JPH03218744A - Binocular microscope for surgical operation - Google Patents

Binocular microscope for surgical operation

Info

Publication number
JPH03218744A
JPH03218744A JP2012376A JP1237690A JPH03218744A JP H03218744 A JPH03218744 A JP H03218744A JP 2012376 A JP2012376 A JP 2012376A JP 1237690 A JP1237690 A JP 1237690A JP H03218744 A JPH03218744 A JP H03218744A
Authority
JP
Japan
Prior art keywords
image
optical axis
binocular microscope
objective
objective optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012376A
Other languages
Japanese (ja)
Other versions
JP2983236B2 (en
Inventor
Katsuhiko Kobayashi
克彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2012376A priority Critical patent/JP2983236B2/en
Publication of JPH03218744A publication Critical patent/JPH03218744A/en
Application granted granted Critical
Publication of JP2983236B2 publication Critical patent/JP2983236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To receive the image of an object observed from the front by providing an image receiving means on an objective optical axis. CONSTITUTION:In zoom optical systems 22, 23, its eyepiece optical axes 25, 26 are parallel to an objective optical axis 21, and also, offset against the objective optical axis 21. On a reflecting optical axis 32 of a beam splitter 24, an image forming lens 33 is provided, and in an image forming position of this image forming lens 33, an image pickup tube 34 being an image receiving means is provided. The image receiving surface 34' of the image pickup tube 34, and the optical axis of the image forming lens 33 conform with the objective optical axis 21 through the reflecting surface 31. In such a state, a binocular microscope for surgical operation or an object is moved so that the focus is adjusted, and by moving relatively the whole binocular microscope for surgical operation against the object so that the center of an image is positioned in an intersection of a scale image, the alignment adjustment is executed. In such a way, an image of the object of a natural shape can be displayed as an image.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、対物レンズに臨む一対の接眼光学系の接眼光
軸がその対物レンズの対物光軸に対して平行にかつこの
対物光軸に対してオフセットして配置され、その一対の
接眼光学系を覗いて対象物を立体的に観察するようにし
た手術用双眼顕微鏡の改良に関する. (従来の技術) 従来から、手術用双眼顕微鏡には、第7図、第8図に示
すように、対物レンズ1に臨む一対の接眼光学系として
のズーム光学系2、3の各接眼光軸4、5を対物レンズ
1の対物光軸6に対して平行にかつオフセットして配置
し、その一対の接眼光学系としての接眼レンズ系7、8
を覗いて対象物(図示を略す)を立体的に観察するよう
にしたものが知られている。この種の手術用双眼顕微鏡
では、通常、その一方のズーム光学系3の接眼光軸5上
に反射部材としてのビームスブリツタ9を設け、そのビ
ームスブリツタ9の反射光軸10上に受像手段としての
撮像管11を設け、図示を略す対象物を撮像することが
できるようになっている.なお、12はリレーレンズで
ある.(発明が解決しようとする課題) ところが、この従来の手術用双眼顕微鏡では、対物レン
ズ1の対物光軸6から外れた斜め方向から観察した対象
物の像を撮像管11に受像する構成であるので、この撮
像管11により受像した対象物の像をモニターテレビに
映し出した際に不自然な形となり、手術用双眼顕微鏡を
角膜手術等に用い、そのモニターテレビに映し出された
対象物としての角膜切開口の寸法測定(直径の測定)等
を行う場合に、正確な寸法測定を行うことができない不
都合があった. そこで、本発明の目的は、正面から観察した対象物の像
を受像することのできる手術用双眼顕微鏡を提供するこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is characterized in that the eyepiece optical axes of a pair of eyepiece optical systems facing an objective lens are parallel to and parallel to the objective optical axis of the objective lens. This paper relates to an improvement in a surgical binocular microscope that is arranged offset from the eyepiece and allows three-dimensional observation of an object by looking through a pair of eyepiece optical systems. (Prior Art) Conventionally, as shown in FIGS. 7 and 8, surgical binocular microscopes have been equipped with eyepiece optical axes of zoom optical systems 2 and 3 as a pair of eyepiece optical systems facing an objective lens 1. 4 and 5 are arranged parallel to and offset from the objective optical axis 6 of the objective lens 1, and the eyepiece systems 7 and 8 serve as a pair of eyepiece optical systems.
A device is known in which an object (not shown) can be observed three-dimensionally by looking into it. In this type of surgical binocular microscope, a beam splitter 9 as a reflecting member is usually provided on the eyepiece optical axis 5 of one of the zoom optical systems 3, and an image receiving means is provided on the reflecting optical axis 10 of the beam splitter 9. An image pickup tube 11 is provided so that an object (not shown) can be imaged. Note that 12 is a relay lens. (Problem to be Solved by the Invention) However, in this conventional surgical binocular microscope, the image pickup tube 11 receives an image of the object observed from an oblique direction away from the objective optical axis 6 of the objective lens 1. Therefore, when the image of the object received by the image pickup tube 11 is displayed on a monitor TV, it will have an unnatural shape. When measuring the dimensions of the incision (diameter measurement), etc., there was an inconvenience that accurate measurements could not be made. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a surgical binocular microscope that can receive an image of an object observed from the front.

(課題を達成するための手段) 本発明の請求項1に記載の手術用双眼顕微鏡は、上記の
課題を解決するため、対物光軸上に受像手段を設ける構
成とした. 本発明の請求項2に記載の手術用双眼顕微鏡は、上記の
課題を解決するため、対物光軸上に反射部材を設け、そ
の反射光軸上に受像手段を設ける構成とした. (作 用) 本発明に係わる手術用双眼顕微鏡によれば、対物光軸上
又は反射光軸上に受像手段が設けられているので、真正
面から観察した対象物の像を受像できる. (実施例) 以下に、本発明に係わる手術用双眼顕微鏡の実施例を図
面を参照しつつ説明する. 第1図〜第5図は本発明に係わる手術用双眼顕微鏡の第
1実施例を示し、その第1図Aにおいて、20は対物レ
ンズ、21はその対物レンズ20の対物光軸である。そ
の対物レンズ20には、第1図Bに示すように一対の接
眼光学系の一部を構成するズーム光学系22、23が反
射部材としてのビームスプリッタ24を介して設けられ
ている。
(Means for Achieving the Object) In order to solve the above-mentioned problems, the surgical binocular microscope according to claim 1 of the present invention has a structure in which an image receiving means is provided on the objective optical axis. In order to solve the above problem, the surgical binocular microscope according to claim 2 of the present invention has a configuration in which a reflecting member is provided on the objective optical axis and an image receiving means is provided on the reflecting optical axis. (Function) According to the surgical binocular microscope according to the present invention, since the image receiving means is provided on the objective optical axis or the reflection optical axis, it is possible to receive an image of the object observed from directly in front. (Example) Hereinafter, an example of the surgical binocular microscope according to the present invention will be described with reference to the drawings. 1 to 5 show a first embodiment of a surgical binocular microscope according to the present invention. In FIG. 1A, 20 is an objective lens, and 21 is an objective optical axis of the objective lens 20. In FIG. As shown in FIG. 1B, the objective lens 20 is provided with zoom optical systems 22 and 23, which form part of a pair of eyepiece optical systems, via a beam splitter 24 as a reflecting member.

ズーム光学系22、23は図示を略す対象物の像を拡大
縮小するためのものである.そのズーム光学系22、2
3は、第1図B1 第2図に示すように、その接眼光軸
25、26が対物光軸21に対して平行でありかつ対物
光軸21に対してオフセットされている。なお、反射部
材としてはビームスブリッタ24の代わりにハーフミラ
ーを用いることもでぎる.また、第1図Bに破線で示す
ように、ズーム光学系22、23の光路の間に、その光
路を避けて対物光軸21上に反射部材としての全反射ミ
ラー32′を設ければ、光量損失を避けることができる
The zoom optical systems 22 and 23 are for enlarging or reducing the image of an object (not shown). The zoom optical system 22, 2
3, as shown in FIG. 1 B1 and FIG. 2, the eyepiece optical axes 25 and 26 are parallel to the objective optical axis 21 and offset with respect to the objective optical axis 21. Note that a half mirror may be used instead of the beam splitter 24 as the reflecting member. Furthermore, as shown by the broken line in FIG. 1B, if a total reflection mirror 32' is provided as a reflecting member on the objective optical axis 21 between the optical paths of the zoom optical systems 22 and 23, avoiding that optical path, Light loss can be avoided.

そのズーム光学系22、23は反射部材27、28を介
して接眼レンズ系29、30に光学的に接続され、その
一対の接眠レンズ系29、30を覗いて対象物、たとえ
ば、手術部位としての角膜を含む前眼部を立体的に観察
できるようなっている。
The zoom optical systems 22 and 23 are optically connected to eyepiece lens systems 29 and 30 via reflective members 27 and 28, and the pair of eyepiece lens systems 29 and 30 are used to look at objects, such as a surgical site. The anterior segment of the eye, including the cornea, can be observed three-dimensionally.

ビームスブリッタ24は、ここでは、ズーム光学系22
、23と対物レンズ20との間に位置している.このビ
ームスブリッタ24は対物レンズ20に矢印P方向から
入射した光の一部をズーム光学系22、23に向かって
透過し、残りの光をその反斜面31により矢印Q方向に
反射する.そのビームスブリッタ24の反射光軸32上
には結像レンズ33が設けられ、この結像レンズ33の
結像位置に受像手段としての撮像管34が設けられてい
る。この撮像管34としては、たとえば、CODカメラ
を用いる。撮像管34の受像面34結像レンズ33の光
軸は反射面31を介して対物光軸21と合致している. 撮像管34のビデオ出力は、第3図に示すようにフレー
ムメモリ35に入力されている.フレームメモリ35に
は対象物の像が画像情報として記録される。フレームメ
モリ35はコンピュータ36により入出力制御される。
The beam splitter 24 here includes the zoom optical system 22
, 23 and the objective lens 20. This beam splitter 24 transmits a part of the light incident on the objective lens 20 in the direction of arrow P toward the zoom optical systems 22 and 23, and reflects the remaining light in the direction of arrow Q by its reverse slope 31. An imaging lens 33 is provided on the reflection optical axis 32 of the beam splitter 24, and an imaging tube 34 as an image receiving means is provided at the imaging position of the imaging lens 33. As this image pickup tube 34, for example, a COD camera is used. The optical axis of the image receiving surface 34 of the image pickup tube 34 and the imaging lens 33 coincide with the objective optical axis 21 via the reflecting surface 31. The video output from the image pickup tube 34 is input to a frame memory 35 as shown in FIG. An image of the object is recorded in the frame memory 35 as image information. The frame memory 35 is input/output controlled by a computer 36.

コンピュータ36はフレームメモリ35に記憶された画
像情報に基づき対象物の像を解析する機能、グラフィッ
クジエネレータ37を制御する機能を有する.なお、コ
ンピュータ36には入出力制御信号が外部から入出力さ
れる. フレームメモリ35とグラフィックジェネレタ37とは
ビデオ信号合成器38を介してモニターテレビ39に#
続されている.ここに、フレームメモリ35、コンピュ
ータ36、グラフィックジェネレータ37、ビデオ信号
合成器38、モニターテレビ39はビデオ信号処理装置
BPを構成している. グラフィックジエネレータ37はコンピュータ36に基
づき各種のスケール像、レチクル像を生成する機能を果
たす。たとえば、モニターテレビ39には、第4図に示
すように、対象物としての前眼部の画像40とスケール
像41とが重ねて表示される.このモニターテレビ39
を観察しつつピント調整、アライメント調整及び各種の
計測を行うことができるもので、たとえば、第5図に示
すように、画像40のピントがずれている場合でかつス
ケール像41に対して画像40の位置関係がずれていた
場合には、そのピントが合うように手術用双眼顕微鏡あ
るいは対象物を移動させる.そして、次に、スケール像
41の交点42に画像40の中心が位置するように、手
術用双眼顕微鏡全体を対象物に対して相対的に移動させ
てアライメント調整する.なお、その第4m,#J5図
において、43は瞳孔径を示している. この実施例によれば、真正面から観察した対象物の像を
受像できるので、自然な形の対象物の像を画像表示する
ことができ、たとえば、瞳孔径43の寸法測定を正確に
測定できることになる.第6図は本発明に係わる手術用
双眼顕微鏡を角膜レーザー手術装置に適用した実施例を
示すもので、この図において、44は手術用双眼顕微鏡
、45は角膜切開用レーザー光学系、46は手術ステー
ジ、47は患者、48は対象物としての手術対象眼であ
る.手術用レーザー光はビームスプリッタ49を介して
手術対象眼48に照射され、手術対象眼48はその手術
用レーザー光によって円形状に切開されるもので、ビデ
オ信号処理装置BPの解析結果に基づきステージ46が
x,  y,  z方向に駆動される.50はステージ
コントローラである.この実施例の場合には、たとえば
、対象物の像のピントがずれている場合には、ステージ
46が2方向に駆動され、アライメントがずれている場
合には、ステージ46がX,  Y方向に駆動される.
また、特に眼科の手術の場合、患者に麻酔を掛けて頭部
を固定しても、呼吸等の影響により眼の動き等を通常除
去できないので、手術しにくい面があるが、本実施例に
よれば、手術対象部位を自動追尾できる. 以上、実施例について説明したが、本発明はこれに限ら
ず以下のものを含むものである.■実施例では、撮像管
11により得られたビデオ出力を一旦フレームメモリー
35に記憶させてテレビモニター39に表示させる構成
としたが、ビデオ出力を直接テレビモニター39に入力
させて対象物の像を画像表示することもできる. ■実施例では、対物光軸21上にビームスブリッタ24
を設けてその反射光軸32上に撮像管34を設けたが、
対物光軸21上そのものであってズーム光学系22、2
3との間に受像手段としての撮像管34を設けてもよい
. さらに、ズーム光学系22、23の間に撮像管用のズー
ム光学系を新たに設け、その後方に撮像管34を設けて
、ズーム光学系22、23にその撮像管用のズーム光学
系を連動させる構成とすることもできる. ■実施例では、ビームスブリッタ24をズーム光学系2
2、23が設けられている側に設ける構成としたが、対
物レンズ20を境にズーム光学系22、23が設けられ
ている側と反対側にビームスブリッタ24を設けてもよ
い. ■実施例では、対物光軸21と反射光軸32とが垂直の
関係であるが、これに限るものではない.(効果) 本発明に係わる手術用双眼顕微鏡は、以上説明したよう
に構成したので、正面から観察した対象物の像を受像す
ることができるという効果を奏する。
The computer 36 has a function of analyzing the image of the object based on the image information stored in the frame memory 35 and a function of controlling the graphic generator 37. Note that input/output control signals are input and output from the outside to the computer 36. The frame memory 35 and the graphic generator 37 are connected to a monitor television 39 via a video signal synthesizer 38.
It is being continued. Here, the frame memory 35, computer 36, graphic generator 37, video signal synthesizer 38, and monitor television 39 constitute a video signal processing device BP. The graphic generator 37 functions to generate various scale images and reticle images based on the computer 36. For example, as shown in FIG. 4, an image 40 of the anterior segment as a target object and a scale image 41 are displayed on the monitor television 39 in an overlapping manner. This monitor TV 39
For example, as shown in FIG. 5, when the image 40 is out of focus and the image 40 is out of focus with respect to the scale image 41. If the positional relationship between the two objects is out of alignment, move the surgical binocular microscope or the object so that it can be brought into focus. Next, alignment is adjusted by moving the entire surgical binocular microscope relative to the object so that the center of the image 40 is located at the intersection 42 of the scale image 41. In addition, in Figure 4m, #J5, 43 indicates the pupil diameter. According to this embodiment, since it is possible to receive an image of the object observed from directly in front, it is possible to display the image of the object in its natural shape, and for example, it is possible to accurately measure the size of the pupil diameter 43. Become. FIG. 6 shows an embodiment in which the surgical binocular microscope according to the present invention is applied to a corneal laser surgery device. In this figure, 44 is a surgical binocular microscope, 45 is a laser optical system for corneal incision, and 46 is a corneal laser surgery device. The stage, 47 is a patient, and 48 is an eye to be operated as an object. The surgical laser beam is irradiated onto the eye 48 to be operated on via the beam splitter 49, and the eye 48 to be operated on is incised into a circular shape by the surgical laser beam. 46 is driven in the x, y, and z directions. 50 is a stage controller. In this embodiment, for example, if the image of the object is out of focus, the stage 46 is driven in two directions, and if the image is out of alignment, the stage 46 is driven in the X and Y directions. Driven.
In addition, especially in the case of ophthalmological surgery, even if the patient is anesthetized and the head is fixed, it is usually not possible to eliminate eye movement due to the effects of breathing, etc., which makes the surgery difficult. According to this method, the surgical target area can be automatically tracked. Although the embodiments have been described above, the present invention is not limited thereto and includes the following. - In the embodiment, the video output obtained by the image pickup tube 11 is temporarily stored in the frame memory 35 and then displayed on the television monitor 39. However, the video output is input directly to the television monitor 39 to display the image of the object. Images can also be displayed. ■In the embodiment, a beam splitter 24 is placed on the objective optical axis 21.
was provided, and an image pickup tube 34 was provided on its reflection optical axis 32.
The zoom optical system 22, 2 is directly on the objective optical axis 21.
An image pickup tube 34 as an image receiving means may be provided between the camera and the camera. Furthermore, a zoom optical system for an image pickup tube is newly provided between the zoom optical systems 22 and 23, an image pickup tube 34 is provided behind it, and the zoom optical system for the image pickup tube is linked to the zoom optical systems 22 and 23. It is also possible to do this. ■In the embodiment, the beam splitter 24 is connected to the zoom optical system 2.
Although the beam splitter 24 is provided on the side where the zoom optical systems 22 and 23 are provided, the beam splitter 24 may be provided on the opposite side of the objective lens 20 from the side where the zoom optical systems 22 and 23 are provided. (2) In the embodiment, the objective optical axis 21 and the reflection optical axis 32 are perpendicular to each other, but the present invention is not limited to this. (Effects) Since the surgical binocular microscope according to the present invention is configured as described above, it has the effect of being able to receive an image of an object observed from the front.

【図面の簡単な説明】[Brief explanation of drawings]

III1図〜第5図は本発明に係わる手術用双眼顕微鏡
の第1実施例を示し、 第1図Aはその手術用双眼顕微鏡の光学系を側面から目
視した図、 第1図Bはその手術用双眼顕微鏡の光学系を正面から目
視した図、 第2図はその第1図に示す対物レンズを矢印X方向から
目視した図、 第3図はその手術用双眼顕微鏡の画像処理を行うための
ブロック図、 第4図、第5図はその手術用双眼顕微鏡の使用状態を説
明するための図、 第6図はその手術用双眼顕微鏡の第2実施例を示す図、 第7図、第8図は従来の手術用双眼顕微鏡の光学図を示
し、 第7図は正面から目視した場合の光学図、第8図は第7
図に示す対物レンズを矢印Y方向から目視した図、 である. 20・・・対物レンズ、21・・・対物光軸22、23
・・・ズーム光学系(一対の接限光学系)24・・・ビ
ームスプリッタ (反射部材) 25、26・・・接眼光軸 32・・・反射光軸、34・・・撮像管(受像手段) 第 3 図 第4 図 第 5 図 41 37
Figures III1 to 5 show a first embodiment of the surgical binocular microscope according to the present invention, Figure 1A is a side view of the optical system of the surgical binocular microscope, and Figure 1B is a view of the surgical binocular microscope. Figure 2 is a diagram of the optical system of the surgical binocular microscope viewed from the front, Figure 2 is a diagram of the objective lens shown in Figure 1 viewed from the direction of arrow A block diagram, FIGS. 4 and 5 are diagrams for explaining the usage state of the surgical binocular microscope, FIG. 6 is a diagram showing a second embodiment of the surgical binocular microscope, and FIGS. 7 and 8. The figure shows an optical diagram of a conventional surgical binocular microscope. Fig. 7 is an optical diagram when viewed from the front, and Fig.
This is a diagram of the objective lens shown in the figure, viewed from the direction of arrow Y. 20... Objective lens, 21... Objective optical axis 22, 23
. . . Zoom optical system (pair of angular optical systems) 24 . . . Beam splitter (reflection member) 25, 26 . . . Eyepiece optical axis 32 . ) Figure 3 Figure 4 Figure 5 Figure 41 37

Claims (2)

【特許請求の範囲】[Claims] (1)対物レンズに臨む一対の接眼光学系の接眼光軸が
前記対物レンズの対物光軸に対して平行にかつ該対物光
軸に対してオフセットして配置され、前記一対の接眼光
学系を覗いて対象物を立体的に観察するようにした手術
用双眼顕微鏡において、前記対物光軸上に受像手段を設
けたことを特徴とする手術用双眼顕微鏡。
(1) The eyepiece optical axes of the pair of eyepiece optical systems facing the objective lens are arranged parallel to the objective optical axis of the objective lens and offset from the objective optical axis, 1. A surgical binocular microscope for stereoscopic observation of an object by looking through the surgical binocular microscope, characterized in that an image receiving means is provided on the objective optical axis.
(2)対物レンズに臨む一対の接眼光学系の接眼光軸が
前記対物レンズの対物光軸に対して平行にかつ該対物光
軸に対してオフセットして配置され、前記一対の接眼光
学系を覗いて対象物を立体的に観察するようにした手術
用双眼顕微鏡において、前記対物光軸上に反射部材を設
け、その反射光軸上に受像手段を設けたことを特徴とす
る手術用双眼顕微鏡。
(2) The eyepiece optical axes of the pair of eyepiece optical systems facing the objective lens are arranged parallel to the objective optical axis of the objective lens and offset from the objective optical axis, A surgical binocular microscope for three-dimensional observation of an object by looking through the surgical binocular microscope, characterized in that a reflecting member is provided on the objective optical axis, and an image receiving means is provided on the reflecting optical axis. .
JP2012376A 1990-01-22 1990-01-22 Corneal laser surgery device Expired - Fee Related JP2983236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012376A JP2983236B2 (en) 1990-01-22 1990-01-22 Corneal laser surgery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012376A JP2983236B2 (en) 1990-01-22 1990-01-22 Corneal laser surgery device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11181576A Division JP2000033098A (en) 1999-06-28 1999-06-28 Laser operation device for cornea

Publications (2)

Publication Number Publication Date
JPH03218744A true JPH03218744A (en) 1991-09-26
JP2983236B2 JP2983236B2 (en) 1999-11-29

Family

ID=11803554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012376A Expired - Fee Related JP2983236B2 (en) 1990-01-22 1990-01-22 Corneal laser surgery device

Country Status (1)

Country Link
JP (1) JP2983236B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571108A (en) * 1992-02-29 1996-11-05 Nidek Co., Ltd. Binocular stereo microscope
US5643249A (en) * 1992-02-14 1997-07-01 Nidek Co., Ltd. Optical ophthalmic treatment apparatus
JP2008506432A (en) * 2004-07-16 2008-03-06 カール ツァイス メディテック アクチエンゲゼルシャフト Apparatus for treating an object using laser light
WO2012060273A1 (en) * 2010-11-01 2012-05-10 三鷹光器株式会社 Surgical operation microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643249A (en) * 1992-02-14 1997-07-01 Nidek Co., Ltd. Optical ophthalmic treatment apparatus
US5571108A (en) * 1992-02-29 1996-11-05 Nidek Co., Ltd. Binocular stereo microscope
JP2008506432A (en) * 2004-07-16 2008-03-06 カール ツァイス メディテック アクチエンゲゼルシャフト Apparatus for treating an object using laser light
WO2012060273A1 (en) * 2010-11-01 2012-05-10 三鷹光器株式会社 Surgical operation microscope
JP2012095802A (en) * 2010-11-01 2012-05-24 Mitaka Koki Co Ltd Surgical operation microscope

Also Published As

Publication number Publication date
JP2983236B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP3309615B2 (en) Image observation apparatus and binocular image observation apparatus using the same
US9279974B2 (en) Microscopy system and method
JPS61172552A (en) Sight automatic following apparatus
JPH11508780A (en) Method for parallel detection of visual information, apparatus therefor and method of using said method
JP3527659B2 (en) Stereo microscope
US11698535B2 (en) Systems and methods for superimposing virtual image on real-time image
JPH0624509B2 (en) Optics for working distance leveling of ophthalmic instruments
JP2983236B2 (en) Corneal laser surgery device
JP2938940B2 (en) Surgical microscope
JP2002006228A (en) Video type microscope for surgery
JP2001075011A (en) Stereoscopic microscope
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JP3619858B2 (en) Stereoscopic microscope
JP2933108B2 (en) Corneal surgery device
JP2000338416A (en) Stereoscopic view microscope
JP2000033098A (en) Laser operation device for cornea
JP3257823B2 (en) Ophthalmic equipment
JP2689718B2 (en) Display device for micro surgery
JP3316067B2 (en) Corneal cell imaging device
JP2001051204A (en) Microscope
JPH0315438A (en) Alignment device for fundus camera
JPS62211041A (en) Ophthalmic examination apparatus
JPH02203833A (en) Cubic eyeground camera
JPS6260095B2 (en)
JPS62117525A (en) Stereoscopic endoscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees