of this conventional example will be explained below with reference to FIG. In FIG. 1, 1 is a vehicle sensor connected to an ultrasonic transceiver 2, and 3 is a vehicle sensor connected to an ultrasonic transceiver 4. Ultrasonic transceiver 2, 4
is installed on the side strip of the road, facing approximately sideways, or above the center of the lane on the road, facing approximately downward, and detects vehicle travel by emitting ultrasonic signals in the direction of the vehicle travel zone within the lane. It is something. Also,
The vehicle detectors 1 and 3 are housed in a casing or the like attached to a roadside belt, as necessary. The vehicle sensor 3 is installed on the downstream side in the vehicle traveling direction, and the vehicle sensor 3 is installed on the upstream side in the vehicle traveling direction. 5 is a speed calculation unit, 6 is a modulation device,
Reference numeral 7 denotes a demodulating device, and 8 denotes a central device, which are connected to each other as shown in the figure to constitute a traffic flow measuring device.

なお、速度演算部5および変調装置6は路側帯
部に取り付けられ、通信回線を介して交通管制セ
ンタ内に設置された復調装置7,7aおよび中央
装置8に接続される。
Note that the speed calculation section 5 and the modulation device 6 are attached to the roadside belt section, and are connected to the demodulation devices 7 and 7a and the central device 8 installed in the traffic control center via a communication line.

次に、上記構成になる従来例の動作を説明す
る。第2図A〜Cに上記従来例のタイミングチヤ
ートを示す如く、上流側の車両感知器3の車両存
在パルスcの立上りを速度演算部5にて検出し、
速度パルスeを立上げる。更に、下流側の車両感
知器1の車両存在パルスdの立上りを速度演算部
5にて同様に検出する事により、前記速度パルス
eを立下げる。従つて、前記一対の車両感知器1
及び3の設置距離と前記速度パルスeの持続時間
とより車両の速度を検出し得る。また車両存在パ
ルスcにより車両台数および占有時間が得られ
る。即ち、上記車両存在パルスcおよび速度パル
スeを変調装置6、復調装置7を介して中央装置
8に接続し、一系統の信号伝達系が構成される。
中央装置8には多数の復調装置7aと信号伝達系
が接続される。
Next, the operation of the conventional example having the above configuration will be explained. As shown in the timing chart of the above-mentioned conventional example in FIGS. 2A to 2C, the rising edge of the vehicle presence pulse c of the upstream vehicle sensor 3 is detected by the speed calculation unit 5,
Raise the speed pulse e. Further, by similarly detecting the rising edge of the vehicle presence pulse d from the downstream vehicle sensor 1 in the speed calculation unit 5, the speed pulse e is lowered. Therefore, the pair of vehicle sensors 1
The speed of the vehicle can be detected from the installation distance of 3 and the duration of the speed pulse e. Further, the number of vehicles and the occupancy time can be obtained from the vehicle presence pulse c. That is, the vehicle presence pulse c and speed pulse e are connected to the central device 8 via the modulation device 6 and the demodulation device 7, thereby forming one signal transmission system.
A large number of demodulators 7a and signal transmission systems are connected to the central device 8.

上記車両感知器1,3は第3図Aに示すように
例えばサンプリング時間間隔60mseo毎に超音波
信号Tを送信する。車両感知器1,3より送信さ
れた超音波信号は車両で反射し、第3図Bに示す
ように所定時間範囲内に車両感知器1,3で反射
波が受信される。反射波Rが所定時間範囲内で検
出されると、第3図Cに示すようにこの所定時間
範囲経過時点で一定時間長(60msec)の存在パ
ルスc1が発生する。この動作が60msec毎行なわ
れ、車両からの反射波が必ず検知されると、第3
図Cに示すようにc2,c3,c4……が発生する結
果、第2図A,Bに示すように車長に応じた所定
時間幅の車両存在パルスc,dが得られる。上記
車両存在パルスc,dの各立上りを検出する事に
より、速度パルスeが設定される。従つて、速度
パルスeもサンプリング時間間隔60msec刻みの
パルス構成となる。このように、車両感知器1,
3は定周期毎の超音波サンプリング方式により、
車両の存在を検出しており、従つて連続的に変化
する真の車両存在信号、或は速度信号に対しサン
プリング周期の倍数値のデータとして計測され
る。即ち第3図dに示す真の車両存在信号長dR
対し、計測された存在信号長Cmには超音波周期
τ及び時間ta,tbとより、 ε=τ−(ta+tb) で示される計測誤差εを必然的に生ずる。これは
車両存在信号より決定される速度信号に関しても
同様である。これを更に統計的に数式化すれば、
速度計測誤差ε〓は、計測車両台数N〓、車両走行
速度V、超音波送受器設置間隔L0より次式で表
される。
The vehicle detectors 1 and 3 transmit ultrasonic signals T at sampling time intervals of 60 mseo, for example, as shown in FIG. 3A. The ultrasonic signals transmitted from the vehicle sensors 1 and 3 are reflected by the vehicle, and the reflected waves are received by the vehicle sensors 1 and 3 within a predetermined time range, as shown in FIG. 3B. When the reflected wave R is detected within a predetermined time range, a presence pulse c1 of a predetermined time length (60 msec) is generated after the predetermined time range has elapsed, as shown in FIG. 3C. This operation is performed every 60 msec, and when the reflected wave from the vehicle is always detected, the third
As a result of the occurrence of c 2 , c 3 , c 4 . . . as shown in FIG. A speed pulse e is set by detecting each rising edge of the vehicle presence pulses c and d. Therefore, the speed pulse e also has a pulse configuration with a sampling time interval of 60 msec. In this way, the vehicle sensor 1,
3 uses an ultrasonic sampling method at regular intervals,
The presence of a vehicle is detected, and therefore it is measured as data in multiples of the sampling period with respect to the continuously changing true vehicle presence signal or speed signal. That is, with respect to the true vehicle presence signal length d R shown in Fig. 3 d, the measured presence signal length Cm has the measurement value given by ε = τ - (ta + tb) from the ultrasonic period τ and times ta and tb. This inevitably results in an error ε. This also applies to the speed signal determined from the vehicle presence signal. If we convert this further into a statistical formula, we get
The speed measurement error ε is expressed by the following equation from the number of measured vehicles N, the vehicle running speed V, and the ultrasonic transceiver installation interval L0 .

即ち、計測車両台数N〓が一定の場合、車両速
度が高い程、又超音波送受器設置間隔L0が短い
程、更に超音波周期τが長い程、計測誤差が増大
する傾向を示す。しかしながら、現状の交通流計
測装置に於ては、超音波周期τは道路幅員構成又
は取付可能地上高より実質的に制約されており、
通常は60msec程度の値が常用されている。又、
車両走行速度V及び計測車両台数N〓は交通状況
により決定されるもので被計測対象そのものであ
る。従つて、速度計測精度を改善する要因として
は超音波送受器設置間隔L0が残されるが、通常
L0は約5メートル固定として設置される。これ
は1対の超音波送受器の間に、特に渋帯時に於て
複数台の車両が侵入するのを防ぐ為である。
That is, when the number of measured vehicles N〓 is constant, the higher the vehicle speed, the shorter the ultrasonic transceiver installation interval L0 , and the longer the ultrasonic period τ, the more the measurement error tends to increase. However, in current traffic flow measurement devices, the ultrasonic period τ is substantially restricted by the road width configuration or the mounting height above ground.
Normally, a value of about 60 msec is commonly used. or,
The vehicle running speed V and the number of vehicles to be measured N〓 are determined by the traffic situation and are the objects to be measured. Therefore, the ultrasonic transceiver installation interval L 0 remains a factor that improves speed measurement accuracy, but usually
L 0 will be fixed at approximately 5 meters. This is to prevent multiple vehicles from entering between a pair of ultrasonic transceivers, especially during rush hours.

以上、明らかな如く、現状の交通流計測装置に
於ては超音波送受器設置間隔は固定であり、車両
の速度変化に対する感度と誤差の許容範囲が狭い
ため、読取り誤差が大きくなつて問題となつてい
た。
As is clear from the above, in current traffic flow measurement devices, the installation interval of ultrasonic transceivers is fixed, and the sensitivity to changes in vehicle speed and tolerance for error are narrow, resulting in large reading errors and problems. I was getting used to it.

発明の目的 本発明は、上記従来例の欠点を除去するもので
あり、超音波送受器設置間隔が固定であつても、
車両の速度変化に対する感度と誤差の許容範囲を
広くとることができるので車両速度が高速となつ
ても読取り誤差の小さい優れた交通流計測装置を
提供することを目的とする。
Purpose of the Invention The present invention eliminates the drawbacks of the above-mentioned conventional example, and even if the ultrasonic transceiver installation interval is fixed,
It is an object of the present invention to provide an excellent traffic flow measuring device that can have a wide sensitivity to changes in vehicle speed and a wide tolerance range for errors, so that even when the vehicle speed is high, the reading error is small.

発明の構成 本発明は、上記目的を達成するために、上下流
一対の超音波送受器へ、上流側送受器との設置間
隔をより広く設定した下流側の第2の超音波送受
器を配設し、車両平均速度に応じて低速の場合は
通常の設置間隔に設置された第1の超音波送受器
を、高速の場合は広間隔に設置された第2の超音
波送受器を使用するよう切替部を設けているの
で、車両速度が高速となつても高精度の速度計測
を実現することができる。
Composition of the Invention In order to achieve the above object, the present invention arranges a second ultrasonic transceiver on the downstream side, which has a wider installation interval with the upstream transceiver, in a pair of upstream and downstream ultrasonic transceivers. Depending on the average speed of the vehicle, the first ultrasonic transceiver installed at normal installation intervals is used when the vehicle is running at low speeds, and the second ultrasonic transmitter and receivers installed at widely spaced intervals are used when the vehicle is running at high speeds. Since the switching section is provided, highly accurate speed measurement can be achieved even when the vehicle speed becomes high.

実施例の説明 以下に本発明の一実施例の構成について、図面
とともに説明する。第4図は本発明の一実施例に
よる交通流計測装置のブロツク図、第5図は本実
施例による効果を示すグラフである。
DESCRIPTION OF EMBODIMENTS The configuration of an embodiment of the present invention will be described below with reference to the drawings. FIG. 4 is a block diagram of a traffic flow measuring device according to an embodiment of the present invention, and FIG. 5 is a graph showing the effects of this embodiment.

第4図において、11及び12は超音波送受器
で、下流側車両感知器9に切替部10を介して接
続される。第1の超音波送受器11は上流側超音
波送受器4に対し、車両13の進行方向の下流、
例えば5メートルの位置に従来と同様に配設され
る。下流側の第2の超音波送受器12は第1の送
受器11の更に下流例えば送受器4より15メート
ルの位置に配設される。第4図において、14は
速度演算部であり、従来の速度演算部5(第3
図)と略同一の構成であるが、本実施例では同一
のサンプリング時間間隔60msに対し、送受器設
置間隔の5メートルと15メートルに応じて速度パ
ルスeを設定している。なお復調装置7,7aと
中央装置8は従来と同様である。10は超音波送
受器11,12の切替器である。
In FIG. 4, reference numerals 11 and 12 indicate ultrasonic transceivers, which are connected to the downstream vehicle sensor 9 via a switching unit 10. The first ultrasonic transceiver 11 is located downstream in the traveling direction of the vehicle 13 with respect to the upstream ultrasonic transceiver 4.
For example, it is arranged at a position of 5 meters in the same manner as before. The second ultrasonic transceiver 12 on the downstream side is disposed further downstream of the first transceiver 11, for example, at a position 15 meters from the transceiver 4. In FIG. 4, 14 is a speed calculation section, which is a conventional speed calculation section 5 (third
Although the configuration is substantially the same as that shown in Figure), in this example, the speed pulse e is set according to the transmitter/receiver installation interval of 5 meters and 15 meters for the same sampling time interval of 60 ms. Note that the demodulators 7, 7a and the central device 8 are the same as those of the prior art. Reference numeral 10 indicates a switch between the ultrasonic transceivers 11 and 12.

次に、上記実施例の動作について説明すると、
車両13の平均的な走行速度が低速の場合には、
切替器10を第4図に示す如く接点10a側に設
定し、上流側送受器4より5メートルの位置に配
設される送受器11を使用する。更に車両の平均
的走行速度が高速の場合には切替器10を接点1
0b側に設定し、送受器4より15メートルの位置
に配設される送受器12を使用する。
Next, the operation of the above embodiment will be explained.
When the average running speed of the vehicle 13 is low,
The switch 10 is set on the contact 10a side as shown in FIG. 4, and the transmitter/receiver 11 disposed at a position 5 meters from the upstream transmitter/receiver 4 is used. Furthermore, when the average running speed of the vehicle is high, the switch 10 is set to contact 1.
0b side, and use the handset 12 located 15 meters from the handset 4.

本発明による効果をより理解し易くするべく第
5図により動作説明を行う。第5図は第4図に示
す実施例の説明図であり、計測車両台数N〓を一
定とした場合の、超音波送受器設置間隔L0をパ
ラメータとする車両走行速度と速度計測誤差の関
係を示す。図示破線の如く従来方式である設置間
隔L0=5メートルの場合に於ては車両速度が高
速となる程著しく誤差が増大するのに対し、本発
明の実施例に於ては車両速度が低速の場合は切替
器10の接点10a側に高速となると切替器10
の接点10b側に動作する事により図示実線の如
く高速域での計測精度の改善を図る事が可能であ
る。
In order to make it easier to understand the effects of the present invention, the operation will be explained with reference to FIG. FIG. 5 is an explanatory diagram of the embodiment shown in FIG. 4, and shows the relationship between vehicle running speed and speed measurement error with the ultrasonic transceiver installation interval L 0 as a parameter when the number of measured vehicles N is constant. shows. As shown by the broken line in the figure, in the case of the conventional system where the installation interval L 0 = 5 meters, the error increases significantly as the vehicle speed increases, whereas in the embodiment of the present invention, when the vehicle speed is low In the case of , when the high speed is on the contact 10a side of the switch 10,
By operating on the contact 10b side, it is possible to improve the measurement accuracy in the high speed range as shown by the solid line in the figure.

なお、切替部10の動作は車両13の平均速度
を基準に切替えてもよいし、車両の占有時間(オ
キユパンシー)に基づいて切替えてもよい。
Note that the operation of the switching unit 10 may be switched based on the average speed of the vehicle 13, or may be switched based on the occupancy time (occupancy) of the vehicle.

発明の効果 本発明は上記実施例から明らかなように、上下
流一対の超音波送受器へ、上流側送受器との設置
間隔をより広く設定した下流側の第2の超音波送
受器を配設し、車両平均速度に応じて低速の場合
は通常の設置間隔に設置された第1の超音波送受
器を、高速の場合は広間隔に設置された第2の超
音波送受器を使用するよう切替部を設けているの
で、車両速度が高速となつても高精度の速度計測
を実現する効果を有する。
Effects of the Invention As is clear from the above embodiments, the present invention provides a pair of upstream and downstream ultrasonic transceivers with a second downstream ultrasonic transceiver whose installation interval with the upstream transceiver is set wider. Depending on the average speed of the vehicle, the first ultrasonic transceiver installed at normal installation intervals is used when the vehicle is running at low speeds, and the second ultrasonic transmitter and receivers installed at widely spaced intervals are used when the vehicle is running at high speeds. Since the switching section is provided, it has the effect of realizing highly accurate speed measurement even when the vehicle speed becomes high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の交通流計測装置のブロツク図、
第2図は従来例の動作を説明するタイミングチヤ
ート、第3図は従来の車両存在パルス発生の説明
図、第4図は本発明の一実施例による交通流計測
装置のブロツク図、第5図は本実施例の効果を示
すグラフである。 3……上流側車両感知器、4……上流側超音波
送受器、6……変調装置、7……復調装置、8…
…中央装置、9……下流側車両感知器、10……
切替部、11,12……超音波送受器、13……
車両、14……速度演算部。
Figure 1 is a block diagram of a conventional traffic flow measurement device.
FIG. 2 is a timing chart explaining the operation of a conventional example, FIG. 3 is an explanatory diagram of conventional vehicle presence pulse generation, FIG. 4 is a block diagram of a traffic flow measuring device according to an embodiment of the present invention, and FIG. 5 is a graph showing the effect of this example. 3... Upstream vehicle sensor, 4... Upstream ultrasonic transceiver, 6... Modulator, 7... Demodulator, 8...
...Central device, 9...Downstream vehicle sensor, 10...
Switching unit, 11, 12... Ultrasonic transceiver, 13...
Vehicle, 14...speed calculation section.

Claims (1)

【特許請求の範囲】 1 上流側車両感知器3、下流側車両感知器9、
速度演算部14、変調装置6、復調装置7、中央
装置8を有し、 上流側車両感知器3は、道路周辺に設置され、
車両通行ゾーンに超音波を送受信する上流側超音
波送受器4を有するものであり、 下流側車両感知器9は、車両の走行方向に対し
上流側超音波送受器4より下流に設置され超音波
を送受信する第1の下流側超音波送受器11と、
この第1の下流側超音波送受器11よりさらに下
流に設置され超音波を送受信する第2の下流側超
音波送受器12と、これら第1、第2の下流側超
音波送受器11,12のいずれか一方の出力信号
を切り換えて出力する切替器10とを有するもの
であり、 速度演算部14は、上流側超音波送受器4と下
流側超音波送受器9との出力信号の時間差を出力
するものであり、 変調装置6は、上記速度演算部14および上流
側車両感知器3の出力信号を入力して通信回線に
通信可能な信号に変調するものであり、 復調装置7は、通信回線の信号を復調するもの
であり、 中央装置8は、復調装置7のデータ信号を集計
するものであり、 速度演算部14は、複数の車両の平均速度が基
準値より遅いときに切替器10を第1の下流側超
音波送受器11へ接続させ、この平均速度が基準
値より速いときに切替器10を第2の下流側超音
波送受器12へ接続させるものである 交通流計測装置。
[Claims] 1. Upstream vehicle sensor 3, downstream vehicle sensor 9,
The upstream vehicle sensor 3 includes a speed calculation unit 14, a modulation device 6, a demodulation device 7, and a central device 8, and is installed around the road.
It has an upstream ultrasonic transceiver 4 that transmits and receives ultrasonic waves to and from the vehicle traffic zone, and the downstream vehicle sensor 9 is installed downstream of the upstream ultrasonic transceiver 4 with respect to the traveling direction of the vehicle and transmits ultrasonic waves. a first downstream ultrasonic transceiver 11 that transmits and receives
A second downstream ultrasonic transceiver 12 that is installed further downstream from the first downstream ultrasonic transceiver 11 and transmits and receives ultrasonic waves, and these first and second downstream ultrasonic transceivers 11 and 12 The speed calculation unit 14 calculates the time difference between the output signals of the upstream ultrasonic transceiver 4 and the downstream ultrasonic transceiver 9. The modulation device 6 inputs the output signals of the speed calculation unit 14 and the upstream vehicle sensor 3 and modulates them into signals that can be communicated to the communication line. The demodulation device 7 The central device 8 is to demodulate the signal of the line, and the central device 8 is to aggregate the data signals of the demodulator 7. The speed calculation unit 14 is to operate the switch 10 when the average speed of a plurality of vehicles is lower than the reference value. A traffic flow measurement device that connects a switch 10 to a first downstream ultrasonic transceiver 11 and connects a switching device 10 to a second downstream ultrasonic transceiver 12 when this average speed is faster than a reference value.
JP8216684A 1984-04-24 1984-04-24 Traffic flow measuring apparatus Granted JPS60225300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8216684A JPS60225300A (en) 1984-04-24 1984-04-24 Traffic flow measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8216684A JPS60225300A (en) 1984-04-24 1984-04-24 Traffic flow measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60225300A JPS60225300A (en) 1985-11-09
JPH0321959B2 true JPH0321959B2 (en) 1991-03-25

Family

ID=13766843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8216684A Granted JPS60225300A (en) 1984-04-24 1984-04-24 Traffic flow measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60225300A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978921B2 (en) * 2017-12-13 2021-12-08 三菱重工機械システム株式会社 Vehicle detection device, vehicle detection method and vehicle detection program

Also Published As

Publication number Publication date
JPS60225300A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
AU2011340778B2 (en) Method and devices for determining the distance between a radio beacon and a vehicle device
KR970003696B1 (en) Transponder location and tracking system
US5790052A (en) Method for determining the position of a vehicle on a road
JP2001108745A (en) On-vehicle radar unit
US7117084B2 (en) Apparatus and system for processing measurement data
US4152701A (en) Base band speed sensor
JPH0321959B2 (en)
CA1277014C (en) Roadside beacon system
US6243025B1 (en) Moving body detection system
JP3999347B2 (en) Traffic volume measuring apparatus and method
JPS6233639B2 (en)
KR100312211B1 (en) Method of acquiring vehicle information using ultrasonic traffic volume detector
JP3388540B2 (en) Bit error rate measuring method and its measuring device
JPH06232819A (en) Optical rader system for automotive use
JPH08179038A (en) Vehicle travel information grasping system
KR100338458B1 (en) Method for Generation Traffic Information Based on Ultrasonic Sensor
JPH0312756B2 (en)
JPH0628595A (en) Traffic flow measurement method
JPH06230113A (en) Detecting system for position of vehicle
JPS6232840B2 (en)
JPH1183684A (en) Testing method for traveling vehicle
JP2001167382A (en) Velocity measuring instrument
JPH0317158B2 (en)
JP2000149183A (en) Passing vehicle detecting device
JPH05314394A (en) Beacon receiver