JPH03218925A - Electrically conductive oxide material and josephson junction device - Google Patents
Electrically conductive oxide material and josephson junction deviceInfo
- Publication number
- JPH03218925A JPH03218925A JP2015820A JP1582090A JPH03218925A JP H03218925 A JPH03218925 A JP H03218925A JP 2015820 A JP2015820 A JP 2015820A JP 1582090 A JP1582090 A JP 1582090A JP H03218925 A JPH03218925 A JP H03218925A
- Authority
- JP
- Japan
- Prior art keywords
- conductive oxide
- oxide material
- electrically conductive
- josephson junction
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 22
- 239000013078 crystal Substances 0.000 claims abstract description 7
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 5
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims abstract description 4
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract 2
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052745 lead Inorganic materials 0.000 abstract 2
- 239000010409 thin film Substances 0.000 description 21
- 239000002887 superconductor Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910004247 CaCu Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、導電性酸化物材料およびこれを用いたジョセ
フソン素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a conductive oxide material and a Josephson device using the same.
従来の技術
1986年に <Fノ賂ツ(Bednorz) とミ
ューラー(Muller) により,銅を含む酸化物
が30K以上で超伝導を示すことが発見されて以来、基
礎および応用を考えた研究が活発に行われている。Conventional technology Since Bednorz and Muller discovered in 1986 that copper-containing oxides exhibit superconductivity at temperatures above 30K, basic and applied research has been active. is being carried out.
超伝導材料のデバイス応用を考える上で、超伝導薄膜の
常電導薄膜あるいは絶縁体薄膜とのエビタキシャル積層
技術は必要不可欠である。そのためには格子定数に整合
性のある材料の選択が重要となる。例えば超伝導体YB
azC(Is(lr−yと同様の結晶構造を有する半導
体PrBazCu30t−yとを積層したジョセフソン
素子の試作が報告されている(J.阿.トウェル、「高
温超伝導電子デバイスに関するワークショップ(第2回
)、(19B9.7.7−9北海道)j1講演1−1、
(J.M. Rowell, Plenary Ses
sion 1−L“FED旧↑cSc−HD 2ND
WORKSHOP”))。When considering device applications of superconducting materials, the epitaxial lamination technology of superconducting thin films with normal conducting thin films or insulating thin films is essential. For this purpose, it is important to select a material with matching lattice constants. For example, superconductor YB
A prototype Josephson device in which azC(Is(lr-y) and a semiconductor PrBazCu30t-y having a similar crystal structure are laminated has been reported (J. A. Twell, "Workshop on High Temperature Superconducting Electronic Devices"). 2 times), (19B9.7.7-9 Hokkaido) j1 lecture 1-1,
(J.M. Rowell, Plenary Ses
sion 1-L “FED old ↑cSc-HD 2ND
WORKSHOP”)).
発明が解決しようとする課題
Tl系の酸化物超伝導体薄膜は比較的安定で、上記Y系
の超伝導体のように空気中に放置しても劣化する事はな
い。一方、エビタキシャル積層技術において格子定数の
整合性は特に重要である。Problems to be Solved by the Invention Tl-based oxide superconductor thin films are relatively stable and do not deteriorate even when left in the air like the Y-based superconductors mentioned above. On the other hand, lattice constant consistency is particularly important in the epitaxial stacking technique.
しかし、TI系の酸化物超伝導体には、ジョセフソン接
合を形成するのに必要な格子定数に整合性のとれた非超
伝導材料がなかった。However, TI-based oxide superconductors lack non-superconducting materials with matching lattice constants necessary to form Josephson junctions.
本発明は、上記従来の問題点に鑑み、TI系酸化物超伝
導体とのエビタキシャル積層が可能な導電性酸化物材料
とそれを用いたジョセフソン素子を提供することを目的
とする。In view of the above conventional problems, an object of the present invention is to provide a conductive oxide material capable of being epitaxially laminated with a TI-based oxide superconductor, and a Josephson device using the same.
課題を解決するための手段
本発明の導電性酸化物材料は、組成として、少なくとも
Pb..Ln (但しLnはLaSPr,Nd,Sm,
Euのうち一つ以上の元素L、SrおよびCuを含み、
格子定数がa=0.388nm、c/2−1.456n
mの正方晶系に属する結晶構造を有することを特徴とす
る。Means for Solving the Problems The conductive oxide material of the present invention has a composition of at least Pb. .. Ln (However, Ln is LaSPr, Nd, Sm,
Contains one or more elements L, Sr and Cu of Eu,
Lattice constant a=0.388nm, c/2-1.456n
It is characterized by having a crystal structure belonging to the tetragonal system of m.
又、本発明のジョセフソン素子は上記導電性酸化物材料
と格子定数の整合性があるTI.Ba,C a C u
20,(正方晶系a=o.38543nm、c/ 2−
1.4 6 4 7 nm, ( Kikuchi
et al.,Jpn. J. Appl. Phys
., 28(1989)L382))をエビタキシャル
積層したことを特徴とする。Furthermore, the Josephson element of the present invention has a TI. Ba, C a C u
20, (tetragonal system a=o.38543nm, c/2-
1.4 6 4 7 nm, (Kikuchi
et al. , Jpn. J. Appl. Phys.
.. , 28 (1989) L382)) are laminated in an ebitaxial manner.
作用
発明者等は、酸化物高温超伝導体の組成比を鋭意探索・
研究した結果、上記の組成からなる物質においては、組
成により導電性の制御ができがっT1.Ba,CaCu
,0,と格子定数の整合性がある導電性酸化物を得るこ
とができることを見いだした。The inventors are actively searching for the composition ratio of oxide high-temperature superconductors.
As a result of the research, it was found that the conductivity of a substance having the above composition could be controlled by changing the composition.T1. Ba, CaCu
We have found that it is possible to obtain a conductive oxide whose lattice constant is consistent with , 0,.
この材料を薄膜化し、T lzBazca CuzOy
とエビタキシャル積層することにより、良好なジョセフ
ソン結合を形成することができる。This material is made into a thin film and
A good Josephson bond can be formed by epitaxially laminating the material.
実施例
実施例1
この実施例は、特許請求の範囲第1項記載の導電性酸化
物材料に係る導電性酸化物セラミックスを示す。純度9
9%以上のpbo、Pr60++、SrCO,、CuO
の各粉末を秤量し、振動ミルにて直径2mmのZrO
.ボールを用い、エタノール20mlを分散媒として1
時間粉砕混合した。混合終了後、分散媒ごと全量を乾燥
機中で120゜Cで乾燥させた。得られた粉末を800
゜Cで5時間、空気中で仮焼した後、振動ミルにて前述
と同様の方法で30分間粉砕し、120゜Cで乾燥させ
た。この粉末の0.6gを 18mmX4mmの金型中
で600Kg/cm”の圧力で一軸加圧成形した。この
成形体を、電気炉にて空気中で960゜Cで5時間焼成
し、冷却した。昇降温速度はいずれも300℃/hとし
た。Examples Example 1 This example shows a conductive oxide ceramic according to the conductive oxide material according to claim 1. Purity 9
9% or more pbo, Pr60++, SrCO, CuO
Weigh each powder and use a vibrating mill to make ZrO powder with a diameter of 2 mm.
.. Using a ball, add 20 ml of ethanol as a dispersion medium.
Grind and mix for hours. After the mixing was completed, the entire amount including the dispersion medium was dried in a dryer at 120°C. The obtained powder was 800
After calcining in air at 120°C for 5 hours, it was ground in a vibrating mill for 30 minutes in the same manner as described above, and dried at 120°C. 0.6 g of this powder was uniaxially pressed in a 18 mm x 4 mm mold at a pressure of 600 Kg/cm''. This compact was fired in an electric furnace in air at 960° C. for 5 hours and cooled. The temperature increase/decrease rate was 300°C/h in both cases.
配合組成でPb: (Pr+Sr):Cuが(0.3
〜1.8): 4.0 : (1.7 〜5.0)
(7)とき上記結晶構造を有するセラミックスが得られ
た。In the blending composition, Pb: (Pr+Sr):Cu is (0.3
~1.8): 4.0: (1.7 ~5.0)
(7) A ceramic having the above crystal structure was obtained.
又、PrとSrO比を変えることにより電気抵抗が制?
卸できた。Pb : (Pr十Sr): Cuが1.
0 : 4.0 : 2.6でP r : S r=2
.2 : 1.8のとき抵抗率は最も低く、12.7Ω
・cmであった。冷却して、温度特性を測ったところ半
導体的な挙動を示した。Also, can the electrical resistance be controlled by changing the Pr and SrO ratio?
I was able to wholesale it. Pb: (Pr+Sr): Cu is 1.
0: 4.0: 2.6 and P r: S r=2
.. 2: At 1.8, the resistivity is the lowest, 12.7Ω
・It was cm. When it was cooled and its temperature characteristics were measured, it showed semiconductor-like behavior.
PrをLaSNd..Sm,Euに変えても上記結晶構
造を有するセラミックスが得られた。Pr to LaSNd. .. Ceramics having the above crystal structure were obtained even when Sm and Eu were used.
実施例2
次に、特許請求の範囲第1項記載の導電性酸化物を薄膜
化した実施例を示す。Example 2 Next, an example will be shown in which the conductive oxide described in claim 1 is made into a thin film.
スパッタ条件を表1に示す。The sputtering conditions are shown in Table 1.
表1
得られた薄膜をX線回折で調べたところ非品質であった
。そこで、酸素中、830℃でアニール処理を行ったと
ころ、C軸が基板に対して垂直に立った特許請求の範囲
第1項記載の導電性酸化物の薄膜が得られた。この薄膜
の電気抵抗の温度特性を直流四端子法により測定したと
ころ、室温抵抗は8.0Ω・cmで、温度が低くなるに
つれて抵抗は半導体的に増加し、液体ヘリウム温度では
絶縁体であった。Table 1 When the obtained thin film was examined by X-ray diffraction, it was found to be of poor quality. Therefore, when annealing treatment was carried out at 830° C. in oxygen, a thin film of a conductive oxide according to claim 1 was obtained in which the C axis was perpendicular to the substrate. When the temperature characteristics of the electrical resistance of this thin film were measured using the DC four-terminal method, the room temperature resistance was 8.0 Ω cm, and as the temperature decreased, the resistance increased like a semiconductor, and at liquid helium temperatures it was an insulator. .
実施例3
次に、TI.Ba,CaCu,0, 薄膜と特許請?の
範囲第1項記載の導電性酸化物とのエビタキシャル積層
によるジョセフソン結合の形成に関する実施例を示す。Example 3 Next, TI. Ba, CaCu, 0, thin film and patent application? An example regarding the formation of a Josephson bond by epitaxial lamination with the conductive oxide described in item 1 is shown below.
MgO (001)基板上にT 1 2B a zC
a C uzo,薄膜を、次いで特許請求の範囲第1項
記載の導電性酸化物の薄膜を、その上にさらにT1■B
a.CaCuzOy薄膜をのせた。表2にTI,Ba2
CaCuzOyFi膜形成の条件を示す。T 1 2B a zC on MgO (001) substrate
aCuzo, a thin film, then a thin film of the conductive oxide according to claim 1, and further T1■B
a. A CaCuzOy thin film was placed on it. Table 2 shows TI, Ba2
The conditions for forming a CaCuzOyFi film are shown below.
表2
得られた薄膜をX線回折で調べたところ非品質であった
。そこで、この薄膜をTI.03粉末と共にアルミナ容
器中にいれ、酸素中、830゜Cで4時間アニール処理
を行ったところ、C軸が基板に対して垂直に立ったTI
zBa.CaCu.O,薄膜が得られた。この薄膜の電
気抵抗を測定したところ、オンセント温度が80Kであ
り、68Kでゼロ抵抗を示す超伝導体であった。Table 2 When the obtained thin film was examined by X-ray diffraction, it was found to be of poor quality. Therefore, this thin film was used as a TI. 03 powder in an alumina container and annealed in oxygen at 830°C for 4 hours.
zBa. CaCu. O, a thin film was obtained. When the electrical resistance of this thin film was measured, the on-cent temperature was 80K, and it was found to be a superconductor exhibiting zero resistance at 68K.
さらに、その上に特許請求の範囲第1項記載の導電性酸
化物の薄膜をのせた。成膜の条件は基板温度が700゜
Cであることを除いて実施例2に示したものと同様とし
た。得られた膜がエビタキシャル成長していることは、
X線回折および低角電子線回折により確認した。Furthermore, a thin film of a conductive oxide as described in claim 1 was placed thereon. The conditions for film formation were the same as those shown in Example 2 except that the substrate temperature was 700°C. The fact that the obtained film grows epitaxially means that
Confirmed by X-ray diffraction and low-angle electron diffraction.
このような方法で導電性酸化物の薄膜を1分間積層した
後、さらにその上にTI.Ba.CaCu20,薄膜を
のせた。スバッタ条件は表2に示したとおりである。ア
ニール処理も、830゜Cで4時間同様に行った。After depositing a conductive oxide thin film in this manner for 1 minute, TI. Ba. A thin film of CaCu20 was placed on it. The spatter conditions are as shown in Table 2. Annealing treatment was also performed in the same manner at 830°C for 4 hours.
得られた「超伝導/導電性酸化物/超伝導」積層体の液
体ヘリウム温度における電流一電圧特性を測定したとこ
ろ、図に示すように、電流を±15μAまで流しても電
圧はゼロとなり、良好なジョセフソン結合が形成されて
いることが確認できた。When we measured the current-voltage characteristics of the obtained "superconducting/conductive oxide/superconducting" laminate at liquid helium temperature, as shown in the figure, the voltage was zero even when the current was applied up to ±15 μA. It was confirmed that a good Josephson bond was formed.
発明の効果
本発明の導電性酸化物材料は、組成として、少なくとも
Pb,Ln (但しLnはLaSPr,Nd,Sm,E
uのうち一つ以上の元素)、SrおよびCuを含み、格
子定数がa =0.3 8 8 nm、c/2=1.4
56nmの正方晶系に属する結晶構造を有しており、ま
たこの導電性酸化物材料と化学式T1zBazCa C
u.O,で表される超伝導材料とを用いてジョセフソン
素子を構成したものであり、その導電性酸化物材料はそ
の組成により導電性の制御ができかつT l z B
a z C a C u zOyと格子定数の整合性が
あるため、この材料を薄膜化しT1zBazCaCuz
Oyとエビタキシャル積層することにより、良好なジョ
セフソン結合を形成することができる。Effects of the Invention The conductive oxide material of the present invention has a composition of at least Pb, Ln (wherein Ln is LaSPr, Nd, Sm, E
contains one or more elements of u), Sr and Cu, and has a lattice constant of a = 0.3 8 8 nm, c/2 = 1.4
It has a crystal structure belonging to the tetragonal system of 56 nm, and this conductive oxide material and the chemical formula T1zBazCa C
u. A Josephson element is constructed using a superconducting material represented by O, and the conductivity of the conductive oxide material can be controlled by its composition, and T l z B
Since the lattice constant is consistent with a z C a C u zOy, this material is made into a thin film and T1zBazCaCuz
A good Josephson bond can be formed by epitaxially stacking with Oy.
図は本発明の一実施例におけるジョセフソン素子の電流
一電圧特性図である。The figure is a current-voltage characteristic diagram of a Josephson element in an embodiment of the present invention.
Claims (2)
はLa、Pr、Nd、Sm、Euのうち一つ以上の元素
)、SrおよびCuを含み、格子定数がa=0.388
nm、c/2=1.456nmの正方晶系に属する結晶
構造を有することを特徴とする導電性酸化物材料。(1) The composition is at least Pb, Ln (however, Ln
contains one or more elements of La, Pr, Nd, Sm, Eu), Sr and Cu, and the lattice constant is a=0.388
A conductive oxide material characterized by having a crystal structure belonging to a tetragonal system with c/2=1.456 nm.
される超伝導材料と請求項1記載の導電性酸化物材料を
用いたことを特徴とするジョセフソン素子。(2) A Josephson device characterized by using a superconducting material represented by the chemical formula Tl_2Ba_2CaCu_2O_y and the conductive oxide material according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015820A JPH03218925A (en) | 1990-01-25 | 1990-01-25 | Electrically conductive oxide material and josephson junction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015820A JPH03218925A (en) | 1990-01-25 | 1990-01-25 | Electrically conductive oxide material and josephson junction device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03218925A true JPH03218925A (en) | 1991-09-26 |
Family
ID=11899490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015820A Pending JPH03218925A (en) | 1990-01-25 | 1990-01-25 | Electrically conductive oxide material and josephson junction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03218925A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994007270A1 (en) * | 1992-09-14 | 1994-03-31 | Conductus, Inc. | Improved barrier layers for oxide superconductor devices and circuits |
-
1990
- 1990-01-25 JP JP2015820A patent/JPH03218925A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994007270A1 (en) * | 1992-09-14 | 1994-03-31 | Conductus, Inc. | Improved barrier layers for oxide superconductor devices and circuits |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2859602B2 (en) | Manufacturing method of products made of superconducting material | |
Kırat et al. | Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2 (Cu3− xErx) O10+ δ superconducting system | |
JP3089294B2 (en) | Manufacturing method of superconducting tape material | |
JPH09306256A (en) | Bulk oxide superconductor, and production of wire rod and plate thereof | |
JPH01278423A (en) | Superconductor of bismuth oxide and apparatus made of the superconductor | |
JP2571789B2 (en) | Superconducting material and its manufacturing method | |
JP3120110B2 (en) | Oxide superconducting tape material and manufacturing method thereof | |
US5389603A (en) | Oxide superconductors, and devices and systems comprising such a superconductor | |
JPH03218925A (en) | Electrically conductive oxide material and josephson junction device | |
JPH06219736A (en) | Superconductor | |
JP3217905B2 (en) | Metal oxide material and method for producing the same | |
JP3219563B2 (en) | Metal oxide and method for producing the same | |
JP2585561B2 (en) | Oxide superconducting material | |
JP2656531B2 (en) | Oxide superconductor | |
JP3787613B2 (en) | High-temperature superconducting copper oxide excellent in critical current density characteristics and / or irreversible magnetic field characteristics, and high-temperature superconducting material containing the high-temperature superconducting copper oxide | |
Balachandran et al. | Progress in development of tapes and magnets made from Bi-2223 superconductors | |
JP2590370B2 (en) | Superconducting material and manufacturing method thereof | |
JP2856577B2 (en) | Superconducting element | |
JP2817170B2 (en) | Manufacturing method of superconducting material | |
JP3284010B2 (en) | Metal oxide material and superconducting device using the same | |
JPH04300202A (en) | Superconductor using oxide and production thereof | |
JP2971504B2 (en) | Method for producing Bi-based oxide superconductor | |
JPH0435072A (en) | Conductive oxide material | |
JPH04170320A (en) | Production of oxide superconducting material | |
JP2004155618A (en) | Oxide superconductive member and its manufacturing process |