JPH03218907A - Production of oxide superconducting film - Google Patents

Production of oxide superconducting film

Info

Publication number
JPH03218907A
JPH03218907A JP2013076A JP1307690A JPH03218907A JP H03218907 A JPH03218907 A JP H03218907A JP 2013076 A JP2013076 A JP 2013076A JP 1307690 A JP1307690 A JP 1307690A JP H03218907 A JPH03218907 A JP H03218907A
Authority
JP
Japan
Prior art keywords
oxide superconducting
film
superconducting film
powder
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013076A
Other languages
Japanese (ja)
Inventor
Hiroko Higuma
弘子 樋熊
Hidefusa Uchikawa
英興 内川
Mitsunobu Wakata
光延 若田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013076A priority Critical patent/JPH03218907A/en
Publication of JPH03218907A publication Critical patent/JPH03218907A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase the critical current density by applying a kneaded mixture of a crystalline oxide superconducting powder, an org. binder and a solvent on a substrate, pressing and then sintering the mixture. CONSTITUTION:The crystalline oxide superconducting powder of Bi2Sr2Ca2Cu3Ox, etc., is added with about 10-30wt.% of an org. binder such as polyvinyl butyral and terpineol and a solvent such as toluene for adjusting viscosity and thickness, and the mixture is kneaded into a slurry. The slurry is applied on a substrate, dried and then pressed by a hot-plate uniaxial press into a thin film. The thin film is sintered at a specified temp. in the atmosphere and then cooled to obtain an oxide superconducting film having a high critical current density and excellent mechanical strength.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高い臨界電流密度を有する酸化物超電導膜
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an oxide superconducting film having a high critical current density.

[従来の技術] 最近、磁気浮上列車、高エネルギー物理,核磁気共鳴装
置、物性研究用,高速コンピュータなどの分野において
,運転コストの低い超電導コイル,磁気シールド材,高
周波空洞、損失のない導電回路などが望まれている.1
987年になって、臨界温度(Tc)のオンセントが9
0Kを有するY+Ba2Cu30r−xなる酸化物超電
導体が発見され、液体窒素温度(77K)でも超電導性
を示すようになった.これに引続き1988年になって
.Tcのオンセットが120K近いBi−(Sr,Ca
)−Cu−0系酸化物超電導体が発見された.通常、酸
化物超電導厚膜の作製法として、真空プロセス、プラズ
マ溶射、及びスクリーン印刷などがごく最近報告されて
いる.例えば真空プロセスに関しては、刊行物{第27
回セラミックス基礎科学討論会講演要旨集(1989)
P87}に,スクリーン印刷法に関しては、例えば刊行
物{日本セラミックス協会1989年会講演予稿集(1
989)P157}に記載されている。
[Prior Art] Recently, in fields such as magnetic levitation trains, high-energy physics, nuclear magnetic resonance devices, physical property research, and high-speed computers, superconducting coils with low operating costs, magnetic shielding materials, high-frequency cavities, and lossless conductive circuits have been developed. etc. are desired. 1
In 987, the critical temperature (Tc) on cent.
An oxide superconductor called Y+Ba2Cu30r-x with a temperature of 0K was discovered, and it began to exhibit superconductivity even at liquid nitrogen temperatures (77K). This was followed in 1988. Bi-(Sr, Ca) whose Tc onset is close to 120K
)-Cu-0 based oxide superconductor was discovered. Vacuum processing, plasma spraying, and screen printing have recently been reported as methods for producing oxide superconducting thick films. For example, regarding vacuum processes, publication {No. 27
Abstracts of the 2016 Ceramics Basic Science Symposium (1989)
Page 87}, regarding the screen printing method, for example, the publication {Proceedings of the 1989 Conference of the Ceramic Society of Japan (1)
989) P157}.

[発明が解決しようとする課題] 上記の方法のうち真空プロセスにおけるスパッタリング
を例にとれば、配向性が高く,高い臨界電流は得られる
が、膜形成速度が遅く、製造方法が容易でない他、装置
に多額の費用を要するなどの問題がある.これらの欠点
を解消する方法として、プラズマ溶射およびスクリーン
印刷などの塗布方法が盛んに検討されてきた.これらの
方法は、膜形成速度は早くかつ容易に厚膜を形成できる
が、配向性が劣るため高い臨界電流が得にくいなどの課
題があった。
[Problems to be Solved by the Invention] Among the above methods, taking sputtering in a vacuum process as an example, it is possible to obtain high orientation and a high critical current, but the film formation rate is slow and the manufacturing method is not easy. There are problems such as the high cost of equipment. Coating methods such as plasma spraying and screen printing have been actively investigated as ways to overcome these drawbacks. These methods have a fast film formation rate and can easily form a thick film, but have problems such as poor orientation and difficulty in obtaining a high critical current.

この発明はかかる課題を解消するためになされたもので
,従来より高い臨界電流を有し、機械的強度に優れた酸
化物超電導膜を、容易にしかも安定に形成することが可
能な酸化物超電導膜の製造方法を得ることを目的として
いる。
This invention was made to solve this problem, and it is possible to easily and stably form an oxide superconducting film that has a higher critical current than before and has excellent mechanical strength. The aim is to obtain a method for manufacturing membranes.

[課題を解決するための手段] この発明の酸化物超電導膜の製造方法は,結晶性酸化物
超電導粉末,有機バインダおよび溶剤を混練した混練物
を基板に塗布乾燥し、加圧処理を行なった後焼結するも
のである。
[Means for Solving the Problems] The method for producing an oxide superconducting film of the present invention involves applying a kneaded mixture of crystalline oxide superconducting powder, an organic binder, and a solvent onto a substrate, drying it, and subjecting it to pressure treatment. It is post-sintered.

[作用] この発明においては、焼結を行なう前に加圧処理を施す
ことにより、膜のち密化、薄膜化を行なうとともに膜の
密着性を高め、結晶性酸化物超電導粉末の結晶の方位が
揃い、酸化物超電導膜は高い配向性を有し、結果的に臨
界電流密度が向上するものである.また、焼結工程にお
いてもさらに配向性が高められち密化され結果的に機械
的強度も向上する。
[Function] In this invention, by applying pressure treatment before sintering, the film is made denser and thinner, and the adhesion of the film is increased, and the orientation of the crystals of the crystalline oxide superconducting powder is changed. In general, oxide superconducting films have high orientation, resulting in improved critical current density. Further, in the sintering process, the orientation is further improved and the material is densified, resulting in improved mechanical strength.

[実施例] 以下、この発明について、実施例と比較例を挙げて詳細
に説明する。
[Examples] Hereinafter, the present invention will be described in detail by giving examples and comparative examples.

実施例1 酸化物超電導体の目的組成物がBi2Sr2Ca+ C
u20,となるように、出発原料としてBi203.S
rCOa.CaCO3、Cub(純度99.99%,平
均粒径約10μ層》を用い、これらを混合粉砕しφ30
mm高さ5■の円柱状ペレットとした.このものを70
0℃で5時間、引続き880’Cで30時間の仮焼によ
り熱分解及び結晶化を行った.このペレットをらいかい
機にて30分粉砕した.さらに、粉末に対し、ポリビニ
ルブチラール5%,テレビネオール5%および粘度調整
にトルエンを加えらいかい機にて5時間混練しスラリー
を得た.このスラリーを刷毛塗りで、幅5mm,長さ3
0+amのAg基根上に塗布し.50℃で30分乾燥し
30μmの乾燥膜とした.さらに1 20’Cの熱板で
1トン/c■2の一軸プレスを行ない約23μmの膜厚
に成形した.さらに、得られた膜を大気中、865℃で
1時間焼結をした後徐冷して、約18μmのこの発明の
一実施例による酸化物超電導膜とした.得られた酸化物
超電導膜をX線回折により構造分析を行った.このX線
回折パターン図を第1図(a)に示す.図より、(00
n)面の反射によるピークが強く現れており結晶のC軸
配向性の高い酸化物超電導膜が得られている事が判る。
Example 1 The target composition of the oxide superconductor is Bi2Sr2Ca+C
Bi203. as a starting material so that u20. S
rCOa. Using CaCO3 and Cub (purity 99.99%, average particle size approx. 10μ layer), these were mixed and ground to a diameter of φ30.
It was made into a cylindrical pellet with a height of 5 mm. 70 of this thing
Thermal decomposition and crystallization were performed by calcining at 0°C for 5 hours and then at 880'C for 30 hours. The pellets were crushed for 30 minutes using a grinder. Further, to the powder, 5% polyvinyl butyral, 5% televisionneol, and toluene were added to adjust the viscosity and kneaded for 5 hours in a mill to obtain a slurry. Apply this slurry with a brush to a width of 5mm and a length of 3mm.
Apply it on the Ag root at 0+am. It was dried at 50°C for 30 minutes to form a 30 μm dry film. Further, uniaxial pressing of 1 ton/cm2 was performed on a hot plate at 120'C to form a film with a thickness of approximately 23 μm. Further, the obtained film was sintered in the atmosphere at 865° C. for 1 hour and then slowly cooled to obtain an oxide superconducting film of about 18 μm according to an embodiment of the present invention. The structure of the obtained oxide superconducting film was analyzed by X-ray diffraction. This X-ray diffraction pattern is shown in Figure 1(a). From the figure, (00
A strong peak due to the reflection of the n) plane appears, indicating that an oxide superconducting film with high crystal C-axis orientation has been obtained.

また、光学顕微鏡による表面観察を行ったところ、平滑
なち密な膜であることが判った.次に、超電導特性とし
て、抵抗法による零抵抗となる臨界温度(Tc)および
77Kにおける臨界電流密度(Jc)を測定し表に結果
を示す.実施例2 実施例1と同組成のスラリーを同様に得、このスラリー
を刷毛塗りで.Ag基板上に塗布し、50℃で30分乾
燥し30μmの乾燥膜とした.常温にて2トン/cIQ
2の一軸プレスを行ない約26μmの膜厚に成形した.
さらに,得られた膜を大気中、865℃で1時間焼結を
した後徐冷して、22μ票のこの発明の他の実施例によ
る酸化物超電導膜を得た.つぎにX線回折によりこの酸
化物超電導膜の構造分析を行った.このX線回折パター
ン図を第1図(b)に示す.1mより、比較的配向性の
高い酸化物超電導膜が得られている事が判る.次に、超
電導特性として,Tcおよび77KにおけるJcを測定
し,結果を表に示す. 比較例1 実施例1及び2と同様に.Ag基板上に30μmの乾燥
膜を形成した.引続き大気中、865℃で1時間焼結を
した後徐冷して、従来法による29μ蹟の酸化物超電導
膜を得た.この酸化物超電導膜をX線回折により構造分
析した.このX線回折パターン図を第2図(a)に示す
.図より、従来法による酸化物超電導膜は、実施例1お
よび実施例2で得られた物と比べ配向性が劣ることは明
かである.次に、超電導特性として.Tcおよび77K
におけるJcを測定し、結果を表に示す. 比較例2 酸化物超電導体の目的組成物がBi2Sr2Ca+ C
u20,となるように、出発原料としてBi203.S
rCO3.CaCO3、Cub(純度99.99%、平
均粒径約10μm)を用い、これらを混合粉砕しφ30
m園高さsIII層の円柱状ペレットとした.このもの
を700℃で20時間の熱分解を行なって粉末を得た.
この粉末は目的とする超電導の結晶構造には到っていな
い.次に、実施例と同様にスラリーを得て.Ag基板上
に30μmの乾燥膜を形成した.引続き大気中、865
℃で1時間焼結をした後徐冷して、従来法による32μ
mの酸化物超電導膜を得た.得られた酸化物超電導膜を
X線回折により構造分析を行った.このX線回折パター
ン図を第2図(b)に示す。図より、結晶性酸化物超電
導粉末を用いなかった従来法による酸化物超電導膜は、
実施例1および実施例2に比べかなり配向性が劣ること
は明かである.また、膜質も膨れがみられ平滑性にかけ
ていた.次に、超電導特性として.Tcを測定し、結果
を表に示す. 表 上記実施例1および2並びに比較例1および2のTcお
よびJcを示した表より明かなように、実施例1および
2の酸化物超電導膜は高い臨界電流密度を有し、比較例
1の従来法による酸化物超電導膜の臨界電流密度は低く
、比較例2の従来法による酸化物超電導膜は、77Kで
超電導性を示さなかった.なお、結晶構造に異方性のあ
る酸化物超電導体の場合、多結晶体においては超電導電
流が流れ易い方向に結晶配向させることにより高い臨界
電流密度が得られることは公知である.従って以上のよ
うに、この発明の実施例によれば、配向性が高められる
ため真空プロセスと同様な特性を有する酸化物超電導膜
を容易に簡便に製造することが出来たのである。
In addition, when the surface was observed using an optical microscope, it was found to be a smooth and dense film. Next, as the superconducting properties, the critical temperature (Tc) at which zero resistance occurs and the critical current density (Jc) at 77K were measured using the resistance method, and the results are shown in the table. Example 2 A slurry having the same composition as in Example 1 was obtained in the same manner, and this slurry was applied with a brush. It was coated on an Ag substrate and dried at 50°C for 30 minutes to form a 30 μm dry film. 2 tons/cIQ at room temperature
2 uniaxial pressing was performed to form a film with a thickness of approximately 26 μm.
Further, the obtained film was sintered in the air at 865° C. for 1 hour and then slowly cooled to obtain a 22μ-sized oxide superconducting film according to another example of the present invention. Next, we analyzed the structure of this oxide superconducting film using X-ray diffraction. This X-ray diffraction pattern is shown in Figure 1(b). 1 m, it can be seen that an oxide superconducting film with relatively high orientation was obtained. Next, as superconducting properties, Tc and Jc at 77K were measured, and the results are shown in the table. Comparative Example 1 Same as Examples 1 and 2. A 30 μm dry film was formed on an Ag substrate. Subsequently, the material was sintered at 865° C. for 1 hour in the atmosphere and then slowly cooled to obtain a 29 μm thick oxide superconducting film using the conventional method. The structure of this oxide superconducting film was analyzed by X-ray diffraction. This X-ray diffraction pattern is shown in Figure 2(a). From the figure, it is clear that the oxide superconducting film produced by the conventional method has inferior orientation compared to those obtained in Examples 1 and 2. Next, as for the superconducting properties. Tc and 77K
Jc was measured and the results are shown in the table. Comparative Example 2 The target composition of the oxide superconductor is Bi2Sr2Ca+C
Bi203. as a starting material so that u20. S
rCO3. Using CaCO3 and Cub (purity 99.99%, average particle size approximately 10 μm), these were mixed and ground to a diameter of 30 mm.
The pellets were made into cylindrical pellets with a height of m and a layer of sIII. This material was thermally decomposed at 700°C for 20 hours to obtain a powder.
This powder has not achieved the desired superconducting crystal structure. Next, a slurry was obtained in the same manner as in the example. A 30 μm dry film was formed on an Ag substrate. Continued in the atmosphere, 865
After sintering at ℃ for 1 hour, it was slowly cooled to 32μ by the conventional method.
An oxide superconducting film of m was obtained. The structure of the obtained oxide superconducting film was analyzed by X-ray diffraction. This X-ray diffraction pattern is shown in FIG. 2(b). From the figure, the oxide superconducting film made by the conventional method without using crystalline oxide superconducting powder is
It is clear that the orientation is considerably inferior to that of Examples 1 and 2. In addition, the membrane was blistered and less smooth. Next, as for the superconducting properties. Tc was measured and the results are shown in the table. As is clear from the table showing Tc and Jc of Examples 1 and 2 and Comparative Examples 1 and 2 above, the oxide superconducting films of Examples 1 and 2 have high critical current densities, and that of Comparative Example 1. The critical current density of the oxide superconducting film made by the conventional method is low, and the oxide superconducting film made by the conventional method of Comparative Example 2 did not exhibit superconductivity at 77K. In the case of oxide superconductors with anisotropic crystal structure, it is known that a high critical current density can be obtained by orienting the crystals in the direction in which superconducting current flows easily in polycrystalline materials. Therefore, as described above, according to the embodiments of the present invention, it was possible to easily and conveniently produce an oxide superconducting film having characteristics similar to those obtained by a vacuum process due to improved orientation.

この発明に係わる結晶性酸化物超電導体としては、例え
ばBi2Sr2Ca2Cu30x.Bi2Sr2Ca+
 Cu20,およびYBa2Cu307−yなどが挙げ
られ、その置換体も適用出来る. この発明に係わる有機バインダとしては、ポリビニルブ
チラール、ポリビニルアルコール,ジエチレングリコー
ル,ヘプタノール、テレピネオール、ひまし油、なたね
油、メチルセルロース、アクリル酸などの樹脂、高級油
,高級アルコール類など加圧により粉末の滑りをよくす
るもの,乾燥膜の伸びをよくするもの、加熱により乾燥
膜を軟化しうるちのである。
Examples of the crystalline oxide superconductor according to the present invention include Bi2Sr2Ca2Cu30x. Bi2Sr2Ca+
Examples include Cu20, YBa2Cu307-y, and substituted products thereof are also applicable. Examples of organic binders related to this invention include resins such as polyvinyl butyral, polyvinyl alcohol, diethylene glycol, heptanol, terpineol, castor oil, rapeseed oil, methylcellulose, acrylic acid, high-grade oils, high-grade alcohols, etc., which improve the slippage of the powder under pressure. , which improves the elongation of the dry film, and which softens the dry film when heated.

有機バインダの添加量は10wt%から30wt%程度
が望ましく,これよりも少ないと膜の成形性が悪くなり
,多すぎると膜がべたついてプレス時に膜がはがれ易く
なり、また熱分解質分が多くなると膜の密度がかえって
上がりにくくなる. この発明に係わる溶剤としては、有機バインダの均一分
散,粘度調整および膜厚調整のため添加するのであって
、エチルアルコールなどの低級アルコール、トルエン、
キシレンなどのシンナ類、または水など有機バインダを
溶解しうるちのが用いられる.また、この発明に係わる
加圧処理に際して、加圧処理を熱板一軸プレスにより行
うことは、有機バインダが軟化して粉末の滑りをよくす
るため、比較的低圧力でも容易に結晶性酸化物超電導粉
末の結晶の方位が揃い、またクラックを生ずることなく
ち密化されるため好ましい.この利点は,テープ上に塗
布乾燥膜を形成したものをローラーにより加圧と同時に
コイル状に成形することも可能とするものである。熱板
の温度は乾燥した塗布膜を軟化しかつ有機バインダが変
質しない80℃以上180℃以下が望ましいが,この発
明の方法は必ずしもこの範囲内で行う必要はない. この発明に係わる塗布乾燥は、例えばスクリーン印刷、
ドクターブレード法、ディッピング及び刷毛塗りなどで
形成した塗布膜を室温から例えば80℃程度の低温で乾
燥することにより行う.また、上記実施例では、結晶性
酸化物超電導粉末の合成方法として酸化物粉末などから
固相反応により得る方法を示したが、湿式法、溶融法や
水熱合成法により得られた微結晶やウィスカーを用いて
も一層有効である. [発明の効果] 以上説明したように、この発明は結晶性酸化物超電導粉
末,有機バインダおよび溶剤を混練した混練物を基板に
塗布乾燥し,加圧処理を行なった後焼結することにより
、従来より高い臨界電流を有し、機械的強度に優れた酸
化物超電導膜を、容易にしかも安定に形成することが可
能な酸化物超電導膜の製造方法を得ることができる。
The amount of organic binder added is preferably about 10 wt% to 30 wt%; if it is less than this, the formability of the film will be poor, and if it is too much, the film will become sticky and easily peel off during pressing, and there will be a large amount of thermally decomposed substances. In this case, it becomes difficult to increase the density of the film. The solvent used in this invention is added to uniformly disperse the organic binder, adjust the viscosity, and adjust the film thickness, and includes lower alcohols such as ethyl alcohol, toluene,
Thinners such as xylene or materials that dissolve organic binders such as water are used. Furthermore, in the pressure treatment according to the present invention, the pressure treatment is performed using a hot plate uniaxial press, which softens the organic binder and improves the slippage of the powder. This is preferable because the orientation of the powder crystals is aligned and the powder is densified without cracking. This advantage makes it possible to form a coated and dried film on a tape into a coil shape at the same time as applying pressure using a roller. The temperature of the hot plate is preferably 80° C. or higher and 180° C. or lower so as to soften the dried coating film and prevent deterioration of the organic binder, but the method of the present invention does not necessarily have to be carried out within this range. The coating drying process according to the present invention can be performed by, for example, screen printing,
This is done by drying a coating film formed by a doctor blade method, dipping, brush coating, etc. at a low temperature ranging from room temperature to about 80°C. In addition, in the above example, as a method for synthesizing crystalline oxide superconducting powder, a method of obtaining it from oxide powder etc. by a solid phase reaction was shown, but microcrystals obtained by a wet method, a melting method, a hydrothermal synthesis method, etc. It is even more effective to use whiskers. [Effects of the Invention] As explained above, the present invention applies a kneaded mixture of crystalline oxide superconducting powder, an organic binder, and a solvent to a substrate, dries it, pressurizes it, and then sinters it. It is possible to obtain a method for producing an oxide superconducting film that allows easy and stable formation of an oxide superconducting film that has a higher critical current than conventional ones and has excellent mechanical strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)は各々この発明の一実施例お
よび他の実施例による酸化物超電導膜のX線回折パター
ン図、第2図(a)および(b)は各々比較例の製造方
法で得られた酸化物超電導膜のX線回折パターン図であ
る。
FIGS. 1(a) and (b) are X-ray diffraction pattern diagrams of oxide superconducting films according to one embodiment and another embodiment of the present invention, respectively, and FIGS. 2(a) and (b) are diagrams of a comparative example, respectively. FIG. 3 is an X-ray diffraction pattern diagram of an oxide superconducting film obtained by the manufacturing method.

Claims (1)

【特許請求の範囲】[Claims] 結晶性酸化物超電導粉末、有機バインダおよび溶剤を混
練した混練物を基板に塗布乾燥し、加圧処理を行なつた
後焼結する酸化物超電導膜の製造方法。
A method for producing an oxide superconducting film, in which a kneaded mixture of crystalline oxide superconducting powder, an organic binder, and a solvent is coated on a substrate, dried, subjected to pressure treatment, and then sintered.
JP2013076A 1990-01-23 1990-01-23 Production of oxide superconducting film Pending JPH03218907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076A JPH03218907A (en) 1990-01-23 1990-01-23 Production of oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076A JPH03218907A (en) 1990-01-23 1990-01-23 Production of oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH03218907A true JPH03218907A (en) 1991-09-26

Family

ID=11823068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076A Pending JPH03218907A (en) 1990-01-23 1990-01-23 Production of oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH03218907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310597A (en) * 1991-02-15 1992-11-02 American Teleph & Telegr Co <Att> Method of manufacturing article made of metallic body having superconductor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310597A (en) * 1991-02-15 1992-11-02 American Teleph & Telegr Co <Att> Method of manufacturing article made of metallic body having superconductor layer
JP2695561B2 (en) * 1991-02-15 1997-12-24 エイ・ティ・アンド・ティ・コーポレーション Method for manufacturing article made of metal body having superconductor layer

Similar Documents

Publication Publication Date Title
CN107698252B (en) Application of ceramic material as high-temperature stable piezoelectric energy collecting material and preparation method thereof
US11306030B2 (en) Method for preparing graphene-CCTO based ceramic composite dielectric material
CN106915960B (en) Lead-free ceramic material with high energy storage density and energy storage efficiency and preparation method thereof
CN109912304B (en) Bismuth ferrite based ternary solid solution dielectric thin film material and preparation method thereof
CN113716956A (en) Strontium zirconate titanate solid solution modified sodium bismuth titanate-based ceramic material and preparation method thereof
CN110981479B (en) High-breakdown ferroelectric ceramic and preparation method thereof
US5999833A (en) Method for production of superconducting oxide tape and superconducting oxide tape produced thereby
CN109650875B (en) Giant dielectric calcium copper titanate composite ceramic material and preparation method and application thereof
CN111072065A (en) (111) oriented strontium titanate template material and preparation method thereof
Bhaskar et al. Low-temperature crystallization of sol–gel-derived lead zirconate titanate thin films using 2.45 GHz microwaves
Yao et al. Barium titanate glass–ceramic thin films for integrated high-dielectric media
Wang et al. Properties of spark plasma sintered pseudocubic BiFeO3–BaTiO3 ceramics
JPH03218907A (en) Production of oxide superconducting film
Zheng et al. The structure and properties of Bi-layered piezoelectric ceramics Bi4 (Ca, Sr) Ti4O15
CN108069713A (en) A kind of high energy storage density ST-NBT-BT ceramic materials and preparation method thereof
CN112723877B (en) Ceramic-metal lead-free piezoelectric composite material with micron inner crystal structure and preparation method thereof
Kotov et al. Langmuir-Blodgett films prepared from ferroelectric lead zirconium titanate particles
Bel-Hadj-Tahar et al. Microstructural and electrical properties of nanostructured lead zirconate titanate composite thick films processed for MEMS applications via hybrid sol–gel approach
Teowee et al. Dielectric and ferroelectric properties of sol-gel derived BiFeO3 films
Paik et al. Sol-gel fabrication of samarium and manganese modified lead titanate thin films and ceramics
CN115872735B (en) Zirconium tin hafnium lanthanum lead acid ceramic, preparation method and energy storage application thereof
Chen et al. The Effect of α-Al2O3 Composite on Energy Storage Characteristics of the Orthogonal Phase PLZST Antiferroelectric Ceramics
Rao et al. New dielectric materials based on pyrochlore-type oxides-Ca 3 RE 3 Ti 7 Ta 2 O 26.5 (RE= Pr, Sm, Gd, Dy or Y): Structure, FT-IR spectra, microstructure and dielectric properties
CN112028624B (en) BNT-based energy storage ceramic material and preparation method and application thereof
Kumar et al. Effect of heat treatment on the grain boundary of lead titanate (PbTiO3)