JPH03218908A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH03218908A
JPH03218908A JP2015289A JP1528990A JPH03218908A JP H03218908 A JPH03218908 A JP H03218908A JP 2015289 A JP2015289 A JP 2015289A JP 1528990 A JP1528990 A JP 1528990A JP H03218908 A JPH03218908 A JP H03218908A
Authority
JP
Japan
Prior art keywords
substrate
oxide superconductor
film
reactor
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015289A
Other languages
Japanese (ja)
Inventor
Yasuhiro Iijima
康裕 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2015289A priority Critical patent/JPH03218908A/en
Publication of JPH03218908A publication Critical patent/JPH03218908A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the superconductivity by mixing specified raw gases, supplying the mixture around a substrate in a reactor, irradiating the substrate with a short-wave laser beam in the UV region to heat the substrate and forming the film of an oxide superconductor on the substrate. CONSTITUTION:The substrate A is set in the reactor 16, the reactor is evacuated, and the substrate A is heated to <= about 500 deg.C by a heater 18. A carrier gas of Ar, etc., is sent to bubblers 10, 11 and 12 contg. respectively G1 such as a Cu complex, G2 such as a Y complex and G3 such as a Ba complex, the vaporized materials are passed through a communicating pipe 13 and mixed in a mixer 14, and the mixture is blown against the substrate A at the central part of the reactor 16 from a feed pipe 15. A short-wave laser beam in the UV region such as an excimer laser beam is emitted from a light emitting device 21 and deflected by a prism 20 to irradiate the upper surface of the substrate A on a supporting substrate 17, and the substrate is heated. The raw gases are photolyzed on the surface of the substrate A by the short-wave laser beam in the UV region, activated and subjected to a reaction, and the thin film of the crystallized homogeneous oxide superconductor is obtained.

Description

【発明の詳細な説明】 産業上の{り用分野 こ、つ定明は、酸化物超電導体の膜を作製する方去の改
良に関すらちので、酸化物超電導体の構成・己素−)化
合物を原料とし、紫外域短波長レーザを使用して酸化物
超電導体の膜を作成する装置に関する。
[Detailed Description of the Invention] This field of industrial application is concerned with the improvement of the process for producing oxide superconductor films, and therefore the structure of oxide superconductors and the composition of oxide superconductors. The present invention relates to an apparatus for creating an oxide superconductor film using a compound as a raw material and using a short wavelength laser in the ultraviolet region.

従宋Q)技術 従来から、酸化物超電導体の膜を作製する方法に採用さ
れてきた方法として、スパソタリング法、真空蒸着法、
化学気相蒸着法(C V D法)などが知られているが
、これらの方法では、いずれも基材を500〜700℃
に加熱することによって結晶化した膜を作製することが
できるものであった。
Cong Song Q) Technology Traditionally, the methods used to produce oxide superconductor films include the spa sotering method, vacuum evaporation method,
Chemical vapor deposition methods (CVD methods) are known, but in all of these methods, the substrate is heated to 500 to 700°C.
It was possible to produce a crystallized film by heating to .

「発明が解決しようとする課題」 ところが、シリコンウエハや金属基材上にこの種の酸化
物超電導体の膜を作製する場合、基材を500〜700
℃の高;益に長時間加熱すると、基材と酸化物超電導体
の膜との間に相互拡散反応が生じ、基材構成元索の一部
が酸化物超電導体の膜の内部に拡散するか、酸化物超電
導体の膜の構成元素の一部が基材側に拡散するなとの相
互拡散反応か進行し、加熱後に得らメtた膜の超電導特
性が劣化する問題かあっf二。
``Problems to be Solved by the Invention'' However, when producing a film of this type of oxide superconductor on a silicon wafer or metal substrate, the substrate must be
High temperature: When heated for a long time, a mutual diffusion reaction occurs between the base material and the oxide superconductor film, and a part of the base material fibers diffuses into the oxide superconductor film. Or is it a problem that some of the constituent elements of the oxide superconductor film diffuse into the base material, resulting in an interdiffusion reaction that progresses and deteriorates the superconducting properties of the film obtained after heating? .

まf二、前記相互拡散反応の問題を解消する目的で基材
と酸化物超電導体の膜との間に、拡散防止用の中間層を
介在させることか行ナメつれているが、基材と酸化物超
電導体の膜と○間に適当な中間層を介挿しても、成膜時
に500〜700℃もの高温に長時間加熱されることが
あると、基材と酸化物超電導体の膜との間に相互拡散反
応が生じる結果、酸化物超電導体の膜の組成かくずれ、
超電導特性が劣化する傾向があった。
Second, in order to solve the problem of the mutual diffusion reaction, it has been suggested that an intermediate layer for diffusion prevention be interposed between the base material and the oxide superconductor film. Even if an appropriate intermediate layer is inserted between the oxide superconductor film and ○, if the film is heated to a high temperature of 500 to 700°C for a long time during film formation, the substrate and oxide superconductor film may As a result of the interdiffusion reaction occurring during
Superconducting properties tended to deteriorate.

そこで、このような相互拡散反応の問題を解消すろ目的
で、得られる酸化物超電導体の膜を可能な限り厚く形成
し、相互拡散により影響を受ける部分が多少生しても膜
全体の超電導特性か劣化しないようにすること、あるい
は、成膜速度を速くして高温に加熱さ4−,ろ時間を短
縮し、相互拡散反応を抑えるなどの手段が講しられてい
るが、厚い膜を形成したり、成膜速度を速くすると、膜
質が低下し、超電導特性の優秀な均一な膜が得られない
問題かあった。
Therefore, in order to solve the problem of such interdiffusion reactions, the obtained oxide superconductor film is formed as thick as possible, and even if some parts are affected by interdiffusion, the superconducting properties of the entire film are maintained. Measures have been taken to prevent the film from deteriorating, or to speed up the film formation rate, shorten the filtration time, and suppress interdiffusion reactions. However, if the film formation rate is increased, the film quality deteriorates and a uniform film with excellent superconducting properties cannot be obtained.

本発明は前記課題を解決するためになされたものて、基
材を500゜C以下の温度に加熱することてら良質な酸
化物超電導体の膜を形成することができる酸化物超電導
体の製造方法の提供を目的とする。
The present invention has been made to solve the above-mentioned problems, and provides a method for producing an oxide superconductor in which a high-quality oxide superconductor film can be formed by heating a base material to a temperature of 500°C or less. The purpose is to provide.

「課題を解決するための手段づ 本発明は前記課題を解決するために、酸化物超電導体を
構成する各元素の化合物から個々に発生させた原料ガス
を混合し、混合ガスをリアクタの内部の基材周囲に導く
とともに、基材をエキノマレーザで加熱しつつ基材上に
酸化物超電導体の膜を形成するものである。
``Means for Solving the Problems'' In order to solve the above problems, the present invention mixes raw material gases individually generated from compounds of each element constituting an oxide superconductor, and the mixed gas is poured into a reactor. A film of oxide superconductor is formed on the base material while being guided around the base material and heating the base material with an echinoma laser.

「作用」 エキノマレーザなどの紫外域短波長レーザによって基材
を加熱することで基材の上で活性化された原料ガスの混
合ガスが反応する結果、結晶化された酸化物超電導体の
膜が生成する。紫外域短波長レーザによって混合ガスを
基材上面において活性化するので、500゜C以下の低
温に加熱しながら成膜する場合であっても、結晶化され
た均質な良質の酸化物超電導体の膜が生成する。
"Operation" A mixture of raw material gases activated on the substrate by heating it with an ultraviolet short wavelength laser such as an echinoma laser reacts, resulting in the formation of a crystallized oxide superconductor film. do. Since the mixed gas is activated on the top surface of the substrate using a short wavelength laser in the ultraviolet region, even when the film is formed while being heated to a low temperature of 500°C or less, it is possible to form a crystallized, homogeneous, and high-quality oxide superconductor. A film is formed.

こ実旌例」 第1図は、本発明の一実施例を示すしので、図中符号1
0.l1.12は、原料を気化するためのバブラを示し
ていろ。これらのハブラ1011l2の内部には酸化物
超電導体製造用の原料01G ? , G 3が収納さ
れている。
FIG. 1 shows an embodiment of the present invention, and the reference numeral 1 in the figure shows an embodiment of the present invention.
0. 11.12 indicates the bubbler for vaporizing the raw material. Inside these hublers 1011l2 is raw material 01G for producing oxide superconductors. , G3 is stored.

前記原料G + . G − , G sは、各々酸化
物超電導体を構成する元素の化合物であって、Y −B
 a−C uO系の酸化物超電導体を製造する場合、原
料G,としてCuの気相源、原料G2としてYの気相源
、原料G3としてBaの気相源を用いる。
The raw material G + . G − and G s are each a compound of elements constituting the oxide superconductor, and Y −B
When producing an a-CuO-based oxide superconductor, a Cu gas phase source is used as the raw material G, a Y gas phase source is used as the raw material G2, and a Ba gas phase source is used as the raw material G3.

より具体的には各気相源として、前記各元素のアセチル
アセトノ化合物、ヘキサフルオロアセチルアセトン化合
物などのノケトン化合物、ノクロペンタノエニル化合物
などの粉末を使用する。また、BaソースとしてBa−
ビス−2.2,6,6テトラメチル−3,5−ヘプタン
ノオナート「略称B a(D P M)2JBa−ヒス
−1.1.l,2.2−ペンタフル才ロー6.6−ジメ
ヂル−3.5−ヘブタンノオン:略称B a(P P 
M )2j、Ba−ビス−1.1.1.5,5.5−ヘ
キサフル才ロー24−ヘプタンノオンこ略祢B a(H
 F A LJなとのβ−ノケトノキレート錯体なとか
使用される。なお、この実施例の装置にあっては、ハブ
ラ10にCuの錯体を収納し、バブラIIにYの錯体を
収納し、ハブラl2にBaの錯体を収納している。
More specifically, powders of acetylacetono compounds, noketone compounds such as hexafluoroacetylacetone compounds, noclopentanoenyl compounds, etc. of each of the above-mentioned elements are used as the gas phase sources. In addition, as a Ba source, Ba-
Bis-2,2,6,6-tetramethyl-3,5-heptaneonate “Abbreviation: Ba(DPM)2JBa-His-1.1.l,2.2-pentafluoro6.6-dimedyl -3.5-Hebutanone: Abbreviation B a (P P
M ) 2j, Ba-bis-1.1.1.5,5.5-hexaful 24-heptaneone.
A β-noketonochlate complex with FALJ is used. In the apparatus of this embodiment, a Cu complex is housed in the bubbler 10, a Y complex is housed in the bubbler II, and a Ba complex is housed in the bubbler 12.

また、各バブラ10,11.12には、キャリアガスの
供給管1 0a.,1 1 a,1 2aが接続されて
いる。なお、各バブラ10,11.12に導入するキャ
リアガスはArガスなどの不活性ガスあるいは不活性ガ
スにO,ガスを混合したものなどが好適に用いられる。
Further, each bubbler 10, 11.12 has a carrier gas supply pipe 10a. , 1 1 a, and 1 2 a are connected. The carrier gas introduced into each bubbler 10, 11, 12 is preferably an inert gas such as Ar gas, or a mixture of inert gas and O gas.

また、各バブラ10.11.12は連通管l3によって
混合器14に接続され、混合器l4は供給管l5によっ
てリアクタl6に接続されるとともに、供給管l5は、
リアクタl6の側壁を貫通してリアクタl6の中央底部
側に向けられている。
Each bubbler 10.11.12 is also connected to a mixer 14 by a communication pipe l3, the mixer l4 is connected to a reactor l6 by a supply pipe l5, and the supply pipe l5 is
It passes through the side wall of reactor l6 and is directed toward the center bottom side of reactor l6.

而記混合器l4は各バブラ10.+1  12から発生
されfこ原料ガスを混合してリアクタ16に送るもので
ある。リアクタl6は、内部を真空排気可能な容器状の
もので、中央部には支持基盤17が設置され、この支持
基盤l7には、加軌ヒータl8が付設されていて、支持
基盤l7の上面に設置されfこ基材Aを加熱てきるよう
になっている。
The mixer 14 is connected to each bubbler 10. +1 12 and feedstock gases are mixed and sent to the reactor 16. The reactor l6 is a container-shaped container whose inside can be evacuated, and a support base 17 is installed in the center, and a heating heater l8 is attached to the support base l7. It is installed so that it can heat the base material A.

また、リアクタ!6に接続された供給W15の先端の供
給口15aは支持基盤l7の上面に近接されている。
Also, reactor! The supply port 15a at the tip of the supply W15 connected to the supply W15 is located close to the upper surface of the support base I7.

また、リアクタ16の側壁には透孔が形成され、この透
孔には、プリズム20が嵌着されるとともに、リアクク
l6の外方には、プリズム20にレーザ光を照射する発
光装置2lが設置されている。
In addition, a through hole is formed in the side wall of the reactor 16, and a prism 20 is fitted into this through hole, and a light emitting device 2l that irradiates the prism 20 with laser light is installed outside the reactor 16. has been done.

曲記プリズムl6は、発光装置2lから照射さJtたエ
キノマレーザのビームを支持基盤l7の上面に照射でき
ろように設置されていろ。なお、前記発光装置21は、
.へrF.KrF,XeClなどのエキノマレーザを照
射する公知のものである。
The writing prism l6 is installed so as to be able to irradiate the upper surface of the support base l7 with the echinoma laser beam irradiated from the light emitting device 2l. Note that the light emitting device 21 is
.. HerF. This is a known method that irradiates with an echinoma laser such as KrF or XeCl.

次に前記構成の裟置を用いて基板A上に酸化物#i3i
導体の膜を杉成する場合について説明する。
Next, the oxide #i3i is deposited on the substrate A using the apparatus having the above configuration.
The case of forming a conductor film will be explained.

まず、リアクタ16の内部に基板Aをセノトし、ノアタ
タ16の内郎の排気を開始するとともに、加軌装置18
て基盤Aを加鳩する。続いて各バブラ1011,+2に
、それぞれの供給管10a,1la.l2aから各々キ
ャリアガスを送り、バブラ10  1+  12の内部
を加熱する。この操作によってバブラ10.11  1
2の内部では化合物か気化して原料ガスが発生し、各バ
ブラl O,1 1.1 2から連通管13に出された
各原料ガスは混合器l4で混合されるとともに、酸素ガ
スと混合された後に供給管l5の供給015aからりア
クタl6の内部に噴出して基材Aに吹き付けられる。
First, the substrate A is placed inside the reactor 16, and the internal exhaust of the Noatata 16 is started, and the track device 18
and add base A. Subsequently, each bubbler 1011, +2 is connected with a respective supply pipe 10a, 1la. A carrier gas is sent from l2a to heat the inside of the bubbler 10 1+ 12. By this operation Bubbler 10.11 1
In the interior of 2, the compound is vaporized and raw material gas is generated, and each raw material gas discharged from each bubbler 12 to the communication pipe 13 is mixed in mixer 14 and mixed with oxygen gas. After that, it is ejected from the supply 015a of the supply pipe 15 into the actuator 16 and is sprayed onto the base material A.

また、発光装置2lからプリズム20にエキシマレーザ
を照射すると、エキノマレーザはプリズム20によって
光路を折り曲げられて支持基盤l7上の基材Aの上面に
照射される。
Furthermore, when the prism 20 is irradiated with excimer laser from the light emitting device 2l, the optical path of the excimer laser is bent by the prism 20 and is irradiated onto the upper surface of the base material A on the support base 17.

以上のように基材Aにエキシマレーザを照射するとと乙
に、加軌ヒータl8の熱によって基材Aを加熱し、基材
Aを500℃に加熱する。基材Aが500゜C程度に加
熱された状態で基材Aの上面では、供給口15aから噴
射された原料ガスがエキノマレーザにより光分解され、
活性化されて反応し、結晶化された酸化物超電導体の膜
が生成される。以上のようにエキノマレーザで活性化さ
れた,昆合ガスは、500℃程度の温度であっても有機
金属ガスの分解反応およびY −B a=C u−0の
結晶化反応が十分に進行して基材Aの上面に緻密て均一
なY −B a−C u−0系の酸化物超電導体の膜が
生成する。
When the base material A is irradiated with the excimer laser as described above, the base material A is heated by the heat of the heating heater 18, and the base material A is heated to 500°C. When the base material A is heated to about 500°C, the raw material gas injected from the supply port 15a is photodecomposed by the echinoma laser on the upper surface of the base material A.
It is activated and reacts to produce a crystallized oxide superconductor film. As mentioned above, the decomposition reaction of the organometallic gas and the crystallization reaction of Y-Ba=Cu-0 proceed sufficiently in the combinant gas activated by the echinoma laser even at a temperature of about 500°C. As a result, a dense and uniform Y-B a-C u-0 based oxide superconductor film is formed on the upper surface of the base material A.

なお、基材Aの加熱温度の最低温度は400℃、より好
ましくは460℃に設定し、最高温度は520゜C、よ
り好ましくは500℃に設定する。加熱温度が400℃
以下ではエキノマレーザによる原料ガスの活性化があっ
ても結晶化した膜が得られt、600゜C以」二では膜
と基材との相互拡散反応か問題になるので好ましくない
Note that the lowest heating temperature of the base material A is set to 400°C, more preferably 460°C, and the highest temperature is set to 520°C, more preferably 500°C. Heating temperature is 400℃
Below, even if the raw material gas is activated by an echinoma laser, a crystallized film will not be obtained.If the temperature is higher than 600°C, there will be a problem of interdiffusion reaction between the film and the base material, which is not preferable.

以」二説明しrこように前記構成の装置によれば、リア
クタl6に送る混合ガスをエキシマレーザで活性化し、
500℃以下の基材温度で基材A上に成膜するので、基
材との相互拡散か少なく、欠陥Jつ少ない酸化物超電導
体の膜を製造することができろ。
As explained below, according to the apparatus having the above configuration, the mixed gas sent to the reactor l6 is activated by an excimer laser,
Since the film is formed on the substrate A at a substrate temperature of 500° C. or lower, it is possible to produce an oxide superconductor film with less interdiffusion with the substrate and fewer defects.

なお、この実泡例では、リアクタl6の内部に設けろ基
材として板状の堪材Aを設けたか、基材Aのかわりにテ
ープ状の基材とその繰出装置と巻取装置を設け、テープ
状の基材をリアタタl6の内郎で繰り出し移動させつつ
その上面に蒸着することでテープ状の酸化物超電導体を
製造することができる。
In addition, in this actual foam example, either a plate-shaped durable material A is provided as a base material provided inside the reactor 16, or a tape-shaped base material and its feeding device and winding device are provided instead of the base material A. A tape-shaped oxide superconductor can be manufactured by depositing a tape-shaped base material on its upper surface while moving it in the inner chamber of a rear-tap l6.

「製造例」 第1図に示す構成の装置を用いてY −B a−C u
O系の酸化物超電導体の膜を製造した。
“Manufacturing Example” Y-B a-C u
A film of an O-based oxide superconductor was manufactured.

CuソースにCuのアセチルアセトン化合物、Yのソー
スとしてYのノクロペンタノエニル化合物、Baソース
にB a(H F A )2を用い、キャリアガスとし
てArガスを用いた。
A Cu acetylacetone compound was used as the Cu source, a Y noclopentanoenyl compound was used as the Y source, Ba(HFA)2 was used as the Ba source, and Ar gas was used as the carrier gas.

Cuソースを収納した気化筒の温度を180°Cに、Y
ソースを収納した気化簡の温度を180°Cに、Baソ
ースを収納した気化簡の温度を2000Cにそれぞれ加
熱して気化させ、各原料ガスを発生させた。また、リア
クタの内部を真空引きするとともに、エキノマレーザを
ハステロイ製の基材上に照射するとともに、基材を48
0゜Cに加熱し、基材上に成膜を行っf二。
The temperature of the vaporization cylinder containing the Cu source was set to 180°C, and Y
The temperature of the vaporizer containing the sauce was heated to 180°C, and the temperature of the vaporizer containing the Ba sauce was heated to 2000C, respectively, to vaporize and generate each raw material gas. In addition, the inside of the reactor was evacuated, and the echinoma laser was irradiated onto the Hastelloy base material.
It was heated to 0°C and a film was formed on the base material f2.

得られt二Y −B a−C u−0系の酸化物超電導
体の膜は、厚さlμm、臨界温度88K、臨界電流密度
5 0 0 0 0 A/cm2を示し1二。
The obtained t2 Y-B a-C u-0 based oxide superconductor film had a thickness of 1 μm, a critical temperature of 88 K, and a critical current density of 50000 A/cm2.

「比較例」 比較のために、第1図に示す装置を用い、基材を650
℃で高温加熱し、その他の条件は前記と同等の条件で酸
化物超電導体の膜を形成した。得られた膜は臨界温度7
9K、臨界電流密度ioOA / cm”を示し、本発
明の膜の超電導特性よりも劣っていることが判明した。
"Comparative Example" For comparison, using the apparatus shown in Fig. 1, the substrate was
An oxide superconductor film was formed by heating at a high temperature at .degree. C., and other conditions being the same as above. The resulting film has a critical temperature of 7
9K, and showed a critical current density of ioOA/cm”, which was found to be inferior to the superconducting properties of the film of the present invention.

更に、第1図に示す装置を用い、基材を300℃で低温
加熱し、その他の条件は前記と同等の条件で酸化物超電
導体の膜を形成した。得られた膜は、臨界温度60K、
臨界電流密度O A / am2(液体窒素温度)を示
し、本発明の膜の超電導特性よCOも劣っていることか
判明した。
Furthermore, the substrate was heated at a low temperature of 300° C. using the apparatus shown in FIG. 1, and an oxide superconductor film was formed under the same conditions as above. The obtained film has a critical temperature of 60K,
The film showed a critical current density of OA/am2 (liquid nitrogen temperature), and it was found that the superconducting properties of the film of the present invention were inferior to that of CO as well.

以上の結果から、前記構造の装置を使用することによっ
て.160〜520°Cに基材を加熱することて漫れた
超電導特性を発揮する酸化物超電導体の膜を生成できろ
ことか判明した。
From the above results, by using the device with the above structure. It has been found that it is possible to produce an oxide superconductor film that exhibits extensive superconducting properties by heating the substrate to 160-520°C.

「発明の効果」 以上説明したように本発明は、各バブラから発生させた
原料ガスをリアクタに送り、リアクタ内で加熱された基
材にエキノマレーザなどの紫外域短波長レーザを照射し
て基材上に成膜するので、レーザによって加熱活性化さ
れた原料ガスか基板上で反応して酸化物超電導体の膜が
生成する。また、レーザによって混合ガスが活性化する
ので、基材を従来の加熱温度よりも低い500゜C程度
に加熱することによって結晶化した酸化物超電導体の膜
が生成する。このため、基材と酸化物超電導体の膜との
間に生しる相互拡散反応か少なくなり、酸化物超電導体
の膜の特性劣化が生しないので、特性の良好な酸化物超
電導体の膜が得られる。
"Effects of the Invention" As explained above, the present invention sends the raw material gas generated from each bubbler to the reactor, and irradiates the substrate heated in the reactor with an ultraviolet short wavelength laser such as an echinoma laser. Since the film is formed on the substrate, the raw material gas heated and activated by the laser reacts on the substrate to form an oxide superconductor film. Further, since the mixed gas is activated by the laser, a crystallized oxide superconductor film is generated by heating the base material to about 500° C., which is lower than the conventional heating temperature. Therefore, the mutual diffusion reaction that occurs between the base material and the oxide superconductor film is reduced, and the properties of the oxide superconductor film are not deteriorated, so the oxide superconductor film has good properties. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するために使用する装置の一
例を示す構成図である。 +0.11.12  バブラ、+3一連通管、15・供
給管、l6 リアクタ、l7 ・支持基盤、8−・加熱
ヒータ、20 ・プリズム、21 ・発光装置。
FIG. 1 is a block diagram showing an example of an apparatus used to carry out the method of the present invention. +0.11.12 Bubbler, +3 Continuous pipe, 15. Supply pipe, 16. Reactor, 17. Support base, 8-. Heater, 20. Prism, 21. Light emitting device.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体を構成する各元素の化合物から個々に発
生させた原料ガスを混合し、混合ガスをリアクタの内部
の基材周囲に導くとともに、基材にエキシマレーザ等の
紫外域短波長レーザを照射し、基材をレーザで加熱しつ
つ基材上に酸化物超電導体の膜を形成することを特徴と
する酸化物超電導体の製造方法。
The raw material gases individually generated from the compounds of each element that make up the oxide superconductor are mixed, and the mixed gas is guided around the base material inside the reactor, and the base material is exposed to an ultraviolet short wavelength laser such as an excimer laser. 1. A method for producing an oxide superconductor, which comprises forming an oxide superconductor film on a base material while heating the base material with a laser.
JP2015289A 1990-01-25 1990-01-25 Production of oxide superconductor Pending JPH03218908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015289A JPH03218908A (en) 1990-01-25 1990-01-25 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015289A JPH03218908A (en) 1990-01-25 1990-01-25 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03218908A true JPH03218908A (en) 1991-09-26

Family

ID=11884687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015289A Pending JPH03218908A (en) 1990-01-25 1990-01-25 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03218908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243779A (en) * 1990-02-20 1991-10-30 Fuyuutec Fuaanesu:Kk Device for producing oxide superconducting thin film
US6576302B1 (en) 1999-02-25 2003-06-10 Agency Of Industrial Science And Technology Method for producing a metal oxide and method for forming a minute pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243779A (en) * 1990-02-20 1991-10-30 Fuyuutec Fuaanesu:Kk Device for producing oxide superconducting thin film
JPH07108764B2 (en) * 1990-02-20 1995-11-22 株式会社フューテックファーネス Oxide superconducting thin film manufacturing equipment
US6576302B1 (en) 1999-02-25 2003-06-10 Agency Of Industrial Science And Technology Method for producing a metal oxide and method for forming a minute pattern

Similar Documents

Publication Publication Date Title
Ritala et al. Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition
US6074945A (en) Methods for preparing ruthenium metal films
US6133159A (en) Methods for preparing ruthenium oxide films
EP1333475B1 (en) Method for forming an insulation film and substrate processing apparatus therefore
US6974780B2 (en) Semiconductor processing methods of chemical vapor depositing SiO2 on a substrate
US5866205A (en) Process for titanium nitride deposition using five- and six-coordinate titanium complexes
JPH036224B2 (en)
JPH07201762A (en) Gas feeder for manufacturing semiconductor element
TWI382467B (en) Method of improving initiation layer for low-k dielectric film by digital liquid flow meter
KR20070044492A (en) Direct liquid injection system and method for forming multi-component dielectric films
JPH11297691A (en) Manufacture of thin film consisting of polyatomic oxide and polyatomic nitride
KR100474565B1 (en) Method and apparatus for supplying a source gas
JP4008664B2 (en) Thin film formation method
JP2956693B1 (en) Metal nitride film forming method
KR20020088597A (en) Method and apparatus for forming multiple layers of thin film by using photolysis chemical vapor deposition
JPH06349324A (en) Method for forming ferroelectric thin film
KR100600051B1 (en) Apparatus of atomic layer deposition and method for fabrication of tertiary thin film using the same
JPH03218908A (en) Production of oxide superconductor
JPH06275548A (en) Formation of cvd thin film
JPH11323560A (en) Method and apparatus for film deposition
US5849644A (en) Semiconductor processing methods of chemical vapor depositing SiO2 on a substrate
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JP4212013B2 (en) Dielectric film fabrication method
KR102562274B1 (en) Organometallic precursor compounds
JPH04214867A (en) Method for growing thin film and apparatus therefor